首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The sudden emergence of severe acute respiratory syndrome (SARS) has boosted research on innate immune responses to coronaviruses. It is now well established that the causative agent, a newly identified coronavirus termed SARS-CoV, employs multiple passive and active mechanisms to avoid induction of the antiviral type I interferons in tissue cells. By contrast, chemokines such as IP-10 or IL-8 are strongly upregulated. The imbalance in the IFN response is thought to contribute to the establishment of viremia early in infection, whereas the production of chemokines by infected organs may be responsible for (i) massive immune cell infiltrations found in the lungs of SARS victims, and (ii) the dysregulation of adaptive immunity. Here, we will review the most recent findings on the interaction of SARS-CoV and related Coronaviridae members with the type I interferon and cytokine responses and discuss implications for pathogenesis and therapy.  相似文献   

2.
3.
UV-induced immune suppression is a risk factor for sunlight-induced skin cancer. Exposure to UV radiation has been shown to suppress the rejection of highly antigenic UV-induced skin cancers, suppresses delayed and contact hypersensitivity, and depress the ability of dendritic cells to present Ag to T cells. One consequence of UV exposure is altered activation of T cell subsets. APCs from UV-irradiated mice fail to present Ag to Th1 T cells; however, Ag presentation to Th2 T cells is normal. While this has been known for some time, the mechanism behind the preferential suppression of Th1 cell activation has yet to be explained. We tested the hypothesis that this selective impairment of APC function results from altered cytokine production. We found that dendritic cells/macrophages (DC/Mphi) from UV-irradiated mice failed to secrete biologically active IL-12 following in vitro stimulation with LPS. Instead, DC/Mphi isolated from the lymphoid organs of UV-irradiated mice secreted IL-12p40 homodimer, a natural antagonist of biologically active IL-12. Furthermore, when culture supernatants from UV-derived DC/Mphi were added to IL-12-activated T cells, IFN-gamma secretion was totally suppressed, indicating that the IL-12p40 homodimer found in the supernatant fluid was biologically active. We suggest that by suppressing DC/Mphi IL-12p70 secretion while promoting IL-12p40 homodimer secretion, UV exposure preferentially suppress the activation of Th1 cells, thereby suppressing Th-1 cell-driven inflammatory immune reactions.  相似文献   

4.
Coronaviruses (CoVs) are important human and animal pathogens that induce fatal respiratory, gastrointestinal and neurological disease. The outbreak of the severe acute respiratory syndrome (SARS) in 2002/2003 has demonstrated human vulnerability to (Coronavirus) CoV epidemics. Neither vaccines nor therapeutics are available against human and animal CoVs. Knowledge of host cell proteins that take part in pivotal virus-host interactions could define broad-spectrum antiviral targets. In this study, we used a systems biology approach employing a genome-wide yeast-two hybrid interaction screen to identify immunopilins (PPIA, PPIB, PPIH, PPIG, FKBP1A, FKBP1B) as interaction partners of the CoV non-structural protein 1 (Nsp1). These molecules modulate the Calcineurin/NFAT pathway that plays an important role in immune cell activation. Overexpression of NSP1 and infection with live SARS-CoV strongly increased signalling through the Calcineurin/NFAT pathway and enhanced the induction of interleukin 2, compatible with late-stage immunopathogenicity and long-term cytokine dysregulation as observed in severe SARS cases. Conversely, inhibition of cyclophilins by cyclosporine A (CspA) blocked the replication of CoVs of all genera, including SARS-CoV, human CoV-229E and -NL-63, feline CoV, as well as avian infectious bronchitis virus. Non-immunosuppressive derivatives of CspA might serve as broad-range CoV inhibitors applicable against emerging CoVs as well as ubiquitous pathogens of humans and livestock.  相似文献   

