首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 850 毫秒
1.
Synthesis of chondroitin sulfate (ChS) with well-defined structure was achieved for the first time by hyaluronidase-catalyzed polymerization. N-Acetylchondrosine (GlcAbeta(1-->3)GalNAc) oxazoline derivatives sulfated at C4 (1a), C6 (1b), and both C4 and C6 (1c) in the GalNAc unit were synthesized as transition state analogue substrate monomers for hyaluronidase (HAase) catalysis. Compound 1a was effectively polymerized by the enzyme, giving rise to synthetic ChS sulfated perfectly at the C4 position in all N-acetylgalactosamine units (Ch4S, 2a) in good yields. Molecular weights (Mn) of 2a ranged from 4000 to 18,400, which were controlled by varying reaction conditions. Compounds 1b and 1c were not catalyzed by the enzyme, affording the corresponding disaccharides through the oxazoline ring-opening without formation of polysaccharides.  相似文献   

2.
Hyaluronidase-catalyzed copolymerization was carried out with monomer combinations of 2-methyl (1a)/2-vinyl (1b), 2-methyl (1a)/2-ethyl (1c), 2-methyl (1a)/2-n-propyl (1d), and 2-vinyl (1b)/2-ethyl (1c) oxazoline derivatives of hyalobiuronate [GlcAbeta(1-->3)GlcN]. All copolymerization reactions proceeded successfully in a regio and stereoselective manner, giving rise to hyaluronan derivatives bearing different N-acyl groups at the C2 position of the glucosamine unit in the polymer chain. The composition of the N-acyl groups was controlled by varying the comonomer feed ratio. The copolymerization mechanism was also discussed.  相似文献   

3.
This paper reports the synthesis of hyaluronan (HA) and its derivatives via the hyaluronidase-catalyzed polymerization of 2-substituted oxazoline derivative monomers designed as "transition-state analogue substrates". Polymerization of 2-methyl oxazoline monomer from N-acetylhyalobiuronate (GlcAbeta(1-->3)GlcNAc) effectively proceeded at pH 7.5 and 30 degrees C, giving rise to synthetic HA (natural type) in an optimal yield of 78% via ring-opening polyaddition under total control of regioselectivity and stereochemistry. Hyaluronidase catalysis enabled the polymerization of 2-ethyl, 2-n-propyl, and 2-vinyl monomers, affording the corresponding HA derivatives (unnatural type) with N-propionyl, N-butyryl, and N-acryloyl functional groups, respectively, at the C2 position of all glucosamine units in good yields. The 2-isopropyl oxazoline derivative provided the N-isobutyryl derivative of HA in low yields. Monomers of 2-phenyl and 2-isopropenyl oxazoline derivatives were not polymerized. The mechanism of the polymerization is discussed.  相似文献   

4.
We previously reported that versican, a large chondroitin/dermatan sulfate (CS/DS) proteoglycan, interacts through its CS/DS chains with adhesion molecules L- and P-selectin and CD44, as well as chemokines. Here, we have characterized these interactions further. Using a metabolic inhibitor of sulfation, sodium chlorate, we show that the interactions of the CS/DS chains of versican with L- and P-selectin and chemokines are sulfation-dependent but the interaction with CD44 is sulfation-independent. Consistently, versican's binding to L- and P-selectin and chemokines is specifically inhibited by oversulfated CS/DS chains containing GlcAbeta1-3GalNAc(4,6-O-disulfate) or IdoAalpha1-3GalNAc(4,6-O-disulfate), but its binding to CD44 is inhibited by all the CS/DS chains, including low-sulfated and unsulfated ones. Affinity and kinetic analyses using surface plasmon resonance revealed that the oversulfated CS/DS chains containing GlcAbeta1/IdoAalpha1-3GalNAc(4,6-O-disulfate) bind directly to selectins and chemokines with high affinity (K(d) 21.1 to 293 nm). In addition, a tetrasaccharide fragment of repeating GlcAbeta1-3GalNAc(4,6-O-disulfate) units directly interacts with L- and P-selectin and chemokines and oversulfated CS/DS chains containing GlcAbeta1/IdoAalpha1-3GalNAc(4,6-O-disulfate) inhibit chemokine-induced Ca(2+) mobilization. Taken together, our results show that oversulfated CS/DS chains containing GlcAbeta1/IdoAalpha1-3GalNAc(4,6-O-disulfate) are recognized by L- and P-selectin and chemokines, and imply that these chains are important in selectin- and/or chemokine-mediated cellular responses.  相似文献   

