首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lief Skøt  Helge Egsgaard 《Planta》1984,161(1):32-36
Ononitol (4-O-methyl-myo-inositol) and O-methyl-scyllo-inositol were identified in pea (Pisum sativum L.) root nodules formed by twoRhizobium leguminosarum strains. Ononitol was the major soluble carbohydrate in nodules formed by strain 1045 while O-methyl-scyllo-inositol and two unidentified components were dominant in the carbohydrate pattern of the nodules formed by strain 1 a. The cyclitols were also present in the denodulated roots, but to a much smaller extent; in the above-ground plant parts only traces were found. The identification of ononitol and O-methyl-scyllo-inositol was established by gas chromatography and gas chromatography-mass spectrometry utilizing trimethylsilyl- and acetyl-derivatives.Abbreviations GC-MS gas chromatography-mass spectroscopy - TLC thin-layer chromatography  相似文献   

3.
A small subpopulation of alfalfa (Medicago saliva L.) plants grown without fixed nitrogen can develop root nodules in the absence of Rhizobium. Cytological studies showed that these nodules were organized structures with no inter- or intracellular bacteria but with the histological characteristics of a normal indeterminate nodule. Few if any viable bacteria were recovered from the nodules after surface sterilization, and when the nodular content was used to inoculate alfalfa roots no nodulation was observed. These spontaneous nodules were formed mainly on the primary roots in the region susceptible to Rhizobium infection between 4 and 6 d after seed imbibition. Spontaneous nodules appeared as early as 10 d after germination and emerged at a rate comparable to normal nodules. The formation of spontaneous nodules on the primary root suppressed nodulation in lateral roots after inoculation with R. meliloti RCR2011. Excision of spontaneous nodules at inoculation eliminated the suppressive response. Our results indicate that the presence of Rhizobium is not required for nodule organogenesis and the elicitation of feedback regulation of nodule formation in alfalfa.Abbreviation RT root tip This work was supported by an endowment to the Racheff Chair of Excellence of the University of Tennessee, and the Soybean Promotion Board, Haskinsville, Tenn., USA. We are indebted to Noel Gerahty for performing the acetylene-reduction assays, and Dr. E.T. Graham for allowing the use of microscope facilities.  相似文献   

4.
Two cultivars of Phaseolus vulgaris L., one responsive (Mexico 309) and one less-responsive (Rio Tibagi) to nodulation with Rhizobium were grown in Leonard jars in a greenhouse. Bean plants were either inoculated with a strain of Rhizobium leguminosarum bv. phaseoli (UMR-1899), a vesicular-arbuscular mycorrhizal (VAM) fungus (Glomus etunicatum) or were left non-inoculated (controls). At two harvests (21 and 28 days post-emergence), extracts containing soluble proteins and free amino acids were prepared from leaves, roots and nodules of field beans. Nodulated plants contained a significantly higher concentration of protein and amino acids in all plant parts. Nitrogen-fixing beans invested a significantly greater proportion of total N as protein-N and amino acid-N as compared to VAM or control beans. Abundant nodule-specific proteins (nodulins) were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), identified and quantified using scanning densitometry. Rio Tibagi nodules contained a significantly lower concentration of glutamine synthetase (GS) subunits than did Mexico 309 nodules. Glutamate synthase (GOGAT) and GS activities were low relative to other legumes. The transferase/synthetase ratio for GS was also low indicating that the synthetase activity was caturated and was operating at maximal level in these young N2-fixing associations. Specific nodule activity (SNA) and the level of GS were correlated (r=0.90, p<0.05) for both cultivars at both harvests. GS activity was only 8 or 24% higher than SNA in nodules of Mexico 309 or Rio Tibagi cultivars, respectively, under conditions where substrate was not limiting. This suggests that early in the functioning of this symbiosis N assimilation by GS is the rate-limiting step in N2 fixation by these two bean cultivars, each with a different symbiotic efficiency. Phaseolus breeding programs that attempt to improve N2 fixation in beans should identify germplasm that expresses elevated levels of nodule-specific GS or GOGAT, and this material should be used along with effective R. leguminosarum bv. phaseoli strains that have already been selected, to determine superior host-microsymciont associations.  相似文献   