5.
Upon encounter with bacterial products, immature dendritic cells (iDCs) release proinflammatory cytokines and develop into highly stimulatory mature DCs. In the present study, we show that human monocyte-derived DCs functionally express the CD47 Ag, a thrombospondin receptor. Intact or F(ab')2 of CD47 mAb suppress bacteria-induced production of IL-12, TNF-alpha, GM-CSF, and IL-6 by iDCs. 4N1K, a peptide derived from the CD47-binding site of thrombospondin, also inhibits cytokine release. The inhibition of IL-12 and TNF-alpha is IL-10-independent inasmuch as IL-10 production is down-modulated by CD47 mAb and blocking IL-10 mAb fails to restore cytokine levels. CD47 ligation counteracts the phenotypic and functional maturation of iDCs in that it prevents the up-regulation of costimulatory molecules, the loss of endocytic activity, and the acquisition of an increased capacity to stimulate T cell proliferation and IFN-gamma production. Interestingly, regardless of CD47 mAb treatment during DC maturation, mature DC restimulated by soluble CD40 ligand and IFN-gamma, to mimic DC/T interaction, produce less IL-12 and more IL-18 than iDCs. Finally, CD47 ligation on iDCs does not impair their capacity to phagocytose apoptotic cells. We conclude that following exposure to microorganisms, CD47 ligation may limit the intensity and duration of the inflammatory response by preventing inflammatory cytokine production by iDCs and favoring their maintenance in an immature state.  相似文献   

6.
Public health measures successfully contained outbreaks of the severe acute respiratory syndrome coronavirus (SARS-CoV) infection. However, the precursor of the SARS-CoV remains in its natural bat reservoir, and reemergence of a human-adapted SARS-like coronavirus remains a plausible public health concern. Vaccination is a major strategy for containing resurgence of SARS in humans, and a number of vaccine candidates have been tested in experimental animal models. We previously reported that antibody elicited by a SARS-CoV vaccine candidate based on recombinant full-length Spike-protein trimers potentiated infection of human B cell lines despite eliciting in vivo a neutralizing and protective immune response in rodents. These observations prompted us to investigate the mechanisms underlying antibody-dependent enhancement (ADE) of SARS-CoV infection in vitro. We demonstrate here that anti-Spike immune serum, while inhibiting viral entry in a permissive cell line, potentiated infection of immune cells by SARS-CoV Spike-pseudotyped lentiviral particles, as well as replication-competent SARS coronavirus. Antibody-mediated infection was dependent on Fcγ receptor II but did not use the endosomal/lysosomal pathway utilized by angiotensin I converting enzyme 2 (ACE2), the accepted receptor for SARS-CoV. This suggests that ADE of SARS-CoV utilizes a novel cell entry mechanism into immune cells. Different SARS vaccine candidates elicit sera that differ in their capacity to induce ADE in immune cells despite their comparable potency to neutralize infection in ACE2-bearing cells. Our results suggest a novel mechanism by which SARS-CoV can enter target cells and illustrate the potential pitfalls associated with immunization against it. These findings should prompt further investigations into SARS pathogenesis.  相似文献   

7.
8.
Oncolytic viruses can exert their antitumor activity via direct oncolysis or activation of antitumor immunity. Although reovirus is currently under clinical investigation for the treatment of localized or disseminated cancer, any potential immune contribution to its efficacy has not been addressed. This is the first study to investigate the ability of reovirus to activate human dendritic cells (DC), key regulators of both innate and adaptive immune responses. Reovirus induced DC maturation and stimulated the production of the proinflammatory cytokines IFN-alpha, TNF-alpha, IL-12p70, and IL-6. Activation of DC by reovirus was not dependent on viral replication, while cytokine production (but not phenotypic maturation) was inhibited by blockade of PKR and NF-kappaB signaling. Upon coculture with autologous NK cells, reovirus-activated DC up-regulated IFN-gamma production and increased NK cytolytic activity. Moreover, short-term coculture of reovirus-activated DC with autologous T cells also enhanced T cell cytokine secretion (IL-2 and IFN-gamma) and induced non-Ag restricted tumor cell killing. These data demonstrate for the first time that reovirus directly activates human DC and that reovirus-activated DC stimulate innate killing by not only NK cells, but also T cells, suggesting a novel potential role for T cells in oncolytic virus-induced local tumor cell death. Hence reovirus recognition by DC may trigger innate effector mechanisms to complement the virus's direct cytotoxicity, potentially enhancing the efficacy of reovirus as a therapeutic agent.  相似文献   