5.
We demonstrated previously that chondroitin sulfate E (ChS-E) binds to type V collagen (Munakata, H., Takagaki, K., Majima, M., and Endo, M. (1999) Glycobiology 9, 1023--1027). In this study, we investigated the structure and binding of ChS-E oligosaccharides. Eleven oligosaccharides were isolated from ChS-E by gel filtration chromatography and anion-exchange high performance liquid chromatography after hydrolysis with testicular hyaluronidase. Separately, seven oligosaccharides were custom synthesized using the transglycosylation reaction of testicular hyaluronidase. Structural analysis was performed by enzymatic digestions in conjunction with high performance liquid chromatography and mass spectrometry. This library of 18 oligosaccharides was used as a source of model molecules to clarify the structural requirements for binding to type V collagen. Binding was analyzed by a biosensor based on surface plasmon resonance. The results indicated that to bind to type V collagen the oligosaccharides must have the following carbohydrate structures: 1) octasaccharide or larger in size; 2) a continuous sequence of three GlcAbeta1--3GalNAc(4S,6S) units; 3) a GlcAbeta1--3GalNAc(4S,6S) unit, GlcAbeta1--3GalNAc(4S) unit or GlcAbeta1--3GalNAc(6S) unit at the reducing terminal; 4) a GlcAbeta1--3GalNAc(4S,6S) unit at the nonreducing terminal. It is likely that these characteristic oligosaccharide sequences play key roles in cell adhesion and extracellular matrix assembly.  相似文献   

6.
Platelet factor 4 (PF-4) is a platelet-derived alpha-chemokine that binds to and activates human neutrophils to undergo specific functions like exocytosis or adhesion. PF-4 binding has been shown to be independent of interleukin-8 receptors and could be inhibited by soluble chondroitin sulfate type glycosaminoglycans or by pretreatment of cells with chondroitinase ABC. Here we present evidence that surface-expressed neutrophil glycosaminoglycans are of chondroitin sulfate type and that this species binds to the tetrameric form of PF-4. The glycosaminoglycans consist of a single type of chain with an average molecular mass of approximately 23 kDa and are composed of approximately 85-90% chondroitin 4-sulfate disaccharide units type CSA (-->4GlcAbeta1-->3GalNAc(4-O-sulfate)beta1-->) and of approximately 10-15% di-O-sulfated disaccharide units. A major part of these di-O-sulfated disaccharide units are CSE units (-->4GlcAbeta1-->3GalNAc(4,6-O-sulfate)beta1-->). Binding studies revealed that the interaction of chondroitin sulfate with PF-4 required at least 20 monosaccharide units for significant binding. The di-O-sulfated disaccharide units in neutrophil glycosaminoglycans clearly promoted the affinity to PF-4, which showed a Kd approximately 0.8 microM, as the affinities of bovine cartilage chondroitin sulfate A, porcine skin dermatan sulfate, or bovine cartilage chondroitin sulfate C, all consisting exclusively of monosulfated disaccharide units, were found to be 3-5-fold lower. Taken together, our data indicate that chondroitin sulfate chains function as physiologically relevant binding sites for PF-4 on neutrophils and that the affinity of these chains for PF-4 is controlled by their degree of sulfation.  相似文献   