5.
Nodule formation on alfalfa (Medicago sativa L.) roots was determined at different inoculum dosages for wild-typeRhizobium meliloti strain RCR2011 and for various mutant derivatives with altered nodulation behavior. The number of nodules formed on the whole length of the primary roots was essentially constant regardless of initial inoculum dosage or subsequent bacterial multiplication, indicative of homeostatic regulation of total nodule number. In contrast, the number of nodules formed in just the initially susceptible region of these roots was sigmoidally dependent on the number of wild-type bacteria added, increasing rapidly at dosages above 5·103 bacteria/plant. This behavior indicates the possible existence of a threshold barrier to nodule initiation in the host which the bacteria must overcome. When low dosages of the parent (103 cells/plant) were co-inoculated with 106 cells/plant of mutants lacking functionalnodA, nodC, nodE, nodF ornodH genes, nodule initiation was increased 10- to 30-fold. Analysis of nodule occupancy indicated that these mutants were able to help the parent (wild-type) strain initiate nodules without themselves occupying the nodules. Co-inoculation withR. trifolii orAgrobacterium tumefaciens cured of its Ti plasmid also markedly stimulated nodule initiation by theR. meliloti parent strain. Introduction of a segment of the symbiotic megaplasmid fromR. meliloti intoA. tumefaciens abolished this stimulation.Bradyrhizobium japonicum and a chromosomal Tn5 nod- mutant ofR. meliloti did not significantly stimulate nodule initiation when co-inoculated with wild-typeR. meliloti. These results indicate that certainnod gene mutants and members of theRhizobiaceae may produce extracellular signals that supplement the ability of wild-typeR. meliloti cells to induce crucial responses in the host.Abbreviations EH emergent root hairs - kb kilobase - RDU relative distance unit - RT root tip This is journal article No. 188-87 of the Ohio Agricultural Research and Development Center  相似文献   

6.
Two cultivars of Phaseolus vulgaris L., one responsive to colonization with microsymbionts (Mexico 309) and one less-responsive (Rio Tibagi) were grown in Leonard jars containing sand/vermiculite under greenhouse conditions. Bean plants were either left non-inoculated (controls) or were inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus etunicatum or a strain of Rhizobium leguminosarum bv. phaseoli (UMR-1899). Plants from the Mexico 309 cultivar maintained a higher growth rate, supported proportionately more nodules and mycorrhizae, and assimilated relatively more N or P when colonized by Rhizobium or Glomus, respectively, than did plants of the Rio Tibagi cultivar. Estimated specific nodule activity for Mexico 309 beans was more than twice that of Rio Tibagi, whereas the specific phosphorus uptake rate (SPUR) was 35% greater in the non-inoculated roots of Rio Tibagi compared to Mexico 309. Colonization by G. etunicatum more than doubled the SPUR for each cultivar compared to control roots. New acid phosphatase isozymes appeared in VAM-colonized roots of both cultivars compared to controls. Acid and alkaline phosphatase activities were significantly higher in G. etunicatum-colonized Mexico 309 roots, but not in Rio Tibagi mycorrhizae, compared to uninfected roots. Polyphosphate hydrolase activity was elevated in mycorrhizae of both cultivars compared to control roots. These results indicate that the dependence of a host on a specific endophyte increases when there are limitations to the supply of a nutrient that the endophyte can provide. The greater the increase in absorption or utilization capacity following colonization by the microsymbiont, the greater the dependence by the host. More importantly, identification of enzymatic activities that influence these plant-microbe associations opens the possibility that the specific genes that code for these enzymes could be targeted for future manipulation.  相似文献   

