首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The V-ATPases are ATP-dependent proton pumps present in both intracellular compartments and the plasma membrane. They function in such processes as membrane traffic, protein degradation, renal acidification, bone resorption and tumor metastasis. The V-ATPases are composed of a peripheral V1 domain responsible for ATP hydrolysis and an integral V0 domain that carries out proton transport. Our recent work has focused on structural analysis of the V-ATPase complex using both cysteine-mediated cross-linking and electron microscopy. For cross-linking studies, unique cysteine residues were introduced into structurally defined sites within the B and C subunits and used as points of attachment for the photoactivated cross-linking reagent MBP. Disulfide mediated cross-linking has also been used to define helical contact surfaces between subunits within the integral V0 domain. With respect to regulation of V-ATPase activity, we have investigated the role that intracellular environment, luminal pH and a unique domain of the catalytic A subunit play in controlling reversible dissociation in vivo.  相似文献   

2.
Summary We have examined the effect of second messengers on ATP-driven H+ transport in an H+ ATPase-bearing endosomal fraction isolated from rabbit renal cortex. cAMP (0.1mm) had no effect on H+ transport. Acridine orange fluorescence in the presence of 0.5mm Ca2+ (+1mm EGTA) was 19±6% of control. Inhibition of ATP-driven H+ transport by Ca2+ was concentration dependent; 0.25 and 0.5mm Ca2+ (+1mm EGTA) inhibited acridine orange fluorescence by 50 and 80%, respectively. Ca2+ also produced a concentration-dependent increase in the rate of pH-gradient dissipation. Ca2+ did not affect ATP hydrolysis. ATP-dependent Br uptake was virtually unchanged in the presence of 0.5mm Ca2+ (+1mm EGTA). These vesicles were also shown to transport Ca2+ in an ATP-dependent mode. Inositol 1, 4, 5-trisphosphate had no effect on ATP-dependent Ca2+ uptake. These results are consistent with the co-existence of an H+ ATPase and an H+/Ca2+ exchanger on these endosomes, the latter transport system using the H+ gradient to energize Ca2+ uptake. Attempts to demonstrate an H+/Ca2+ antiporter in the absence of ATP have been unsuccessful. Yet, when a pH gradient was established by preincubation with ATP and residual ATP was subsequently removed by hexokinase + glucose, stimulation of Ca2+ uptake could be demonstrated. A Ca2+-dependent increase in H+ permeability and an ATP-dependent Ca2+ uptake might have important implications for the regulation of vacuolar H+ ATPase activity as well as the homeostasis of cytosolic Ca2+ concentration.  相似文献   

3.
Conclusions Based on our present knowledge about the composition of mitochondrial F0, it is evident that its mode of interaction with F1 is more complex in comparison with bacteria and chloroplasts. As far as the H+-channel is concerned, no definite conclusion about the involvement of other subunits besides the DCCD-binding protein can be drawn at present. This holds for mitochondria as well as for chloroplasts and bacteria. Experimental evidence is accumulating in favor of the oligomeric and asymmetrical arrangement of the H+-channel. Extraction of its few polar amino acid residues by specific agents reveals the fundamental functional importance of these residues in the path of protons across the membrane. In particular, the use of DCCD was of primary importance for elucidation of the structural features underlying the protonophoric activity. It may be hoped that application of similar new approaches in combination with studies of the intact phosphorylating assembly will help us to clarify the molecular mechanism of ATP synthesis.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - SDS sodium dodecyl sulfate  相似文献   

4.
Summary Dunaliella acidophila is an unicellular green alga which grows optimally at pH 0–1 while maintaining neutral internal pH. A plasma membrane preparation of this algae has been purified on sucrose density gradients. The preparation exhibits vanadatesensitive ATPase activity of 2 mol Pi/mg protein/min, an activity 15 to 30-fold higher than that in the related neutrophilic speciesD. salina. The following properties suggest that the ATPase is an electrogenic plasma membrane H+ pump. (i) ATP induces proton uptake and generates a positive-inside membrane potential as demonstrated with optical probes. (ii) ATP hydrolysis and proton uptake are inhibited by vanadate, diethylstilbestrol, dicyclohexylcarbodiimide and erythrosine but not by molybdate, azide or nitrate. (iii) ATP hydrolysis and proton uptake are stimulated by fussicoccin in a pH-dependent manner as found for plants plasma membrane H+-ATPase. Unusual properties of this enzyme are: (i) theK m for ATP is around 60 M, considerably lower than in other plasma membrane H+-ATPases, and (ii) the ATPase activity and proton uptake are stimulated three to fourfold by K+ and to a smaller extent by other monovalent cations. These results suggest thatD. acidophila possesses a vanadate-sensitive H+-ATPase with unusual features enabling it to maintain the large transmembrane pH gradient.  相似文献   