7.
Enzymatic glycosidation using sugar oxazolines 1-3 having a carboxylate group as glycosyl donors and compounds 4-6 as glycosyl acceptors was performed by employing a chitinase from Bacillus sp. as catalyst. All the glycosidations proceeded with full control in stereochemistry at the anomeric carbon of the donor and regio-selectivity of the acceptor. The N,N'-diacetyl-6'-O-carboxymethylchitobiose oxazoline derivative 1 was effectively glycosidated, under catalysis by the enzyme, with methyl N,N'-diacetyl-beta-chitobioside (4), pent-4-enyl N-acetyl-beta-D-glucosaminide (5), and methyl N-acetyl-beta-D-glucosaminide (6), affording in good yields the corresponding oligosaccharide derivatives having 6-O-carboxymethyl group at the nonreducing GlcNAc residue. The N,N'-diacetyl-6-O-carboxymethylchitobiose oxazoline derivative 2 was subjected to catalysis by the enzyme catalysis; however, no glycosidated products were produced through the reactions with 4, 5, and 6. Glycosidation reactions of the beta-d-glucosyluronic-(1-->4)-N-acetyl-D-glucosamine oxazoline derivative 3 proceeded with each of the glycosyl acceptors, giving rise to the corresponding oligosaccharide derivative having a GlcA residue at their nonreducing termini in good yields.  相似文献   

8.
The HNK-1 glycan, sulfo-->3GlcAbeta1-->3Galbeta1-->4GlcNAcbeta1-->R, is highly expressed in neuronal cells and apparently plays critical roles in neuronal cell migration and axonal extension. The HNK-1 glycan synthesis is initiated by the addition of beta1,3-linked GlcA to N-acetyllactosamine followed by sulfation of the C-3 position of GlcA. The cDNAs encoding beta1,3-glucuronyltransferase (GlcAT-P) and HNK-1 sulfotransferase (HNK-1ST) have been recently cloned. Among various adhesion molecules, the neural cell adhesion molecule (NCAM) was shown to contain HNK-1 glycan on N-glycans. In the present study, we first demonstrated that NCAM also bears HNK-1 glycan attached to O-glycans when NCAM contains the O-glycan attachment scaffold, muscle-specific domain, and is synthesized in the presence of core 2 beta1,6-N-acetylglucosaminyltransferase, GlcAT-P, and HNK-1ST. Structural analysis of the HNK-1 glycan revealed that the HNK-1 glycan is attached on core 2 branched O-glycans, sulfo-->3GlcAbeta1-->3Galbeta1-->4GlcNAcbeta1-->6(Galbeta1-->3)GalNAc. Using synthetic oligosaccharides as acceptors, we found that GlcAT-P and HNK-1ST almost equally act on oligosaccharides, mimicking N- and O-glycans. By contrast, HNK-1 glycan was much more efficiently added to N-glycans than O-glycans when NCAM was used as an acceptor. These results are consistent with our results showing that HNK-1 glycan is minimally attached to O-glycans of NCAM in fetal brain, heart, and the myoblast cell line, C2C12. These results combined together indicate that HNK-1 glycan can be synthesized on core 2 branched O-glycans but that the HNK-1 glycan is preferentially added on N-glycans over O-glycans of NCAM, probably because N-glycans are extended further than O-glycans attached to NCAM containing the muscle-specific domain.  相似文献   

9.
Despite their wide occurrence, proteoglycans (PGs) have never been isolated from the saliva of higher animals. We found that the Collocalia glycoproteins isolated from edible birds'-nests (the dried forms of regurgitated saliva of male Collocalia swiftlets) were rich in a PG containing nonsulfated chondroitin glycosaminoglycans (GAGs). We have devised a method to isolate a PG from the water extract of the white nest built by Aerodramus fuciphagus (white nest swiftlets) with a yield of 2-mg PG per gram nest. This PG contained 83% of carbohydrates, of which 79% were GalNAc and GlcUA (D-glucuronic acid) in an equimolar ratio. By using chondroitin AC lyase, the structure of GAGs in this PG was established to be chondroitin ( --> 4GlcUAbeta1 --> 3GalNAcbeta1 --> )(n) chains. The average molecular mass of the chondroitin chain was estimated to be 49 kDa by gel filtration. We have isolated a linkage region hexasaccharide, DeltaHexUAalpha1 --> 3GalNAcbeta1 --> 4GlcUAbeta1 --> 3Galbeta1 --> 3Galbeta1 --> 4Xyl, from this PG by chondroitinase ABC digestion to show that the GAGs in this PG are also linked to the core protein through the common tetrasaccharide linker, GlcUAbeta1 --> 3Galbeta1 --> 3Galbeta1 --> 4Xyl, found in various PGs. As water was not effective in extracting uronic acid-containing glycoconjugates from the black nest built by black nest swiftlets (A. maximus), we used 4 M guanidium chloride and anion-exchange chromatography in the presence of urea to extract and isolate about 30 mg of a chondroitin PG preparation from 10 g of the desialylated black nest. As the biological significance of chondroitin is still not well understood, bird's nest should become a convenient source for preparing this unique GAG to study its biological functions.  相似文献   

