首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glypican family of heparan sulfate proteoglycans has been implicated in formation of morphogen gradients. Here, we examine the role of the glypican Dally-like protein (Dlp) in shaping the Wingless gradient in the Drosophila wing disc. Surprisingly, we find that Dlp has opposite effects at high and low levels of Wingless. Dlp promotes low-level Wingless activity but reduces high-level Wingless activity. We present evidence that the Wg antagonist Notum acts to induce cleavage of the Dlp glypican at the level of its GPI anchor, which leads to shedding of Dlp. Thus, spatially regulated modification of Dlp by Notum employs the ligand binding activity of Dlp to promote or inhibit signaling in a context-dependent manner. Notum-induced shedding of Dlp could convert Dlp from a membrane-tethered coreceptor to a secreted antagonist.  相似文献   

2.
Wingless (Wg) is a morphogen required for the patterning of many Drosophila tissues. Several lines of evidence implicate heparan sulfate-modified proteoglycans (HSPGs) such as Dally-like protein (Dlp) in the control of Wg distribution and signaling. We show that dlp is required to limit Wg levels in the matrix, contrary to the expectation from overexpression studies. dlp mutants show ectopic activation of Wg signaling at the presumptive wing margin and a local increase in extracellular Wg levels. dlp somatic cell clones disrupt the gradient of extracellular Wg, producing ectopic activation of high threshold Wg targets but reducing the expression of lower threshold Wg targets where Wg is limiting. Notum encodes a secreted protein that also limits Wg distribution, and genetic interaction studies show that dlp and Notum cooperate to restrict Wg signaling. These findings suggest that modification of an HSPG by a secreted hydrolase can control morphogen levels in the matrix.  相似文献   

3.
Multiple developmental processes require tightly controlled Wnt signaling, and its misregulation leads to congenital abnormalities and diseases. Glypicans are extracellular proteins that modulate the Wnt pathway. In addition to interacting with Wnts, these glycosophosphotidylinositol (GPI)-anchored, heparan-sulfate proteoglycans bind ligands of several other signaling pathways in both vertebrates and invertebrates. In Drosophila, Notum, a secreted α/β-hydrolase, antagonizes the signaling of the prototypical Wnt Wingless (Wg), by releasing glypicans from the cell surface. Studies of mammalian Notum indicate promiscuous target specificity in cell culture, but the role of Notum in vertebrate development has not been studied. Our work shows that zebrafish Notum 1a, an ortholog of mammalian Notum, contributes to a self-regulatory loop that restricts Wnt/β-catenin signaling. Notum 1a does not interact with Glypican 4, an essential component of the Wnt/planar cell polarity (PCP) pathway. Our results suggest a surprising specific role of Notum in the developing vertebrate embryo.  相似文献   

4.
Wnt signaling is a key regulator of development that?is often associated with cancer. Wingless,?a Drosophila Wnt homolog, has been reported to be a survival factor in wing imaginal discs. However, we found that prospective wing cells survive in the absence of Wingless as long as they are not surrounded by Wingless-responding cells. Moreover, local autonomous overactivation of Wg signaling (as a result of a mutation in APC or axin) leads to the elimination of surrounding normal cells. Therefore, relative differences in Wingless signaling lead to competitive cell interactions. This process does not involve Myc, a well-established cell competition factor. It does, however, require Notum, a conserved secreted feedback inhibitor of Wnt signaling. We suggest that Notum could amplify local differences in Wingless signaling, thus serving as an early trigger of Wg signaling-dependent competition.  相似文献   

5.
Drosophila Wingless (Wg) is the founding member of the Wnt family of secreted proteins. During the wing development, Wg acts as a morphogen whose concentration gradient provides positional cues for wing patterning. The molecular mechanism(s) of Wg gradient formation is not fully understood. Here, we systematically analyzed the roles of glypicans Dally and Dally-like protein (Dlp), the Wg receptors Frizzled (Fz) and Fz2, and the Wg co-receptor Arrow (Arr) in Wg gradient formation in the wing disc. We demonstrate that both Dally and Dlp are essential and have different roles in Wg gradient formation. The specificities of Dally and Dlp in Wg gradient formation are at least partially achieved by their distinct expression patterns. To our surprise, although Fz2 was suggested to play an essential role in Wg gradient formation by ectopic expression studies, removal of Fz2 activity does not alter the extracellular Wg gradient. Interestingly, removal of both Fz and Fz2, or Arr causes enhanced extracellular Wg levels, which is mainly resulted from upregulated Dlp levels. We further show that Notum, a negative regulator of Wg signaling, downregulates Wg signaling mainly by modifying Dally. Last, we demonstrate that Wg movement is impeded by cells mutant for both dally and dlp. Together, these new findings suggest that the Wg morphogen gradient in the wing disc is mainly controlled by combined actions of Dally and Dlp. We propose that Wg establishes its concentration gradient by a restricted diffusion mechanism involving Dally and Dlp in the wing disc.  相似文献   