5.
The auxin sensitivity of the plasma-membrane H+-ATPase from tobacco leaves (Nicotiana tabacum L. cv. Xanthi) depends on the physiological state of the plant (Santoni et al., 1990, Plant Sci. 68, 33–38). Results based on the study of auxin sensitivity according to culture conditions which accelerate or delay tobacco development demonstrate that the highest auxin sensitivity is always associated with the end of the period of induction to flowering. Auxin stimulation of H+-translocation activity corresponds to an increase of the apparent ATPase affinity for ATP. The plasma-membrane H+-ATPase content, measured with an enzyme-linked immunosorbent assay using a specific anti-H+-ATPase antibody, varies according to plant development, and was found to increase by 100% during floral induction. The specific molecular ATPase activity also changes according to plant development; more particularly, the decrease in molecular ATPase activity upto and during the floral-induction period parallels the increase of sensitivity to indole-3-acetic acid.Abbreviations ELISA enzyme-linked immunosorbent assay - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate Authors are grateful to Mrs. Grosclaude (Lab. Virologie, INRA, Jouy-en-Josas, France) and Mrs. Boudon (Lab. Mycoplasmes, INRA, Dijon, France) for support and advice in the preparation of antibodies. This work was supported by grants No. 89/512/6 from the E.P.R of Bourgogne and No. 89 C 0662 from M.R.T.  相似文献   

6.
7.
Summary In the presence of inhibitors for mitochondrial H+-ATPase, (Na++K+)- and Ca2+-ATPases, and alkaline phosphatase, sealed brush-border membrane vesicles hydrolyse externally added ATP demonstrating the existence of ATPases at the outside of the membrane (ecto-ATPases). These ATPases accept several nucleotides, are stimulated by Ca2+ and Mg2+, and are inhibited by N,N-dicyclohexylcarbodiimide (DCCD), but not by N-ethylmaleimide (NEM). They occur in both brushborder and basolateral membranes. Opening of brush-border membrane vesicles with Triton X-100 exposes ATPases located at the inside (cytosolic side) of the membrane. These detergent-exposed ATPases prefer ATP, are activated by Mg2+ and Mn2+, but not by Ca2+, and are inhibited by DCCD as well as by NEM. They are present in brush-border, but not in basolateral membranes. As measured by an intravesicularly trapped pH indicator, ATP-loaded brush-border membrane vesicles extrude protons by a DCCD- and NEM-sensitive pump. ATP-driven H+ secretion is electrogenic and requires either exit of a permeant anion (Cl) or entry of a cation, e.g., Na+ via electrogenic Na+/d-glucose and Na+/l-phenylalanine uptake. In the presence of Na+, ATP-driven H+ efflux is stimulated by blocking the Na+/H+ exchanger with amiloride. These data prove the coexistence of Na+-coupled substrate transporters, Na+/H+ exchanger, and an ATP-driven H+ pump in brush-border membrane vesicles. Similar location and inhibitor sensitivity reveal the identity of ATP-driven H+ pumps with (a part of) the DCCD- and NEM-sensitive ATPases at the cytosolic side of the brush-border membrane.  相似文献   

8.
The malaria parasite is a unicellular protozoan parasite of the genus Plasmodium that causes one of the most serious infectious diseases for human beings. Like other protozoa, the malaria parasite possesses acidic organelles, which may play an essential role(s) in energy acquisition, resistance to antimalarial agents, and vesicular trafficking. Recent evidence has indicated that two types of vacuolar proton pumps, vacuolar H+-ATPase and vacuolar H+-pyrophosphatase, are responsible for their acidification. In this mini-review, we discuss the recent progress on vacuolar proton pumps in the malaria parasite.  相似文献   

9.
V-type Na+-ATPase from Entercoccus hirae consists of nine kinds of subunits (NtpA3, B3, C1, D1, E1−3, F1−3, G1, I1, and K10) which are encoded by the ntp operon. The amino acid sequences of the major subunits, A, B, and K (proteolipid), were highly similar to those of A, B, and c subunits of eukaryotic V-ATPases, and those of β, α, and c subunits of F-ATPases. We modeled the A and B subunits by homology modeling using the structure of β and α subunits of F-ATPase, and obtained an atomic structure of NtpK ring by X-ray crystallography. Here we briefly summarize our current models of the whole structure and mechanism of the E. hirae V-ATPase.  相似文献   

