首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
E. coli expression plasmids for human aldolases A and B (EC 4.1.2.13) have been constructed from the pIN-III expression vector and their cDNAs, and expressed in E. coli strain JM83. Enzymatically active forms of human aldolase have been generated in the cells when transfected with either pHAA47, a human aldolase A expression plasmid, or pHAB 141, a human aldolase B expression plasmid. These enzymes are indistinguishable from authentic enzymes with respect to molecular size, amino acid sequences at the NH2- and COOH-terminal regions, the Km for substrate, fructose 1,6-bisphosphate and the activity ratio of fructose 1,6-bisphosphate/fructose 1-phosphate (FDP/F1P), although net electric charge and the Km for FDP of synthetic aldolase B differed from those for a previously reported human liver aldolase B. In addition, both the expressed aldolases A and B complement the temperature-sensitive phenotype of the aldolase mutant of E. coli h8. These data argue that the expressed aldolases are structurally and functionally similar to the authentic human aldolases, and would provide a system for analysis of the structure-function relationship of human aldolases A and B.  相似文献   

2.
3.
Molecular cloning of cDNA for rat L-type pyruvate kinase and aldolase B   总被引:13,自引:0,他引:13  
Two double-stranded cDNA recombinant pBR322 plasmid libraries were constructed starting from high carbohydrate diet rat liver poly(A)+ mRNA, either fractionated by denaturing sucrose gradient centrifugation for the cloning of L-type pyruvate kinase cDNA, or nonfractionated for aldolase B. Both libraries were screened with single-stranded cDNA probes reverse transcribed from fasted or high carbohydrate diet rat liver mRNAs. mRNAs from fasted animals were also fractionated by sucrose gradient centrifugation and mRNAs from the fed animals were, in addition, further purified by high performance liquid gel filtration chromatography. Those clones hybridizing with the "positive" probe (from animals fed the high carbohydrate diet) and not with the "negative" one (from fasted animals) were preselected and their plasmid DNA was purified and analyzed by positive hybridization-selection. Thirty of 4500 bacteria colonies transformed by recombinant plasmids were preselected by differential screening for pyruvate kinase, and 8 of 864 colonies for aldolase B. Twenty-two recombinant plasmids for pyruvate kinase and two for aldolase B were shown to contain specific cDNA inserts by positive hybridization-selection. Plasmids DNAs of some pyruvate kinase and aldolase B clones (whose inserts ranged from 700 to 1050 bases in length) were labeled by nick translation and used as probes for Northern blot hybridization. The pyruvate kinase cDNA probes recognized mainly a 3400-base RNA species which was detected in high carbohydrate diet rat liver, but not in fasted rat liver and in tissues which do not synthesize L-type pyruvate kinase. In addition, some pyruvate kinase probes hybridized with minor RNA species of about 2000 bases in length, only observed after carbohydrate diet. For aldolase B, the recombinant plasmid DNA hybridized with a single RNA species of 1750 bases. This RNA, detected in kidney, small intestine and liver, was induced by a high carbohydrate diet and increased with liver development. The rat probe cross-hybridized with human aldolase B messenger RNA.  相似文献   

4.
5.
We report the construction of an inducible, high-copy plasmid for the expression of foreign proteins in Escherichia coli. This plasmid, pPB1, combines the trc promoter, beta-galactosidase translation start site, and polylinker of pKK233-2 with the origin of replication region of pUC19. Replacement of the origin of replication of pKK233-2 results in a threefold increase in plasmid copy number of pPB1 compared with pKK233-2. Subclones of the cDNA for rabbit muscle fructose-1,6-bisphosphate aldolase (E.C. 4.1.2.13) in the two expression plasmids exhibit a comparable difference in copy number. An increase in protein expression measured by SDS-PAGE and aldolase specific activities reflects the increased copy number. Specific activities of aldolases in bacterial extracts differ approximately sixfold between the two expression plasmids in E. coli JM83. Aldolase A can compose up to 40% of the total protein in E. coli JM83 when expressed in pPB1, from which more than 100 mg of purified enzyme can be obtained per liter culture.  相似文献   

