首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybrid plasmids containing the fragments of Francisella tularensis chromosomal DNA and capable of tet-gene expression both in Escherichia coli and Francisella tularensis cells were constructed. The regions of francisella chromosomal DNA binding the RNA-polymerases of Escherichia coli and Francisella tularensis were found by the electron microscopy technique. Interconnection of those regions with the expression of tet-gene of the hybrid plasmids was demonstrated.  相似文献   

2.
目的建立胶体金免疫层析技术快速定量检测土拉弗朗西斯菌。方法利用胶体金标记和双抗体夹心免疫层析技术,建立土拉弗朗西斯菌的快速检测方法,评价其特异性和敏感性,并拟合检测曲线进行定量检测。在面粉、饼干、果冻、梨汁等食品样品中添加土拉弗朗西斯菌的FopA蛋白模拟污染样品,评价该方法对固体、半固体、液体等食品样品的检测能力。结果该法可在10min内完成定性和定量检测,灵敏度为750ng/ml,线性范围750~24000ng/ml、回收率为56.7%-89.2%。结论所建立的检测土拉弗朗西斯菌的胶体金免疫层析方法,能快速、灵敏、特异、准确地检测样品中的土拉弗朗西斯菌,适用于现场快速检测。  相似文献   

3.
The natural reservoir of Francisella tularensis , the causative agent of tularaemia, is yet to be identified. We investigated the possibility that Francisella persists in natural aquatic ecosystems between outbreaks. It was hypothesized that nutrient-rich environments, with strong protozoan predation, favour the occurrence of the tularaemia bacterium. To investigate the differences in adaptation to aquatic environments of the species and subspecies of Francisella , we screened 23 strains for their ability to survive grazing by the ciliate Tetrahymena pyriformis . All the Francisella strains tested were consumed at a low rate, although significant differences between subspecies were found. The survival and virulence of gfp -labelled F. tularensis ssp. holarctica were then studied in a microcosm experiment using natural lake water, with varying food web complexities and nutrient availabilities. High nutrient conditions in combination with high abundances of nanoflagellates were found to favour F. tularensis ssp. holarctica . The bacterium was observed both free-living and within the cells of a nanoflagellate. Francisella tularensis entered a viable but nonculturable state during the microcosm experiment. When studied over a longer period of time, F. tularensis ssp. holarctica survived in the lake water, but loss of virulence was not prevented by either high nutrient availability or the presence of predators.  相似文献   

4.
Following detection of putative Francisella species in aerosol samples from Houston, Texas, we surveyed soil and water samples from the area for the agent of tularemia, Francisella tularensis, and related species. The initial survey used 16S rRNA gene primers to detect Francisella species and related organisms by PCR amplification of DNA extracts from environmental samples. This analysis indicated that sequences related to Francisella were present in one water and seven soil samples. This is the first report of the detection of Francisella-related species in soil samples by DNA-based methods. Cloning and sequencing of PCR products indicated the presence of a wide variety of Francisella-related species. Sequences from two soil samples were 99.9% similar to previously reported sequences from F. tularensis isolates and may represent new subspecies. Additional analyses with primer sets developed for detection and differentiation of F. tularensis subspecies support the finding of very close relatives to known F. tularensis strains in some samples. While the pathogenicity of these organisms is unknown, they have the potential to be detected in F. tularensis-specific assays. Similarly, a potential new subspecies of Francisella philomiragia was identified. The majority of sequences obtained, while more similar to those of Francisella than to any other genus, were phylogenetically distinct from known species and formed several new clades potentially representing new species or genera. The results of this study revise our understanding of the diversity and distribution of Francisella and have implications for tularemia epidemiology and our ability to detect bioterrorist activities.  相似文献   

5.
Findings from a number of studies suggest that the PilA pilin proteins may play an important role in the pathogenesis of disease caused by species within the genus Francisella. As such, a thorough understanding of PilA structure and chemistry is warranted. Here, we definitively identified the PglA protein-targeting oligosaccharyltransferase by virtue of its necessity for PilA glycosylation in Francisella tularensis and its sufficiency for PilA glycosylation in Escherichia coli. In addition, we used mass spectrometry to examine PilA affinity purified from Francisella tularensis subsp. tularensis and F. tularensis subsp. holarctica and demonstrated that the protein undergoes multisite, O-linked glycosylation with a pentasaccharide of the structure HexNac-Hex-Hex-HexNac-HexNac. Further analyses revealed microheterogeneity related to forms of the pentasaccharide carrying unusual moieties linked to the distal sugar via a phosphate bridge. Type A and type B strains of Francisella subspecies thus express an O-linked protein glycosylation system utilizing core biosynthetic and assembly pathways conserved in other members of the proteobacteria. As PglA appears to be highly conserved in Francisella species, O-linked protein glycosylation may be a feature common to members of this genus.  相似文献   