10.
Mechanism of proton transport by plant plasma membrane proton ATPases   总被引:2,自引:0,他引:2  
The mechanism of proton translocation by P-type proton ATPases is poorly defined. Asp684 in transmembrane segment M6 of the Arabidopsis thaliana AHA2 plasma membrane P-type proton pump is suggested to act as an essential proton acceptor during proton translocation. Arg655 in transmembrane segment M5 seems to be involved in this proton translocation too, but in contrast to Asp684, is not essential for transport. Asp684 may participate in defining the E1 proton-binding site, which could possibly exist as a hydronium ion coordination center. A model of proton translocation of AHA2 involving the side chains of amino acids Asp684 and Arg655 is discussed.  相似文献   

11.
The gastric H+ + K+ ATPase is a member of the phosphorylating class of transport ATPase. Based on sequence homologies and CHO content, there may be ab subunit associated with the catalytic subunit of the H+ + K+ ATPase. Its function, if present, is unknown. The pump catalyzes a stoichiometric exchange of H+ for K+, but is also able to transport Na+ in the forward direction. This suggests that the transport step involves hydronium rather than protons. The initial binding site is likely to contain a histidine residue to account for the high affinity of the cellular site. The extracellular site probably lacks this histidine, so that a low affinity for hydronium allows release into a solution of pH 0.8. Labelling with positively charge, luminally reactive reagents that block ATPase and pump activity has shown that a region containing H5 and H6 and the intervening luminal loop is involved in necessary conformational changes for normal pump activity. The calculated structure of this loop shows the presence of ana helical,b turn, andb strand sector, with negative charges close to the membrane domain. This sector provides a possible site of interaction of drugs with the H+ + K+ ATPase, and may be part of the K+ pathway in the enzyme.Emory University, Atlanta, Georgia.  相似文献   

12.
Recently, we found NHX1, the gene encoding a Na+/H+ exchanger, participated in plant disease defense. Although NHX1 has been confirmed to be involved in plant salt tolerance, whether the NHX1 transgenic plants exhibit both salt tolerance and disease resistance has not been investigated. The T1 progenies of Nicotiana tabacum L. lines expressing SeNHX1 (from Salicornia europaea) were generated for the present study. Compared with PBI-type control plants, SeNHX1 transgenic tobaccos exhibited more biomass, longer root length, and higher K+/Na+ ratio at post germination or seedling stage under NaCl treatment, indicating enhanced salt tolerance. The vacuolar H+ efflux in SeNHX1 transgenic tobacco was increased after treatment of NaCl with different concentration. Meanwhile, the SeNHX1 transgenic tobaccos showed smaller wilted spot area, less H2O2 accumulation in leaves after infection of Phytophthora parasitica var. nicotianae. Further investigation demonstrated a larger NAD(P)(H) pool in SeNHX1 transgenic tobacco. These evidences revealed that overexpression of SeNHX1 intensified the compartmentation of Na+ into vacuole under salt stress and improved the ability of eliminating ROS after pathogen attack, which then enhanced salt tolerance and disease resistance simultaneously in tobacco. Our findings indicate NHX1 has potential value in creating crops with both improved salt tolerance and disease resistance.  相似文献   

13.
The structure of the Neurospora crassa plasma membrane H+-ATPase has been investigated using a variety of chemical and physicochemical techniques. The transmembrane topography of the H+-ATPase has been elucidated by a direct, protein chemical approach. Reconstituted proteoliposomes containing purified H+-ATPase molecules oriented predominantly with their cytoplasmic surface facing outward were treated with trypsin, and the numerous peptides released were purified by HPLC and subjected to amino acid sequence analysis. In this way, seventeen released peptides were unequivocally identified as located on the cytoplasmic side of the membrane, and numerous intervening segments could be inferred to be cytoplasmically located by virtue of the fact that they are too short to cross the membrane and return between sequences established to be cytoplasmically located. Additionally, three large membrane-embedded segments of the H+-ATPase were isolated using our recently developed methods for purifying hydrophobic peptides, and identified by amino acid sequence analysis. This information established the topographical location of virtually all of the 919 residues in the H+-ATPase molecule, allowing the formulation of a reasonably detailed model for the transmembrane topography of the H+-ATPase polypeptide chain. Separate studies of the cysteine chemistry of the H+-ATPase have demonstrated the existence of a single disulfide bridge in the molecule, linking the NH2- and COON-terminal membrane-embedded domains. And, analyses of the circular dichroism and infrared spectra of the purified H+-ATPase have elucidated the secondary structure composition of the molecule. A first-generation model for the tertiary structure of the H+-ATPase based on this information and other considerations is presented.  相似文献   