9.
Severe acute respiratory syndrome (SARS) is a systemic disease characterized by both lung pathology and widespread extrapulmonary virus dissemination causing multiple organ injuries. In this regard, renal dysfunction is an ominous sign in patients with SARS. Indeed, clusters of SARS coronavirus (SARS-CoV) particles have been detected in the cytoplasm of renal tubular epithelial cells in postmortem studies, explaining the presence of infectious virus in the urine of SARS patients. In order to investigate the potential SARS-CoV kidney tropism, we have evaluated the susceptibility of human renal cells of tubular and glomerular origin to in vitro SARS-CoV infection. Immortalized cultures of differentiated proximal tubular epithelial cells (PTEC), glomerular mesangial cells (MC), and glomerular epithelial cells (podocytes) were found to express the SARS-CoV receptor angiotensin-converting enzyme 2 on their surface. Productive infection, however, occurred only in PTEC but not in glomerular cells. A transient infection with poor virus production was observed in MC, whereas podocytes were not permissive to SARS-CoV infection. In contrast to the cytopathic infection of the Vero E6 cell line, SARS-CoV did not cause overt cytopathic effects in PTEC or MC. Of interest, PTEC, but not MC, maintained stable levels of SARS-CoV production in serial subcultures, suggesting a persistent state of infection. In this regard, a SARS-CoV variant with increased replication capacity in PTEC was selected after four serial subculture passages. This SARS-CoV variant acquired a single nonconservative amino acid change from glutamic acid (E) to alanine (A) at position 11 in the viral membrane (M) protein. The E11A point mutation was sufficient for enhanced SARS-CoV replication and persistence in PTEC when introduced in a SARS-CoV recombinant infectious clone. These findings indicate that human PTEC may represent a site of SARS-CoV productive and persistent replication favoring the emergence of viral variants with increased replication capacity, at least in these kidney cells.  相似文献   

10.
Immunosuppressive membrane gangliosides are released by tumor cells and inhibit normal antigen presenting cell (APC) function. To better understand this process, we have studied the effect of gangliosides on lipopolysaccharide (LPS)-induced maturation of human dendritic cells (DCs). Immature DCs were generated in vitro from human peripheral blood monocytes and were exposed for 72 h to a highly purified ganglioside, G(D1a). During the last 24 h, LPS was added to effect maturation. As assessed by fluorescence activated cell sorting (FACS) analysis, incubation in 50 microM G(D1a) significantly blunted the LPS-induced maturation of the dendritic cells. The expected up-regulation of expression of the co-stimulatory molecules CD80 and CD86 was ablated and that of CD40 was reduced, as were surface CD83 expression and intracellular CD208 production. In addition, ganglioside pretreatment of DC markedly inhibited the allostimulatory capacity and partially prevented the down-regulation of FITC-dextran uptake characteristic of LPS-activated DC. Furthermore, ganglioside-exposed DC also evidenced a broad down-regulation of the cytokine release that is normally initiated by LPS exposure, i.e., there was no increase in IL-1 beta, IL-6, IL-10, IL-12, or tumor necrosis factor (TNF)-alpha release. That a common mechanism may underlie these defects was suggested by the finding that G(D1a) exposure of DC also inhibited the nuclear binding of NF-kappa B that is normally induced by LPS. These results suggest that tumor gangliosides may blunt the anti-tumor immune response in vivo by binding and interfering with dendritic cell maturation.  相似文献   