7.
DNA was prepared from cyanobacteria freshly isolated from coralloid roots of natural populations of five cycad species: Ceratozamia mexicana mexicana (Mexico), C. mexicana robusta (Mexico), Dioon spinulosum (Mexico), Zamia furfuraceae (Mexico) and Z. skinneri (Costa Rica). Using the Southern blot technique and cloned Anabaena PCC 7120 nifK and glnA genes as probes, restriction fragment length polymorphisms of these cyanobacterial symbionts were compared. The five cyanobacterial preparations showed differences in the sizes of their DNA fragments hybridizing with both probes, indicating that different cyanobacterial species and/or strains were in the symbiotic associations. On the other hand, a similar comparison of cyanobacteria freshly collected from a single Encephalartos altensteinii coralloid root and from three independently subcultured isolates from the same coralloid root revealed that these were likely to be one and the same organism. Moreover, the complexity of restriction patterns shows that a mixture of Nostoc strains can associate with a single cycad species although a single cyanobacterial strain can predominate in the root of a single cycad plant. Thus, a wide range of Nostoc strains appear to associate with the coralloid roots of cycads.Non-standard abbreviations bp base pairs - kbp kilobase pairs - RFLP's restriction fragment length polymorphisms  相似文献   

8.
Phenolic acids are active antimicrobial compounds and root signaling molecules that play important roles in plant defense responses. They are generally present in plants as glycosides or esters. A range of soluble and bound phenolic acids were detected in roots and root nodules of Arachis hypogaea L., among which five were identified by high performance liquid chromatography (HPLC) coupled with UV–Vis diode array detector (DAD), viz., p-coumaric acid (p-com), p-hydroxybenzaldehyde (HBAld), p-hydroxybenzoic acid (HBA), caffeic acid (CA) and protocatechuic acid (PA). Para-coumaric acid was constitutively present in all fractions whereas HBA was present in the soluble form only in young nodules. CA and PA were mostly present in the wall bound fraction. The root nodules contain higher concentration of phenolic acids than non-nodulated roots and presence of peroxidase and polyphenol oxidase indicate the metabolism of phenolic acids in roots and root nodules. These results indicate that phenolic acids (p-com and CA) in bound-glycosidic or ester forms were major components in cell wall fortification which provide protection to the root nodule from pathogen attack.  相似文献   

9.
Nitrate and nitrite reduction centers in non-nodulated and symbiotic yellow lupine were analyzed. In young seedlings, nitrate was exclusively accumulated in roots, which also was shown as the main nitrate reduction center. In contrast, leaves were shown to play a key role in nitrite reduction. A similar distribution of nitrate reductase (NR) and nitrite reductase was found in nodulated plants. However, in field conditions characterized by low nitrate content, a disproportionately high level of NR activity in nodules was also observed during all stages of symbiotic growth. This feature was confirmed in nitrate-fed hydroponic cultures. Nodule NR activity was one order of magnitude higher than in roots, in spite of the small stored nitrate pool found inside nodules. This suggests that nodule NR activity had been induced not by nitrate itself but indirectly. Since bacteroids were shown to be responsible for the vast majority of nodule NR activity, the plausible explanation of this effect seems to be a dissimilatory nature of rhizobial NR. Considering that environmental nitrate could cause hypoxia inside nodules, this is the proposed way of the observed nodule NR induction.  相似文献   

10.
A. M. Smith 《Planta》1985,166(2):264-270
The aim of this work was to compare the capacities for fermentation and synthesis of malate from phosphoenolpyruvate in roots and Rhizobium nodules of Pisum sativum. The nodules and the cortices and apices of roots had similar activities of glycolytic enzymes and enzymes of ethanolic and lactic fermentation when expressed on a protein basis. The activity of phosphoenolpyruvate carboxylase was similar in nodules and apices, and three to four fold lower in cortices. All three tissues had very high activities of malate dehydrogenase, significant activity of NADP-malic enzyme, and no detectable activity of phosphoenolpyruvate carboxykinase. These results do not support the belief that nodules have a substantially greater capacity to convert phosphoenolpyruvate to malate than roots, or that there are major qualitative differences in the pathways of fermentation of nodules and roots.Abbreviation PEP phosphoenolpyruvate  相似文献   