14.
A fraction of inside-out membrane vesicles enriched in plasma membranes (PM) was isolated from Dunaliella maritima cells. Attempts were made to reveal ATP-driven Na+-dependent H+ efflux from the PM vesicles to external medium, as detected by alkalization of the vesicle lumen. In parallel experiments, ATP-dependent Na+ uptake and electric potential generation in PM vesicles were investigated. The alkalization of the vesicle lumen was monitored with an impermeant pH-sensitive optical probe pyranine (8-hydroxy-1,3,6-pyrenetrisulfonic acid), which was loaded into vesicles during the isolation procedure. Sodium uptake was measured with 22Na+ radioactive label. The generation of electric potential in PM vesicles (positive inside) was recorded with a voltage-sensitive probe oxonol VI. Appreciable Na+-and ATP-dependent alkalization of vesicle lumen was only observed in the presence of a protonophore CCCP (carbonyl cyanide-chlorophenylhydrazone). In parallel experiments, CCCP accelerated the ATP-dependent 22Na+ uptake and abolished the electric potential generated by the Na+-ATPase at the vesicle membrane. A permeant anion NO? 3 accelerated ATP-dependent 22Na+ uptake and promoted dissipation of the electric potential like CCCP did. At the same time, NO? 3 inhibited the ATP-and Na+-dependent alkalization of the vesicle lumen. The results clearly show that the ATP-and Na+-dependent H+ efflux from PM vesicles of D. maritima is driven by the electric potential generated at the vesicle membrane by the Na+-ATPase. Hence, the Na+-transporting ATPase of D. maritima carries only one ion species, i.e., Na+. Proton is not involved as a counter-ion in the catalytic cycle of this enzyme.  相似文献   

15.
Salt modulation of the tonoplast H+-pumping V-ATPase and H+-PPase was evaluated in hypocotyls ofVigna unguiculata seedlings after 3 and 7 days of treatment. In 3-day-old seedlings, treatment with 100 mmol/L NaCl decreased the proton transport and hydrolytic activities of both the V-ATPase and the H+-PPase. After 7 days, the proton transport and hydrolysis activities of the V-ATPase were higher, while the H+-PPase activities were lower in seedlings. Western blot analysis of A- and B-subunits of V-ATPase revealed that the protein content of the two subunits varied in parallel with their activities, i.e. to a higher activity corresponded a higher protein content of the subunits and vice versa. Contrarily, Western blot analysis of H+-PPase levels failed to show any correlation with PPase activity, suggesting a partial enzyme inactivation. The results indicate that salt stress induces V-ATPase expression inV. unguiculata with concomitant enhancement of its activity as a homeostatic mechanism to cope with salt stress. Under the same conditions PPase is inhibited.  相似文献   

16.
The vacuolar H+-pyrophosphatase (V-PPase) is an electrogenic H+ pump localized in the plant vacuolar membrane. V-PPase from many species has been characterized previously and the corresponding genes/cDNAs have been cloned. Cloning of the V-PPase genes from many plant species has revealed conserved motifs that may correspond to catalytic sites. The completion of the entire DNA sequence of Oryza sativa (430 Mb) presented an opportunity to study the structure and function of V-PPase proteins, and also to identify new members of this family in Oryza sativa. Our analysis identified three novel V-PPase proteins in the Oryza sativa genome that contain functional domains typical of V-PPase. We have designated them as OVP3 to OVP5. The new predicted OVPs have chromosomal locations different from previously characterized V-PPases (OVP1 and OVP2) located on chromosome 6. They all contain three characteristic motifs of V-PPase and also a conserved motif [DE]YYTS, specific to type I V-PPases and involved in coupling PPi hydrolysis to H+ translocation.  相似文献   