6.
7.
土拉弗朗西斯菌检测研究进展   总被引:1,自引:0,他引:1  
王振东  景滢滢  王静 《生物磁学》2009,(14):2763-2765
土拉弗朗西斯菌(Francisella tularensis)是土拉菌病(Tularemia)的致病菌,是最具传染性的致病菌之一,在自然界中已发现一百种以上的动物感染此菌。因其传播途径多样,易扩散、毒性强而被美国疾病控制预防中心列入A类生物恐怖制剂。土拉菌病是一种人畜共患病,致死率高,及时、准确的检测土拉菌对于土拉菌病患者及时治疗和防止扩散具有重要的意义。土拉菌检测方法很多,如菌培养,微凝集实验、酶联免疫吸附、快速检测试纸条、生物传感器、PCR、核酸杂交检测、质谱分析、基因芯片等。但到目前为止还没有一种成熟的用于土拉菌检测方法,其主要原因在于土拉菌致病性强,且不易分离培养。本文综述了土拉菌细菌学、免疫学、分子生物学方法检测的最新研究进展。  相似文献   

8.
ABSTRACT: BACKGROUND: Prior to this study, relatively few strains of Francisella had been genome-sequenced. Previously published Francisella genome sequences were largely restricted to the zoonotic agent F. tularensis. Only limited data were available for other members of the Francisella genus, including F. philomiragia, an opportunistic pathogen of humans, F. noatunensis, a serious pathogen of farmed fish, and other less well described endosymbiotic species. RESULTS: We determined the phylogenetic relationships of all known Francisella species, including some for which the phylogenetic positions were previously uncertain. The genus Francisella could be divided into two main genetic clades: one included F. tularensis, F. novicida, F. hispaniensis and Wolbachia persica, and another included F. philomiragia and F. noatunensis. Some Francisella species were found to have significant recombination frequencies. However, the fish pathogen F. noatunensis subsp. noatunensis was an exception due to it exhibiting a highly clonal population structure similar to the human pathogen F. tularensis. CONCLUSIONS: The genus Francisella can be divided into two main genetic clades occupying both terrestrial and marine habitats. However, our analyses suggest that the ancestral Francisella species originated in a marine habitat. The observed genome to genome variation in gene content and IS elements of different species supports the view that similar evolutionary paths of host adaptation developed independently in F. tularensis (infecting mammals) and F. noatunensis subsp. noatunensis (infecting fish).  相似文献   

9.
Sixteen raptors and three hooded crows were infected experimentally with Francisella tularensis biovar palaearctica. The birds were infected parenterally or per os. One goshawk, one sparrow hawk and one hooded crow died during the experimental period, and the remaining 16 birds were killed 14-77 days after the first infection. Francisella tularensis was not isolated from any bird. Antibody levels against F. tularensis measured in nine birds varied from 0 to 1:1,280. In one goshawk with a titer of 1:1,280, positive fluorescent antibody reactions against F. tularensis were seen in the liver and spleen. These results are similar to those found by other authors indicating that raptors and corvids are normally resistant to infections with F. tularensis.  相似文献   

10.
PCR和Southern Blot检测土拉弗氏菌气溶胶   总被引:2,自引:0,他引:2  
为提高检测土拉弗氏菌的特异性和敏感性,建立了土拉菌PCR及核酸杂交检测方法。运用平板计数、多聚酶链反应对土拉菌气溶胶稳定性进行了比较,结果表明PCR具有较高灵敏度,并且在采样后3小时PCR就可以得出定性结果,而平板计数则需要3~7天。采用PCR法合成了土拉菌376-bp探针,分别对细菌菌液、568-bpPCR产物和气溶胶样品进行杂交,结果表明菌悬液直接杂交可检出105CFU左右的细菌,检测PCR产物可达40pg。PCR和Southern印迹相结合有利于细菌的分离鉴定  相似文献   

11.
Abstract Francisella tularensis , the causative agent of the epizootic disease tularemia in mammals, can be isolated from mud and water. To study the spread and persistence of Francisella tularensis in water, different strategies for pre-treatment of natural water samples prior to identification of the bacterium by polymerase chain reaction (PCR) were evaluated. A method for handling of samples taken from natural waters was developed. Applied on natural water samples amended with F. tularensis , the method rendered identification by PCR reproducible and it resulted in an amplified Francisella -specific product in all samples from natural waters tested. In addition, by employing primers targeting conserved regions of the 16S rDNA the presence of bacteria was demonstrated in all samples investigated. The results presented will, in combination with other techniques that allow identification, improve studies on the epizootiology and epidemiology of the genus Francisella .  相似文献   