11.
Chitinase and peroxidase, two enzymes thought to be involved in the defense of plants against pathogens, were measured in soybean (Glycine max L. Merr.) roots and in nodules colonized by Bradyrhizobium japonicum strains differing in their symbiotic potential. Activities of both enzymes were higher in nodules than in roots. In effective, nitrogen-fixing nodules, colonized by wild-type bacteria, chitinase and peroxidase activities had low levels in the central infected zone and were enhanced primarily in the nodule cortex. An ascorbate-specific peroxidase, possibly involved in radical scavenging, had similarly high activities in the infected zone and in the cortex. Ineffective nodules colonized by bacteria unable to fix nitrogen symbiotically showed a similar distribution of chitinase and peroxidase. In another type of ineffective nodule, colonized by a B. japonicum strain eliciting a hypersensitive response, activities of both enzymes were enhanced to a similar degree in the infected zone as well as in the cortex. Tissue prints using a direct assay for peroxidase and an antiserum against bean chitinase corroborated these results. The antiserum against bean chitinase cross-reacted with a nodule protein of Mr 32 000; it inhibited most of the chitinase activity in the nodules but barely affected the chitinase in uninfected roots. It is concluded that proteins characteristic of the defense reaction accumulate in the cortex of nodules independently of their ability to fix nitrogen, and in the entire body of hypersensitively reacting nodules.Abbreviations PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulphate This work was supported by the Swiss National Science Foundation, Grants 31-25730.88 (to R.B. Mellor and T. Boller) and 31-27923.89 (to A. Wiemken).  相似文献   

12.
The sequence of events leading up to the establishment of symbiotic nitrogen-fixation were studied in two tropical legumes, Centrosema pubescens Benth, and Vigna unguiculata L. Walp. Parameters measured included fresh and dry weights, chlorophyll and leghaemoglobin contents, as well as the activities of NADH-nitrate reductase (EC 1.6.6.1), and nitrogenase (nitric-oxide reductase-EC 1.7.99.2) in plants that were inoculated with suitable rhizobia or which were watered with potassium nitrate. Dry weight and photosynthetic activity of both species followed the sigmoidal pattern which is characteristic of most plants. Growth was little different in either a qualitative or quantitative sense whether nitrogen was supplied as nitrate or through dinitrogen fixation. Although the biochemical sequence of events was dependent on the limiting sensitivities of the individual assays used, the data suggest that nitrate reductase is the first measurable enzymatic activity in the nodules (and roots), followed by acetylene reduction and leghaemoglobin in that order. It is possible therefore, that low levels of symbiotic nitrogen fixation occur in the nodules in the absence of leghaemoglobin. Nitrate reductase activity in C. pubescens nodules was negatively exponentially correlated with nitrogenase activity of the same nodules, suggesting a changing metabolism in old nodules. These data are discussed in terms of environmental and physical factors known to control nitrogen fixation.  相似文献   

13.
Astragalus cicer (cicer milkvetch) nodule bacteria were investigated for host plant specificity and partial nodC gene sequences, whilst their native host was studied for the microscopic structure of root nodules. The strains under investigation formed nodules not only on the original host but also on Astragalus glycyphyllos, Astragalus sinicus, Lotus corniculatus, and Phaseolus vulgaris. The nodules induced on the cicer milkvetch were classified as indeterminate and characterized by apical, persistent meristem, a large bacteroid region with infected and uninfected cells, and elongated bacteroids singly located inside peribacteroid membranes. By comparison of the partial nodC gene sequences of a representative strain of astragali rhizobia to those contained in the GenBank database, a close symbiotic relationship of A. cicer microsymbionts to Rhizobium sp. (Oxytropis) was found.  相似文献   