6.
We here identify and characterize an extracellular modulator of Hedgehog signaling in Drosophila, Shifted. Shifted is required for high levels of long-range signaling in the developing wing imaginal disc. Surprisingly, shifted encodes the only Drosophila ortholog of the secreted vertebrate protein Wnt Inhibitory Factor-1 (WIF-1), whose known role is to bind to extracellular Wnts and inhibit their activity. However, Shifted does not regulate Hedgehog signaling by affecting Wingless or Wnt signaling. We show instead that Shifted is a secreted protein that acts over a long distance and is required for the normal accumulation of Hh protein and its movement in the wing. Our data further indicate that Shf interacts with Hh and the heparan sulfate proteoglycans. Therefore, we propose that Shf stabilizes the interaction between Hh and the proteoglycans, an unexpected role for a member of the WIF-1 family.  相似文献   

7.
Glypicans are heparan sulfate proteoglycans that are attached to the cell surface by a GPI (glycosylphosphatidylinositol)anchor. Glypicans regulate the activity of Wnts, Hedgehogs,bone morphogenetic proteins and fibroblast growth factors. In the particular case of Wnts, it has been proposed that GPI-anchored glypicans stimulate Wnt signalling by facilitating and/or stabilizing the interaction between Wnts and their cell surface receptors. On the other hand, when glypicans are secreted to the extracellular environment, they can act as competitive inhibitors of Wnt. Genetic screens in Drosophila have recently identified a novel inhibitor of Wnt signalling named Notum. The Wnt inhibiting activity of Notum was associated with its ability to release Dlp [Dally (Division abnormally delayed)-like protein; a Drosophila glypican] from the cell surface by cleaving the GPI anchor. Because these studies showed that the other Drosophila glypican Dally was not released from the cell surface by Notum,it remains unclear whether this enzyme is able to cleave glypicans from mammalian cells. Furthermore, it is also not known whether Notum cleaves GPI-anchored proteins that are not members of the glypican family. Here, we show that mammalian Notum can cleave several mammalian glypicans. Moreover, we demonstrate that Notum is able to release GPI-anchored proteins other than glypicans. Another important finding of the present study is that,unlike GPI-phospholipase D, the other mammalian enzyme that cleaves GPI-anchored proteins, Notum is active in the extracellular environment. Finally, by using a cellular system in which GPC3 (glypican-3) stimulates Wnt signalling, we show that Notum can act as a negative regulator of this growth factor.  相似文献   

8.
9.
10.
González A  Chaouiya C  Thieffry D 《Genetics》2006,174(3):1625-1634
The larval development of the Drosophila melanogaster wings is organized by the protein Wingless, which is secreted by cells adjacent to the dorsal-ventral (DV) boundary. Two signaling processes acting between the second and early third instars and between the mid- and late third instar control the expression of Wingless in these boundary cells. Here, we integrate both signaling processes into a logical multivalued model encompassing four cells, i.e., a boundary and a flanking cell at each side of the boundary. Computer simulations of this model enable a qualitative reproduction of the main wild-type and mutant phenotypes described in the experimental literature. During the first signaling process, Notch becomes activated by the first signaling process in an Apterous-dependent manner. In silico perturbation experiments show that this early activation of Notch is unstable in the absence of Apterous. However, during the second signaling process, the Notch pattern becomes consolidated, and thus independent of Apterous, through activation of the paracrine positive feedback circuit of Wingless. Consequently, we propose that appropriate delays for Apterous inactivation and Wingless induction by Notch are crucial to maintain the wild-type expression at the dorsal-ventral boundary. Finally, another mutant simulation shows that cut expression might be shifted to late larval stages because of a potential interference with the early signaling process.  相似文献   

11.
12.
13.
Development of organ-specific size and shape demands tight coordination between tissue growth and cell-cell adhesion. Dynamic regulation of cell adhesion proteins thus plays an important role during organogenesis. In Drosophila, the homophilic cell adhesion protein DE-Cadherin (DE-Cad) regulates epithelial cell-cell adhesion at adherens junctions (AJs). Here, we show that along the proximodistal (PD) axis of the developing wing epithelium, apical cell shapes and expression of DE-Cad are graded in response to Wingless (Wg), a morphogen secreted from the dorsoventral (DV) organizer in distal wing, suggesting a PD gradient of cell-cell adhesion. The Fat (Ft) tumor suppressor, by contrast, represses DE-Cad expression. In genetic tests, ft behaves as a suppressor of Wg signaling. Cytoplasmic pool of beta-catenin/Arm, the intracellular transducer of Wg signaling, is negatively correlated with the activity of Ft. Moreover, unlike that of Wg, signaling by Ft negatively regulates the expression of Distalless (Dll) and Vestigial (Vg). Finally, we show that Ft intersects Wnt/Wg signaling, downstream of the Wg ligand. Fat and Wg signaling thus exert opposing regulation to coordinate cell-cell adhesion and patterning along the PD axis of Drosophila wing.  相似文献   

14.
Recent work on pattern formation in the Drosophila embryo reveals a new mechanism which shapes the gradient of the secreted morphogen, Wingless: Wingless protein is degraded more rapidly on one side of its source than on the other.  相似文献   