6.
Nucleotide sequence of rat liver aldolase B messenger RNA   总被引:5,自引:0,他引:5  
The nucleotide sequence of messenger RNA encoding rat liver aldolase B has been determined by sequence analysis using recombinant cDNAs cloned in bacterial plasmids. The sequence contains part of the 5'-untranslatable region (68 nucleotides), the entire coding region (1092 nucleotides), and the complete 3'-untranslatable region (387 nucleotides), excluding the poly(A) tail. A potential ribosomal-binding site is located about 30 nucleotides upstream from the initiation codon. The amino acid sequence of rat liver aldolase B is composed of 364 amino acids and has 70% homology with rabbit muscle aldolase A.  相似文献   

7.
The nucleotide sequence of a patient's aldolase B gene was determined and showed a substitution of a single nucleotide (C----A) at position 720 in the coding region, which resulted in the 240th amino acid, a cysteine, being changed to a stop codon (TGC----TGA). By an allele-specific oligonucleotide probe and polymerase chain reaction, the patient was shown to be homozygous for the mutation. To examine whether this mutation causes functional defect of the enzyme, the activity of the aldolase B from the patient, expressed in Escherichia coli by using expression plasmid, was measured. No activity was observed, and the predicted product was recovered from E. coli expression plasmid, indicating that this nonsense mutation was the cause of aldolase B deficiency.  相似文献   

8.
9.
The expression of the S gene of hepatitis B virus has been studied in the somatic hybrid cells resulting from the fusion between rat hepatocytes in primary culture and cells of the mouse hepatoma line BWTG3, and in the parental line BWTG3. The DNA of the S gene inserted into the plasmids pAC Tk+ and pNY4 has been co-transfected into these cells with a plasmid DNA bearing a resistance gene to aminoglycoside. The level of expression of the S gene among the co-transfected resistant clones was estimated by radioimmunoassay. The results show that a high number of the co-transfected cellular hybrid clones express the S gene, whereas it is found, by contrast, that the S gene is poorly expressed in the mouse hepatoma cells. The level of expression of the S gene (as the amount of HBs Ag synthesized) is high in the hybrid clones and the synthesis of the HBs antigen is stable in time. These observations suggest for the first time in cell cultures in vitro, the role which is probably played by the normal hepatocyte genome in the expression of the S gene of HBV.  相似文献   

10.
11.
Expression of aldolase isozyme mRNAs in fetal rat liver   总被引:3,自引:0,他引:3  
The regulation of aldolase isozyme expression during development was studied by measuring the concentrations of mRNAs coding for aldolase A and B subunits in fetal and adult rat liver. Poly(A)-containing RNAs were extracted from livers at various stages of development of fetal rats, and the aldolase A and B subunits in the in vitro translation products of these RNAs were analyzed immunologically. The content of aldolase B mRNA in 14-day fetal liver, measured quantitatively as translational activity, was somewhat smaller than that of aldolase A mRNA; immunologically precipitable aldolase B and A amounted to 0.06% and 0.25% respectively, of the total products. Similar experiments using RNAs from fetuses at later stages, however, showed that aldolase B mRNA increased during development, whereas aldolase A mRNA decreased. In newborn rat liver, aldolase B constituted 0.56% of the total translation products of mRNA, but there was little detectable aldolase A (0.03%). The changes of aldolase mRNA levels were analyzed further by northern blot and dot-blot hybridization experiments using cloned aldolase A and B cDNAs. The content of aldolase B mRNA increased in the fetal stage, and that in newborn rat liver was about 12 times that in 14-day fetal liver. In contrast, the aldolase A mRNA content decreased during gestation and that in newborn rat liver was about one-eighth of that in 14-day fetal liver. These observations suggest that the switch of aldolase isozyme expression in fetal liver is controlled by the levels of the respective mRNAs.  相似文献   

12.
Abstract A 4.4 kb Eco RI DNA fragment of the Streptococcus lactis H1 plasmid pDI1 was cloned into the Escherichia coli plasmid pACYC 184. The recombinant plasmid expressed d -tagatose 1,6-bisphosphate aldolase activity in E. coli . Enzyme activity was at the same level as in the original S. lactis host but was not repressed by glucose.  相似文献   