12.
Francisella tularensis is a facultative intracellular pathogen that infects a wide variety of mammals and causes tularemia in humans. It is recognized as a potential agent of bioterrorism due to its low infectious dose and multiple routes of transmission. To date, genetic manipulation in Francisella spp. has been limited due to the inefficiency of DNA transformation, the relative lack of useful selective markers, and the lack of stably replicating plasmids. Therefore, the goal of this study was to develop an enhanced shuttle plasmid that could be utilized for a variety of genetic procedures in both Francisella and Escherichia coli. A hybrid plasmid, pFNLTP1, was isolated that was transformed by electroporation at frequencies of >1 x 10(7) CFU mug of DNA(-1) in F. tularensis LVS, Francisella novicida U112, and E. coli DH5alpha. Furthermore, this plasmid was stably maintained in F. tularensis LVS after passage in the absence of antibiotic selection in vitro and after 3 days of growth in J774A.1 macrophages. Importantly, F. tularensis LVS derivatives carrying pFNLTP1 were unaltered in their growth characteristics in laboratory medium and macrophages compared to wild-type LVS. We also constructed derivatives of pFNLTP1 containing expanded multiple cloning sites or temperature-sensitive mutations that failed to allow plasmid replication in F. tularensis LVS at the nonpermissive temperature. In addition, the utility of pFNLTP1 as a vehicle for gene expression, as well as complementation, was demonstrated. In summary, we describe construction of a Francisella shuttle plasmid that is transformed at high efficiency, is stably maintained, and does not alter the growth of Francisella in macrophages. This new tool should significantly enhance genetic manipulation and characterization of F. tularensis and other Francisella biotypes.  相似文献   

13.
A new envelope antigen C, specific for virulent strains of Francisella tularensis, was revealed by immunodiffusion analysis. In contrast to antigens A and P this antigen is common for Francisella and Brucella. C-antigenic lipid fraction was obtained by chloroform-ethanol (1:1) extraction of bacterial slime. This fraction contained carbohydrates (31.6%) without proteins and detected by TLC glycolipid, which proved glycolipid nature of C-antigen. Introduction of C-fraction or alive F. tularensis resulted in accumulation of C. precipitins in blood serum.  相似文献   

14.
Four strains of the species Francisella tularensis were used in the present work: a live vaccine strain 15/10 and three virulent strains (503, Schu, 543) from three different subspecies. The bacterial membranes were prepared by the 0.5% N-laurylsarcosinate (Sarcosyl) treatment. These membranes were identified as the outer membranes by morphological, immunological and biochemical analyses. The outer membrane proteins contained up to 30-35 polypeptides with three dominant fractions having the 63, 48 and 41-43 kD molecular masses. Despite the significant similarity between the membranes protein profiles there were some quantitative and qualitative differences between the three variants of Francisella tularensis in polypeptides compositions and patterns.  相似文献   

15.
Tularemia is a zoonotic disease, occurring throughout the Northern Hemisphere. The causative agent, the bacterium Francisella tularensis, is represented by two main types. Type A is found in North America, whereas type B is mainly found in Asia and Europe and to a minor extent in North America. No routine technique for rapid diagnosis of tularemia has been generally applied. We have partially sequenced 16S rRNAs of two F. tularensis strains, as well as the closely related Francisella novicida. Of 550 nucleotides analyzed, only one difference in 16S rRNA primary sequence was found. This 16S rRNA analysis enabled the construction of oligonucleotides to be used as genus- and type-specific probes. Such probes were utilized for the establishment of a method for rapid and selective detection of the organism. This method allowed identification of Francisella spp. at the level of genus and also discrimination of type A and type B strains of F. tularensis. The analysis also permitted the detection of F. tularensis in spleen tissue from mice infected with the bacterium. The results presented will enable studies on the epizootiology and epidemiology of Francisella spp.  相似文献   