15.
Wingless, the Drosophila homologue of the proto-oncogene Wnt-1, encodes a secreted glycoprotein that regulates differentiation and proliferation of nearby cells. Here we report on the biochemical mechanism(s) by which the wingless signal is transmitted from cell to cell. When expressed in S2 cells, the majority (approximately 83%) of secreted wingless protein (WG) is bound to the cell surface and extracellular matrix through specific, noncovalent interactions. The tethered WG can be released by addition of exogenous heparan sulfate and chondroitin sulfate glycosaminoglycans. WG also binds directly to heparin agarose beads with high affinity. These data suggest that WG can bind to the cell surface via naturally occurring sulfated proteoglycans. Two lines of evidence indicate that extracellular glycosaminoglycans on the receiving cells also play a functional role in WG signaling. First, treatment of WG-responsive cells with glycosaminoglycan lyases reduced WG activity by 50%. Second, when WG- responsive cells were preincubated with 1 mM chlorate, which blocks sulfation, WG activity was inhibited to near-basal levels. Addition of exogenous heparin to the chlorate-treated cells was able to restore WG activity. Based on these results, we propose that WG belongs to the group of growth factor ligands whose actions are mediated by extracellular proteoglycan molecules.  相似文献   

16.
17.
The endocytic pathway and formation of the Wingless morphogen gradient   总被引:2,自引:0,他引:2  
Controlling the spread of morphogens is crucial for pattern formation during development. In the Drosophila wing disc, Wingless secreted at the dorsal-ventral compartment boundary forms a concentration gradient in receiving tissue, where it activates short- and long-range target genes. The glypican Dally-like promotes Wingless spreading by unknown mechanisms, while Dynamin-dependent endocytosis is thought to restrict Wingless spread. We have utilized short-term expression of dominant negative Rab proteins to examine the polarity of endocytic trafficking of Wingless and its receptors and to determine the relative contributions of endocytosis, degradation and recycling to the establishment of the Wingless gradient. Our results show that Wingless is internalized via two spatially distinct routes: one on the apical, and one on the basal, side of the disc. Both restrict the spread of Wingless, with little contribution from subsequent degradation or recycling. As previously shown for Frizzled receptors, depleting Arrow does not prevent Wingless from entering endosomes. We find that both Frizzled and Arrow are internalized mainly from the apical membrane. Thus, the basal Wingless internalization route must be independent of these proteins. We find that Dally-like is not required for Wingless spread when endocytosis is blocked, and propose that Dally-like promotes the spread of Wingless by directing it to lateral membranes, where its endocytosis is less efficient. Thus, subcellular localization of Wingless along the apical-basal axis of receiving cells may be instrumental in shaping the Wingless gradient.  相似文献   

18.
BACKGROUND: Members of the Notch family of receptors mediate a process known as lateral inhibition that plays a prominent role in the suppression of cell fates during development. This function is triggered by a ligand, Delta, and is implemented by the release of the intracellular domain of Notch from the membrane and by its interaction with the protein Suppressor of Hairless [Su(H)] in the nucleus. There is evidence that Notch can also signal independently of Su(H). In particular, in Drosophila, there is evidence that a Su(H)-independent activity of Notch is associated with Wingless signaling. RESULTS: We report that Ubx(VM)B, a visceral mesoderm-specific enhancer of the Ubx gene of Drosophila, is sensitive to Notch signaling. In the absence of Notch, but not of Su(H), the enhancer becomes activated earlier and over a wider domain than in the wild type. Furthermore, the removal of Notch reduces the requirement for Disheveled-mediated Wingless signaling to activate this enhancer. This response to Notch is likely to be mediated by the dTcf binding sites in the Ubx(VM)B enhancer. CONCLUSIONS: Our results show that, in Drosophila, an activity of Notch that is likely to be independent of Su(H) inhibits Wingless signaling on Ubx(VM)B. A possible target of this activity is dTcf. As dTcf has been shown to be capable of repressing Wingless targets, our results suggest that this repressive activity may be regulated by Notch. Finally, we suggest that Wingless signaling is composed of two steps, a down-regulation of a Su(H)-independent Notch activity that modulates the activity of dTcf and a canonical Wingless signaling event that regulates the activity of Armadillo and its interaction with dTcf.  相似文献   

19.
20.
Pattern formation during animal development is often induced by extracellular signaling molecules, known as morphogens, which are secreted from localized sources. During wing development in Drosophila, Wingless (Wg) is activated by Notch signaling along the dorsal-ventral boundary of the wing imaginal disc and acts as a morphogen to organize gene expression and cell growth. Expression of wg is restricted to a narrow stripe by Wg itself, repressing its own expression in adjacent cells. This refinement of wg expression is essential for specification of the wing margin. Here, we show that a homeodomain protein, Defective proventriculus (Dve), mediates the refinement of wg expression in both the wing disc and embryonic proventriculus, where dve expression requires Wg signaling. Our results provide evidence for a feedback mechanism that establishes the wg-expressing domain through the action of a Wg-induced gene product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号