14.
Pairs of Rhizobium meliloti nod mutants were co-inoculated onto alfalfa (Medicago saliva L.) roots to determine whether one nod mutant could correct, in situ, for defects in nodule initiation of another nod mutant. None of the Tn5 or nod deletion mutants were able to help each other form nodules when co-inoculated together in the absence of the wild-type. However, as previously observed, individual nod mutants significantly increased nodule initiation by low dosages of co-inoculated wild-type cells. Thus, nod mutants do produce certain signal substances or other factors which overcome limits to nodule initiation by the wild-type. When pairs of nod mutants were co-inoculated together with the wild-type, the stimulation of nodulation provided by individual nodABC mutants was not additive. However, clearly additive or synergistic stimulation was observed between pairs of mutants with a defective host-specificity gene (nodE, nodF, or nodH). Each pair of host-specificity mutants stimulated first nodule formation to nearly the maximum levels obtainable with high dosages of the wild-type. Mutant bacteria were recovered from only about 10% of these nodules, whereas the co-inoculated wild-type was present in all these nodules and substantially outnumbered mutant bacteria in nodules occupied by both. Thus, these mutant co-inoculants appeared to help their parent in situ even though they could not help each other. Sterile culture filtrates from wild-type cells stimulated nodule initiation by low dosages of the wild-type, but only when a host-specificity mutant was also present. The results from our studies seem consistent with the possibility that pairs of host-specificity mutants are able to help the wild-type initiate nodule formation by sustained production of complementary signals required for induction of symbiotic host responses.  相似文献   

15.
G. I. Cassab 《Planta》1986,168(4):441-446
In soybean (Glycine max (L.) Merr.) root nodules the level of hydroxyproline-containing molecules is developmentally regulated. Hydroxyproline accumulates in both nodule cortex and medulla. In the cortex, the hydroxyproline is mainly localized in the cell wall, presumably as extensin, but in the medulla it is mainly in the soluble fraction as an arabinogalactan protein (AGP). Nodule-specific AGPs are present at early nodulation. The highest concentration of AGP is in the nodule medulla, followed by nodule cortex, uninfected roots, leaves, flowers, pods and seeds. Root nodules and all organs of the soybean plant that were tested were found to express a tissue-specific set of arabinogalactan proteins.Abbreviation AGP Arabinogalactan protein  相似文献   

16.
The effects of exogenous nitrate on the number of developing nodules and their leghemoglobin content in the original pea (Pisum sativumL.) line and its symbiotic mutants were studied. Mutation in the Sym31gene conferred the tolerance to nitrate in the corresponding pea line and manifested itself as the number of nodules independent of the nitrate concentration. Thus, the Sym31gene was identified as the only known symbiotic gene involved in both the differentiation of symbiotic compartments and the nitrate-dependent process of nodule formation. The presence of leghemoglobin in double mutants (sym13, sym31) indicates the possibility of the complementary contribution of these genes in the control of leghemoglobin synthesis.  相似文献   

17.
Legumes can access atmospheric nitrogen through a symbiotic relationship with nitrogen‐fixing bacteroids that reside in root nodules. In soybean, the products of fixation are the ureides allantoin and allantoic acid, which are also the dominant long‐distance transport forms of nitrogen from nodules to the shoot. Movement of nitrogen assimilates out of the nodules occurs via the nodule vasculature; however, the molecular mechanisms for ureide export and the importance of nitrogen transport processes for nodule physiology have not been resolved. Here, we demonstrate the function of two soybean proteins – GmUPS1‐1 (XP_003516366) and GmUPS1‐2 (XP_003518768) – in allantoin and allantoic acid transport out of the nodule. Localization studies revealed the presence of both transporters in the plasma membrane, and expression in nodule cortex cells and vascular endodermis. Functional analysis in soybean showed that repression of GmUPS1‐1 and GmUPS1‐2 in nodules leads to an accumulation of ureides and decreased nitrogen partitioning to roots and shoot. It was further demonstrated that nodule development, nitrogen fixation and nodule metabolism were negatively affected in RNAi UPS1 plants. Together, we conclude that export of ureides from nodules is mediated by UPS1 proteins, and that activity of the transporters is not only essential for shoot nitrogen supply but also for nodule development and function.  相似文献   