10.
We previously demonstrated a unique alpha-N-acetylgalactosaminyltransferase that transferred N-acetylgalactosamine (GalNAc) to the tetrasaccharide-serine, GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser (GlcA represents glucuronic acid), derived from the common glycosaminoglycan-protein linkage region, through an alpha1,4-linkage. In this study, we purified the enzyme from the serum-free culture medium of a human sarcoma cell line. Peptide sequence analysis of the purified enzyme revealed 100% identity to the multiple exostoses-like gene EXTL2/EXTR2, a member of the hereditary multiple exostoses (EXT) gene family of tumor suppressors. The expression of a soluble recombinant form of the protein produced an active enzyme, which transferred alpha-GalNAc from UDP-[3H]GalNAc to various acceptor substrates including GlcAbeta1-3Galbeta1-3Galbeta1-4Xylbeta1-O-Ser. Interestingly, the enzyme also catalyzed the transfer of N-acetylglucosamine (GlcNAc) from UDP-[3H]GlcNAc to GlcAbeta1-3Galbeta1-O-naphthalenemethanol, which was the acceptor substrate for the previously described GlcNAc transferase I involved in the biosynthetic initiation of heparan sulfate. The GlcNAc transferase reaction product was sensitive to the action of heparitinase I, establishing the identity of the enzyme to be alpha1, 4-GlcNAc transferase. These results altogether indicate that EXTL2/EXTR2 encodes the alpha1,4-N-acetylhexosaminyltransferase that transfers GalNAc/GlcNAc to the tetrasaccharide representing the common glycosaminoglycan-protein linkage region and that is most likely the critical enzyme that determines and initiates the heparin/heparan sulfate synthesis, separating it from the chondroitin sulfate/dermatan sulfate synthesis.  相似文献   

11.
A cellulose-chitin hybrid polysaccharide having alternatingly beta(1-->4)-linked D-glucose (Glc) and N-acetyl-d-glucosamine (GlcNAc) was synthesized via two modes of enzymatic polymerization. First, a sugar oxazoline monomer of Glcbeta(1-->4)GlcNAc (1) was designed as a transition-state analogue substrate (TSAS) monomer for chitinase catalysis. Monomer 1 was recognized by chitinase from Bacillus sp., giving rise to a cellulose-chitin hybrid polysaccharide (2) via ring-opening polyaddition with perfect regioselectivity and stereochemistry. Molecular weight (M(n)) of 2 reached 4030, which corresponds to 22 saccharide units. Second, a sugar fluoride monomer of GlcNAcbeta(1-->4)Glc (3) was synthesized for the catalysis of cellulase from Trichoderma viride. The enzyme catalyzed polycondensation of 3, providing a cellulose-chitin hybrid polysaccharide (4) in regio- and stereoselective manner. M(n) of 4 reached 2840, which corresponds to 16 saccharide units. X-ray diffraction measurements revealed that these hybrid polysaccharides did not form any characteristic crystalline structures. Furthermore, these unnatural hybrids of 2 and 4 were successfully digested by lysozyme from human neutrophils.  相似文献   