16.
Aims:  To develop a selective medium for isolation of F. tularensis, F. novicida and F. philomiragia from environmental samples.
Methods and Results:  A selective media, cysteine heart agar with 9% chocolatized sheep blood, containing polymyxin B, amphotericin B, cyclohexamide, cefepime and vancomycin (CHAB-PACCV) was developed and evaluated for growth of Francisella spp. No differences were observed in recovered colony forming units (CFUs) for F. tularensis , F. novicida and F. philomiragia on CHAB-PACCV vs nonselective CHAB. Growth of non- Francisella species was inhibited on CHAB-PACCV. When environmental samples were cultured on CHAB and CHAB-PACCV, only CHAB-PACCV allowed isolation of Francisella spp. Three new Francisella strains were isolated directly from seawater and seaweed samples by culture on CHAB-PACCV.
Conclusions:  CHAB-PACCV can be used for direct isolation of Francisella spp from environmental samples.
Significance and Impact of the Study:  Francisella spp. show a close association with environmental sources. Future utilization of CHAB-PACCV for isolation of Francisella spp. directly from environmental samples should prove valuable for investigating outbreaks and human infections attributed to environmental exposure.  相似文献   

17.
A microorganism (Dermacantor andersoni symbiont [DAS]) infecting Rocky Mountain wood ticks (D. andersoni) collected in the Bitterroot Mountains of western Montana was characterized as an endosymbiont belonging to the genus Francisella. Previously described as Wolbachia like, the organism's DNA was amplified from both naturally infected tick ovarial tissues and Vero cell cultures by PCR assay with primer sets derived from eubacterial 16S ribosomal DNA (rDNA) and Francisella membrane protein genes. The 16S rDNA gene sequence of the DAS was most similar (95.4%) to that of Francisella tularensis subsp. tularensis. Through a combination of Giménez staining, PCR assay, and restriction fragment length polymorphism analysis, 102 of 108 female ticks collected from 1992 to 1996 were infected. Transovarial transmission to female progeny was 95.6%, but we found no evidence of horizontal transmission.  相似文献   

18.
Francisella tularensis is a pathogen optimally adapted to efficiently invade its respective host cell and to proliferate intracellularly. We investigated the role of host cell membrane microdomains in the entry of F. tularensis subspecies holarctica vaccine strain (F. tularensis live vaccine strain) into murine macrophages. F. tularensis live vaccine strain recruits cholesterol-rich lipid domains ("lipid rafts") with caveolin-1 for successful entry into macrophages. Interference with lipid rafts through the depletion of plasma membrane cholesterol, through induction of raft internalization with choleratoxin, or through removal of raft-associated GPI-anchored proteins by treatment with phosphatidylinositol phospholipase C significantly inhibited entry of Francisella and its intracellular proliferation. Lipid raft-associated components such as cholesterol and caveolin-1 were incorporated into Francisella-containing vesicles during entry and the initial phase of intracellular trafficking inside the host cell. These findings demonstrate that Francisella requires cholesterol-rich membrane domains for entry into and proliferation inside macrophages.  相似文献   

19.
Francisella tularensis, the causative agent of tularemia, is a highly infectious intracellular pathogen with no licensed vaccine available today. The recent search for genome sequences involved in F. tularensis virulence mechanisms led to the identification of the 30-kb region defined as a Francisella pathogenicity island (FPI). In our previous iTRAQ study we described the concerted upregulation of some FPI proteins in different F. tularensis strains cultivated under stress conditions. Among them we identified the IglH protein whose role in Francisella virulence has not been characterized yet. In this work we deleted the iglH gene in a European clinical isolate of F. tularensis subsp. holarctica FSC200. We showed that the iglH gene is necessary for intracellular growth and escape of F. tularensis from phagosomes. We also showed that the iglH mutant is avirulent in a mouse model of infection and persists in the organs for about three weeks after infection. Importantly, mice vaccinated by infection with the iglH mutant were protected against subcutaneous challenge with the fully virulent parental FSC200 strain. This is the first report of a defined subsp. holarctica FPI deletion strain that provides protective immunity against subsequent subcutaneous challenge with a virulent isolate of F. tularensis subsp. holarctica.  相似文献   

20.
We previously described the construction and characterization of Escherichia coli–Francisella tularensis shuttle vectors, derived from the cryptic Francisella plasmid pFNL10, for the genetic manipulation of F. tularensis ssp. tularensis . We now report further characterization of the biology of these shuttle vectors and the development of a new generation of Francisella plasmids. We show that the addition of ORF3 from pFNL10 can convert an unstable shuttle vector into a stable one, and that this is likely due to increased plasmid copy number. We also describe various improvements to the earlier generations of shuttle vectors, such as the addition of a multiple cloning site containing a novel RsrII restriction endonuclease site for directional insertion of Francisella genes, and the inclusion of the F. tularensis blaB promoter for heterologous gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号