18.
Particle frequency of the peribacteroid membrane (PBM) from nodules of Glycine max (L.) Merr. cv. Maple Arrow infected with Bradyrhizobium japonicum 61-A-101 (wild-type strain) was determined by freeze-fracturing to be about 2200·m-2 in the protoplasmic fracture face and 700·m-2 in the exoplasmic fracture face. In membranes isolated from nodules infected with the mutant RH 31-Marburg of B. japonicum, the particle frequency was similar in both fracture faces with 1200–1300 particles·m-2. Analysis of particlesize distribution on peribacteroid membranes showed a loss, especially of particle sizes larger than 11 nm, in the mutant-infected nodules. Two-dimensional gel electrophoresis (isoelectric focussing and sodium dodecyl sulfate-polyacrylamide) showed 27 different polypeptides in the PBM from nodules infected with the wild-type strain, four of which were absent from the PBM of nodules infected with the mutant RH 31-Marburg, which also exhibited one extra small-molecular-weight polypeptide. At least 14 of the 27 polypeptides in the PBM from the wild-type-infected nodule were glycoproteins. In three of these glycoproteins, post-translational modifications were either lacking or different when the membrane was derived from mutant-infected nodules.Abbreviations EF exoplasmatic fracture face - HRPO horse radish peroxidase - IEF Isoelectric focussing - PBM peribacteroid membrane - PF protoplasmatic fracture face - PNA peanut agglutinin - PSA Pisum sativum agglutinin - SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

19.
Plant and bacterial antigens contributing to nodule development and symbiosis in pea (Pisum sativum L.) roots were identified after isolation of a set of monoclonal antibody (McAb)-producing hybridoma lines. Rats were immunised with the peribacteriod material released by mild osmotic shock treatment from membrane-enclosed bacteroids of Rhizobium leguminosarum bv. viceae. In order to diversify the range of McAb specificities, this material was either used as immunogen directly (method 1), or after immunodepletion of a set of glycoprotein and lipopolysaccharide antigens (method 2), or after deglycosylation (method 3). After fusion and screening of cloned hybridoma lines, these three immunisation methods gave respectively 4, 2 and 1 classes of McAb with unique antigen specificities. Ultrastructural immunogold localisation studies showed four different antigens to be present on peribacteriod and plasma membranes (identified by MAC 64, 202, 206 or 209); in addition, a glycoprotein of plant origin but present in the infection-thread matrix was identified by MAC 204. Although none of the epitopes recognised by these McAb was nodule-specific, several were found to be more abundant in extracts of nodule tissue than in uninfected roots (MAC 64, 202, 204, 206). Two McAb reacted with new bacterial antigens: MAC 203 identified a bacterial antigen expressed upon infection but not in free-living cultures of Rhizobium, and MAC 115 identified a bacterial polypeptide (55 kdaltons) that was present in both free-living and bacteroid forms. There were also some McAb of broader specificity that react with antigens present in both plant and bacterial cytoplasms.Abbreviations ELISA enzyme-linked immunosorbent assay - Ig inmunoglobulin - kDa kilodalton - LPS lipopolysaccharide - McAb monoclonal antibody - PBM peribacteroid membrane - SDS-PAGE sodium dodecyl sulfate-polyacryl-amide gel electrophoresis - TFMS trifluoromethane sulfonic acid  相似文献   

20.
K. C. Wooi  W. J. Broughton 《Planta》1979,145(5):487-495
Axenic cultures of bacteroid-containing protoplasts were isolated from root nodules of Vigna unguiculata L. Walp. Dimensions of the protoplasts were 35 to 135 m long x 35 to 95 m wide. Yields were about 30 to 50 mg dry weight per gram fresh weight of nodules. About 5x108 protoplasts packed into 1 ml of basal medium under the influence of gravity. When incubated in hypertonic, nitrogen-free media, freshly isolated protoplasts began to reduce acetylene to ethylene after a lag period of 24 to 48 h. Various additions to the basal medium showed that the system possessed functional glycolytic and tricarboxylic acid pathways. Endogenous application of various intermediary metabolites stimulated both acetylene reduction and respiration, though not often equally. As acetylene reduction, but not respiration, was inhibitable by both asparagine and glutamine, the system appears suitable for the study of mechanisms controlling symbiotic nitrogen fixation.Abbreviations BSA bovine serum albumine - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - PEP phospho(enol)pyruvate - UMKL 76 University of Malaga, Kuala Lumpur, Rhizobium, No. 76 - TCAC tricarboxylic acid cycle  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号