12.
A chitin-chitosan hybrid polysaccharide (2) having a beta(1-->4)-linked alternating structure of an N-acetyl-D-glucosamine (GlcNAc) unit and a D-glucosamine (GlcN) unit was synthesized via chitinase-catalyzed polymerization of an oxazoline derivative of a GlcNbeta(1-->4)GlcNAc monomer (1). Monomer 1 was designed as a transition-state analogue substrate (TSAS) monomer for chitinase catalysis, which belongs to the glycoside hydrolase family 18. Monomer 1 was effectively polymerized by the catalysis of enzymes from Bacillus sp., Serratia marcescens and Streptomyces griseus, under weak alkaline conditions, giving rise to a water-soluble hybrid polysaccharide (2) in good yields. Molecular weights of 2 reached 2,020 with using chitinase from Serratia marcescens, which corresponds to 10-12 saccharide units.  相似文献   

13.
14.
Artocarpus lakoocha agglutinin (ALA), isolated from the seeds of A. lakoocha fruit, is a galactose-binding lectin and a potent mitogen of T and B cells. Knowledge obtained from previous studies on the affinity of ALA was limited to molecular and submolecular levels of Galbeta1-->3GalNAc (T) and its derivatives. In the present study, the carbohydrate specificity of ALA was characterized at the macromolecular level according to the mammalian Gal/GalNAc structural units and corresponding glycoconjugates by an enzyme-linked lectinosorbent (ELLSA) and inhibition assays. The results indicate that ALA binds specifically to tumor-associated carbohydrate antigens GalNAcalpha1-->Ser/Thr (Tn) and Galbeta1-->3 GalNAcalpha1-->Ser/Thr (Talpha). It barely cross-reacts with other common glycotopes on glycoproteins, including ABH blood group antigens, Galbeta1-->3/4GlcNAc (I/II) determinants, T/Tn covered by sialic acids, and N-linked plasma glycoproteins. Dense clustering structure of Tn/Talpha-containing glycoproteins tested resulted in 2.4 x 10(5)-6.7 x 10(5)-fold higher affinities to ALA than the respective GalNAc and Gal monomer. According to our results, the overall affinity of ALA for glycans can be ranked respectively: polyvalent Tn/Talpha glycotopes > monomeric Talpha and simple clustered Tn > monomeric Tn > GalNAc > Gal; while other glycotopes: Galalpha1-->3/4Gal (B/E), Galbeta1-->3/4GlcNAc (I/II), GalNAcalpha1-->3Gal/GalNAc (A/F), and GalNAcbeta1-->3/4Gal (P/S) were inactive. The strong specificity of ALA for Tn/Talpha cluster suggests the importance of glycotope polyvalency during carbohydrate-receptor interactions and emphasizes its value as an anti-Tn/T lectin for analysis of glycoconjugate mixtures or transformed carbohydrates.  相似文献   

15.
Wu AM  Wu JH  Lin LH  Lin SH  Liu JH 《Life sciences》2003,72(20):2285-2302
Artocarpus integrifolia agglutinin (Jacalin) from the seeds of jack fruits has attracted considerable attention for its diverse biological activities and has been recognized as a Galbeta1-->3GalNAc (T) specific lectin. In previous studies, the information of its binding was limited to the inhibition results of monosaccharides and several T related disaccharides, but its interaction with other carbohydrate structural units occurring in natural glycans has not been characterized. For this reason, the binding profile of this lectin was studied by enzyme linked lectinosorbent assay (ELLSA) with our glycan/ligand collection. Among glycoproteins (gps) tested for binding, high density of multi-Galbeta1-->3GalNAcalpha1--> (mT(alpha)) and GalNAcalpha1-->Ser/Thr (mTn) containing gps reacted most avidly with Jacalin. As inhibitors expressed as nanograms yielding 50% inhibition, these mT(alpha) and mTn containing glycans were about 7.1 x 10(3), 4.0 x 10(5), and 7.8 x 10(5) times more potent than monomeric T(alpha), GalNAc, and Gal. Of the sugars tested and expressed as nanomoles for 50% inhibition, Tn containing peptides, T(alpha), and the human P blood group active disaccharide (P(alpha), GalNAcbeta1-->3Galalpha1-->) were the best and about 283 times more active than Gal. We conclude that the most potent ligands for this lectin are mTn, mT, and possibly P(alpha) glycotopes, while GalNAcbeta1-->4Galbeta1-->, GalNAcalpha1-->3Gal, GalNAcalpha1-->3GalNAc, and Galalpha1-->3Gal determinants were poor inhibitors. Thus, the overall binding profile of Jacalin can be defined in decreasing order as high density of mTn, and mT(alpha) > simple Tn cluster > monomeric T(alpha) > monomeric P(alpha) > monomeric Tn > monomeric T > GalNAc > Gal > Methylalpha1-->Man z.Gt; Man and Glc (inactive). Our finding should aid in the selection of this lectin for biological applications.  相似文献   