17.
Summary The initial rate of ATP-dependent proton uptake by hog gastric vesicles was measured at pH's between 6.1 and 6.9 by measuring the loss of protons from the external space with a glass electrode. The apparent rates of proton loss were corrected for scalar proton production due to ATP hydrolysis. For vesicles in 150mm KCl and pH 6.1, corrected rates of proton uptake and ATP hydrolysis were 639±84 and 619±65 nmol/min×mg protein, respectively, giving an H+/ATP ratio of 1.03±0.7. Furthermore, at all pH's tested the ratio of the rate of proton uptake to the rate of ATP hydrolysis was not significantly different than 1.0. No proton uptake (<10 nmol/min×mg protein) was exhibited by vesicles in 150mm NaCl at pH 6.1 despite ATP hydrolysis of 187±46 nmol/min×mg (nonproductive hydrolysis). Comparison of the rates of proton transport and ATP hydrolysis in various mixture of KCl and NaCl showed that the H+/ATP stoichiometries were not significantly different than 1.0 at all concentrations of K+ greater than 10mm. This fact suggests that the nonproductive rate is vanishingly small at these concentrations, implying that the measured H+/ATP stoichiometry is equal to the enzymatic stoichiometry. This result shows that the isolated gastric (K++H+)-ATPase is thermodynamically capable of forming the observed proton gradient of the stomach.  相似文献   

18.
A new method of preparing sealed vesicles from membrane fractions of pumpkin hypocotyls in ethanolamine-containing buffers was used to investigate the subcellular localization of H+-ATPase measured as nigericin-stimulated ATPase. In a fluorescence-quench assay, the H+ pump was directly demonstrated. The H+ pump was substrate-specific for Mg·ATP and 0.1 mM diethylstilbestrol completely prevented the development of a pH. The presence of unsupecific phosphatase hampered the detection of nigericin-stimulated ATPase. Unspecific phosphatases could be demonstrated by comparing the broad substrate specificity of the hydrolytic activities of the fractions with the clear preference for Mg·ATP as the substrate for the proton pump. Inhibitor studies showed that neither orthovanadate nor molybdate are absolutely specific for ATPase or acid phosphatase, respectively. Diethylstilbestrol seemed to be a specific inhibitor of ATPase activity in fractions containing nigericin-stimulated ATPase, but it stimulated acid phosphatase which tended to obscure its effect on ATPase activity. Nigericin-stimulated ATPase had its optimum at pH 6.0 and the nigericin effect was K+-dependent. The combination of valinomycin and carbonylcyanide m-chlorophenylhydrazone had a similar effect to nigericin, but singly these ionophores were much less stimulatory. After prolonged centrifugation on linear sucrose gradients, nigericin-stimulated ATPase correlated in dense fractions with plasma membrane markers but a part of it remained at the interphase. This lessdense part of the nigericin-stimulated ATPase could be derived from tonoplast vesicles because -mannosidase, an enzyme of the vacuolar sap, remained in the upper part of the gradient. Nigericinstimulated ATPase did not correlate with the mitochondrial marker, cytochrome c oxidase, whereas azide inhibition of ATPase activity did.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - DES dethyltilbestrol  相似文献   

19.
Both structural and functional studies suggest that pH gating of the inward rectifier potassium (K) channel, Kir1.1 (ROMK), is mediated by the convergence of 4 hydrophobic leucines (one from each subunit) near the cytoplasmic bundle-crossing of the inner transmembrane helices. We tested this hypothesis by moving the putative leucine gate from the L160-Kir1.1b to other positions along the inner transmembrane helix, and measuring inward current and conductance as functions of internal pH, using the Xenopus oocyte heterologous expression system. Results of these studies indicated that it was possible to replace the putative inward rectifier pH gate at L160-Kir1.1b by either a leucine or methionine at 157-Kir1.1b (G157L-L160G or G157M-L160G). Although both leucine and methionine gated the channel at 157-Kir1.1b, residues of similar hydrophobicity (tyrosine and valine) did not. Hence, hydrophobicity was a necessary but not a sufficient condition for steric gating at 157. This was in contrast to the 160-Kir1.1b locus, where side-chain hydrophobicity was both a necessary and sufficient property for steric gating. Homology models were constructed for all mutants that expressed significant whole-cell currents, using the closed-state coordinates of the prokaryotic inward rectifier, KirBac1.1. Models of mutants that retained pH gating were too narrow at the bundle crossing to permit hydrated K ion permeation in the closed-state. On the other hand, mutants that lost pH gating had ample space at the bundle crossing for hydrated K permeation in the closed-state. These results support our hypothesis that hydrophobic leucines at the cytoplasmic end of the inner transmembrane helices comprise the principal pH gate of Kir1.1, a gate that can be relocated from 160-Kir1.1b to 157-Kir1.1b.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号