13.
2-Keto-3-deoxy-6-phosphogluconate (KDPG) and 2-keto-3-deoxy-6-phosphogalactonate (KDPGal) aldolases catalyze an identical reaction differing in substrate specificity in only the configuration of a single stereocenter. However, the proteins show little sequence homology at the amino acid level. Here we investigate the determinants of substrate selectivity of these enzymes. The Escherichia coli KDPGal aldolase gene, cloned into a T7 expression vector and overexpressed in E. coli, catalyzes retro-aldol cleavage of the natural substrate, KDPGal, with values of k(cat)/K(M) and k(cat) of 1.9x10(4)M(-1)s(-1) and 4s(-1), respectively. In the synthetic direction, KDPGal aldolase efficiently catalyzes an aldol addition using a limited number of aldehyde substrates, including d-glyceraldehyde-3-phosphate (natural substrate), d-glyceraldehyde, glycolaldehyde, and 2-pyridinecarboxaldehyde. A preparative scale reaction between 2-pyridinecarboxaldehyde and pyruvate catalyzed by KDPGal aldolase produced the aldol adduct of the R stereochemistry in >99.7% ee, a result complementary to that observed using the related KDPG aldolase. The native crystal structure has been solved to a resolution of 2.4A and displays the same (alpha/beta)(8) topology, as KDPG aldolase. We have also determined a 2.1A structure of a Schiff base complex between the enzyme and its substrate. This model predicts that a single amino acid change, T161 in KDPG aldolase to V154 in KDPGal aldolase, plays an important role in determining the stereochemical course of enzyme catalysis and this prediction was borne out by site-directed mutagenesis studies. However, additional changes in the enzyme sequence are required to prepare an enzyme with both high catalytic efficiency and altered stereochemistry.  相似文献   

14.
Localization of aldolase C mRNA in brain cells   总被引:4,自引:0,他引:4  
The expression of aldolase C and aldolase A mRNA was assessed by Northern blot hybridization using RNAs purified from cultured rat and mouse brain neurons and astroglial cells. Neurons were found to contain about 4-fold more aldolase C mRNA and about twice as much aldolase A mRNA than astroglia. Analysis of the cellular localization of aldolase C mRNA by in situ hybridization to brain slices showed a predominantly neuronal labeling with an irregular distribution. A strong signal was observed in Purkinje cell somata and a weaker signal in subpopulations of neurons in cerebral cortex, striatum, hippocampus, hypothalamic nuclei and primary olfactory cortex.  相似文献   

15.
Rat aldolase isozyme gene   总被引:8,自引:0,他引:8  
Rat aldolase B mRNA was partially purified from liver polysomes by an immunochemical technique followed by oligo(dT)-cellulose column chromatography. Double-stranded cDNA, synthesized from this mRNA, was inserted into the PstI site of plasmid pBR322 employing the oligo(dC)-oligo(dG) tailing method. Clones containing aldolase B cDNA inserts were selected by colony hybridization using 32P-labeled purified mRNA as a specific probe. Several recombinant plasmids containing 600 to 1000 base pair inserts were isolated. Hybrid selection-translation experiments showed that they hybridize specifically with aldolase B mRNA. By overlapping restriction maps of several individual cDNA inserts, it was found that they spanned 1200 base pairs, which represented about 70% of the aldolase B mRNA sequence. The nucleotide sequence of the cDNA was then determined and the sequence of 180 amino acids from the COOH terminus and the entire 3' untranslatable nucleotide sequence were clarified. Although the complete amino acid sequence of rat aldolase B has not yet been reported, it was found that several amino acids neighboring the COOH-terminal tyrosine obtained by carboxypeptidase digestion completely coincided with those determined from the cDNA sequence; i.e. -Ser-Leu-Phe-Thr-Ala-Ser-Tyr-Thr-Tyr. Furthermore, a putative active site peptide appeared and is extensively homologous to those of rabbit aldolases A and B.  相似文献   