16.
Lyases cleave glycosaminoglycans (GAGs) in an eliminative mechanism and are important tools for the structural analysis and oligosaccharide preparation of GAGs. Various GAG lyases have been identified from terrestrial but not marine organisms even though marine animals are rich in GAGs with unique structures and functions. Herein we isolated a novel GAG lyase for the first time from the marine bacterium Vibrio sp. FC509 and then recombinantly expressed and characterized it. It showed strong lyase activity toward hyaluronan (HA) and chondroitin sulfate (CS) and was designated as HA and CS lyase (HCLase). It exhibited the highest activities to both substrates at pH 8.0 and 0.5 m NaCl at 30 °C. Its activity toward HA was less sensitive to pH than its CS lyase activity. As with most other marine enzymes, HCLase is a halophilic enzyme and very stable at temperatures from 0 to 40 °C for up to 24 h, but its activity is independent of divalent metal ions. The specific activity of HCLase against HA and CS reached a markedly high level of hundreds of thousands units/mg of protein under optimum conditions. The HCLase-resistant tetrasaccharide Δ4,5HexUAα1-3GalNAc(6-O-sulfate)β1-4GlcUA(2-O-sulfate)β1-3GalNAc(6-O-sulfate) was isolated from CS-D, the structure of which indicated that HCLase could not cleave the galactosaminidic linkage bound to 2-O-sulfated d-glucuronic acid (GlcUA) in CS chains. Site-directed mutagenesis indicated that HCLase may work via a catalytic mechanism in which Tyr-His acts as the Brønsted base and acid. Thus, the identification of HCLase provides a useful tool for HA- and CS-related research and applications.  相似文献   

17.
Chondroitin sulfate E (CS-E), a chondroitin sulfate isomer containing GlcAbeta1-3GalNAc(4,6-SO(4)) repeating unit, was found in various mammalian cells in addition to squid cartilage and is predicted to have several physiological functions in various mammalian systems such as mast cell maturation, regulation of procoagulant activity of monocytes, and binding to midkine or chemokines. To clarify the physiological functions of GalNAc(4,6-SO(4)) repeating unit, preparation of CS-E with a defined content of GalNAc(4,6-SO(4)) residues is important. We report here the in vitro synthesis of CS-E from chondrotin sulfate A (CS-A) by the purified squid N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) which catalyzed transfer of sulfate from 3(')-phosphoadenosine-5(')-phosphosulfate to position 6 of GalNAc(4SO(4)) residues of CS-A and dermatan sulfate (DS). When CS-A was used as an acceptor, about half of GalNAc(4SO(4)) residues, on average, were converted to GalNAc(4,6-SO(4)) residues. Anion exchange chromatography of the CS-E synthesized in vitro showed marked heterogeneity in negative charge; the proportion of GalNAc(4,6-SO(4)) in the most negative fraction exceeded 70% of the total sulfated repeating units. GalNAc4S-6ST also catalyzed the synthesis of oversulfated DS with GalNAc(4,6-SO(4)) residues from DS. Squid GalNAc4S-6ST thus should provide a useful tool for preparing CS-E and oversulfated DS with a defined proportion of GalNAc(4,6-SO(4)) residues.  相似文献   

18.
Oversulfated chondroitin sulfate E (CS-E) derived from squid cartilage exhibits intriguing biological activities, which appear to reflect the biological activities of mammalian CS chains containing the so-called E disaccharide unit [GlcAbeta1-3GalNAc(4,6-O-disulfate)]. Previously, we isolated novel tetra- and hexasaccharides containing a rare GlcA(3-O-sulfate) at the nonreducing end after digestion of squid cartilage CS-E with testicular hyaluronidase. In this study, squid cartilage CS-E was extensively digested with chondroitinase AC-II, which yielded five highly sulfated novel tetrasaccharides and two odd-numbered oligosaccharides (tri- and pentasaccharides) containing D-Glc. Their structures were determined by fast atom bombardment mass spectrometry and (1)H NMR spectroscopy. The results revealed an internal GlcA(3-O-sulfate) residue for all the novel tetrasaccharide sequences, which rendered the oligosaccharides resistant to the enzyme. The results suggest that GlcA(3-O-sulfate) units are not clustered but rather interspersed in the CS-E polysaccahride chains, being preferentially located in the highly sulfated sequences. The predominant structure on the nearest nonreducing side of a GlcA(3-O-sulfate) residue was GalNAc(4-O-sulfate) (80%), whereas that on the reducing side was GalNAc(4,6-O-disulfate) (59%). The structural variety in the vicinity of the GlcA(3-O-sulfate) residue might represent the substrate specificity of the unidentified chondroitin GlcA 3-O-sulfotransferase. The results also revealed a trisaccharide and a pentasaccahride sequence, both of which contained a beta-d-Glc branch at the C6 position of the constituent GalNAc residue. Approximately 5 mol % of all disaccharide units were substituted by Glc in the CS-E preparation used.  相似文献   

19.
The GlcNAcbeta(1-->3) Gal linked disaccharide 7 was synthesized as key building blocks for the construction of target monosulfated trisaccharides 1 and 2 using oxazoline 3 as glycosyl donor promoted by BF3 x Et2O.  相似文献   

20.
Poly-N-acetyllactosamine extension has been found in O-glycans in addition to N-glycans and glycosphingolipids. Attempts were made in HL-60 and K562 cells to determine the amount of poly-N-acetyllactosaminyl O-glycans in the major sialoglycoprotein, leukosialin. Leukosialin was immunoprecipitated from [3H]glucosamine-labeled HL-60 and K562 cells. Glycopeptides were prepared by Pronase digestion, and O-glycan-containing glycopeptides were isolated by affinity chromatography using Jacalin-agarose. The glycopeptides bound to Jacalin-agarose and those unbound were treated with alkaline borohydride, and the released O-glycans were fractionated by Bio-Gel P-4 filtration. Sequential glycosidase digestion of the O-glycans, with or without pretreatment by fucosidase or neuraminidase, revealed the following conclusions. 1) Leukosialin from HL-60 cells contains about 1-2 poly-N-acetyllactosaminyl O-glycan chains/molecule. 2) About 50% of these poly-N-acetyllactosaminyl O-glycans contain sialyl Le(x) termini, NeuNAc alpha 2-->3Gal beta 1-->4 (Fuc alpha 1-->3)GlcNAc beta 1-->R. The amount of sialyl Le(x) structure in leukosialin is roughly equivalent to that on cell surfaces of HL-60 cells. 3) Leukosialin from K562 cells, on the other hand, contains no detectable amount of poly-N-acetyllactosaminyl O-glycans. 4) The presence of poly-N-acetyllactosamine in O-glycans is dependent on the core 2 beta 1,6-N-acetylglucosaminyl transferase. 5) Jacalin-agarose binds to sialylated small oligosaccharides such as NeuNAc alpha 2-->3Gal beta 1-->3(NeuNAc alpha 2-->6) GalNAc but not the hexasaccharide NeuNAc alpha 2-->3Gal beta 1-->3(NeuNAc alpha 2-->3Gal beta 1-->4GlcNAc beta 1-->6) GalNAc. These results indicate that the formation of polylactosaminyl O-glycans and sialyl Le(x) structure in O-glycans is dependent on the core 2 formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号