16.
Subunit structure of rabbit brain aldolase   总被引:1,自引:0,他引:1  
Rabbit brain contains a mixture of aldolase A (muscle type) and aldolase C (brain type), present largely as the hybrid forms A3C, A2C2, and AC3, with smaller amounts of the homopolymers A4 and C4. We have developed new procedures for the isolation of the A-C hybrid set and the aldolase C subunits and compared the structure of these subunits with those of aldolase A. The two isoenzymes differ significantly in amino acid composition, but each contains three methionine residues per subunit and yields four peptides on cleavage with cyanogen bromide. The three methionine residues appear to occupy similar positions in the polypeptide chains but the molecular weight of the aldolase C subunit is only 37,000, approximately 10% smaller than that of the subunit of aldolase A. The difference is attributable to two or more deletions, totaling 30–40 amino acid residues, in two of the four BrCN peptides. The deletions include two of the buried cysteine residues that are located in the center of the polypeptide chain in aldolase A; these residues in aldolase A are, therefore, not involved in the contacts between the subunits in the tetramer. Aldolase C also lacks several of the histidine residues that are located near the active-site lysine residue of aldolase A, thus excluding these residues from participation in the catalytic mechanism.  相似文献   

17.
The construction of four vectors for high-level expression in Escherichia coli of the phosphatidylinositol-specific phospholipase C from Bacillus cereus or Bacillus thuringiensis is described. In all constructs the coding sequence for the mature phospholipase is precisely fused to the E. coli heat-stable enterotoxin II signal sequence for targeting of the protein to the periplasm. In one set of plasmids expression of the B. cereus or B. thuringiensis enzyme is under control of the E. coli alkaline phosphatase promoter, while in a second set of plasmids expression is under control of a lac-tac-tac triple tandem promoter. A simple and rapid procedure for complete purification of the phospholipase C overproduced in E. coli, involving isolation of the periplasmic proteins by osmotic shock followed by a single column chromatography step, is described. The largest quantity of purified enzyme, 40-60 mg per liter culture, is obtained with the plasmid expressing the B. cereus enzyme under control of the lac-tac-tac promoter. Lower quantities are obtained with the plasmids containing the alkaline phosphatase promoter (15-20 and 4-6 mg/liter for the B. cereus and B. thuringiensis enzymes, respectively) and with the plasmid expressing the B. thuringiensis phospholipase under control of the lac-tac-tac promoter (15-20 mg/liter). A comparison of the functional properties of the recombinant phospholipases with the native enzymes isolated from B. cereus or B. thuringiensis culture supernatant shows that they are identical with respect to their catalytic functions, viz., cleavage of phosphatidylinositol and cleavage of the glycosyl-phosphatidylinositol membrane anchor of bovine erythrocyte acetylcholinesterase.  相似文献   

18.
The expression of aldolase A and B mRNAs during azo-dye-induced carcinogenesis in rat liver was examined. After feeding the dye for 18 weeks, the level of aldolase A mRNA increased to about 11 times that in a normal liver, with the concomitant decrease of aldolase B mRNA level to about 25% of that in a normal liver. These changes did not occur progressively during the carcinogenesis, but occurred as an additional phase after 4 week-feeding of the azo-dye. At this stage, the levels of aldolase A and B mRNAs were about 7 times and 45% of that in a normal liver, respectively. This biphasic pattern in the aldolase isozyme expression in the azo-dye-fed rat liver is discussed together with the kinetic data of the enzyme activity.  相似文献   

19.
20.
Having previously determined the complete amino acid sequence of 2-keto-4-hydroxyglutarate aldolase from Escherichia coli (C. J. Vlahos and E. E. Dekker, J. Biol. Chem. 263:11683-11691, 1988), we amplified the gene that codes for this enzyme by the polymerase chain reaction using synthetic degenerate deoxyoligonucleotide primers. The amplified DNA was sequenced by subcloning the polymerase chain reaction products into bacteriophage M13; the nucleotide sequence of the gene was found to be in exact agreement with the amino acid sequence of the gene product. Overexpression of the gene was accomplished by cloning it into the pKK223.3 expression vector so that it was under control of the tac promoter and then using the resultant plasmid, pDP6, to transform E. coli DH5 alpha F'IQ. When this strain was grown in the presence of isopropyl beta-D-thiogalactopyranoside, aldolase specific activity in crude extracts was 80-fold higher than that in wild-type cells and the enzyme constituted approximately 30% of the total cellular protein. All properties of the purified, cloned gene product, including cross-reactivity with antibodies elicited against the wild-type enzyme, were identical with the aldolase previously isolated and characterized. A strain of E. coli in which this gene is inactivated was prepared for the first time by insertion of the kanamycin resistance gene cartridge into the aldolase chromosomal gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号