11.
Phosphatidylserine regulates the maturation of human dendritic cells   总被引:2,自引:0,他引:2  
Phosphatidylserine (PS), which is exposed on the surface of apoptotic cells, has been implicated in immune regulation. However, the effects of PS on the maturation and function of dendritic cells (DCs), which play a central role in both immune activation and regulation, have not been described. Large unilamellar liposomes containing PS or phosphatidylcholine were used to model the plasma membrane phospholipid composition of apoptotic and live cells, respectively. PS liposomes inhibited the up-regulation of HLA-ABC, HLA-DR, CD80, CD86, CD40, and CD83, as well as the production of IL-12p70 by human DCs in response to LPS. PS did not affect DC viability directly but predisposed DCs to apoptosis in response to LPS. DCs exposed to PS had diminished capacity to stimulate allogeneic T cell proliferation and to activate IFN-gamma-producing CD4(+) T cells. Exogenous IL-12 restored IFN-gamma production by CD4(+) T cells. Furthermore, activated CTLs proliferated poorly to cognate Ag presented by DCs exposed to PS. Our findings suggest that PS exposure provides a sufficient signal to inhibit DC maturation and to modulate adaptive immune responses.  相似文献   

12.
Tumor-induced macrophages (Mphis) mediate immunosuppression, in part, through increased production of factors that suppress T cell responsiveness and underproduction of positive regulatory cytokines. Pretreatment of tumor-bearing host (TBH) Mphis with the anticancer agent paclitaxel (Taxol) partially reverses tumor-induced Mphi suppressor activity, suggesting that paclitaxel may restore TBH Mphi production of proimmune factors. Because paclitaxel demonstrates LPS-mimetic capabilities and increased production of the LPS-induced immunostimulatory cytokine IL-12 could account for enhanced T cell responsiveness, we investigated whether paclitaxel induces Mphi IL-12 production. Tumor growth significantly down-regulated Mphi IL-12 p70 production through selective dysregulation of IL-12 p40 expression. LPS stimulation failed to overcome tumor-induced dysregulation of p40 expression. In contrast, paclitaxel significantly enhanced both normal host and TBH Mphi IL-12 p70 production in vitro, although TBH Mphi IL-12 production was lower than that of similarly treated normal host Mphis. Paclitaxel enhanced p40 expression in a dose-dependent manner. Through reconstituted Mphi IL-12 expression, paclitaxel pretreatment relieved tumor-induced Mphi suppression of T cell alloreactivity. Blocking Mphi NO suppressed paclitaxel's ability to induce IL-12 production. This suggests that paclitaxel-induced activities may involve a NO-mediated autocrine induction pathway. Collectively, these data demonstrate that paclitaxel restores IL-12 production in the TBH and ascribe a novel immunotherapeutic component to the pleiotropic activities of NO. Through its capacity to induce IL-12 production, paclitaxel may contribute to the correction of tumor-induced immune dysfunction.  相似文献   

13.
Infection with Brucella abortus induces a pro-inflammatory response that drives T cell responses toward a Th1 profile. The mechanism by which this bacterium triggers this response is unknown. Dendritic cells (DC) are crucial mediators at the host-pathogen interface and are potent Th1-inducing antigen-presenting cells. Thus, we examined the mechanism whereby B. abortus stimulate human DC maturation. B. abortus-infected DC increased the expression of CD86, CD80, CCR7, CD83, MHCII, MHCI and CD40 and induced the production of TNF-alpha, IL-6, IL-10 and IL-12. Both phenomena were not dependent on bacterial viability since they were also induced by heat-killed B. abortus (HKBA). B. abortus LPS was unable to induce markers up-regulation or cytokine production. We next investigated the capacity of the outer membrane protein 19 (Omp19) as a B. abortus lipoprotein model to induce DC maturation. Lipidated Omp19 (L-Omp19), but not its unlipidated form, increased the expression of cell surface markers and the secretion of cytokines. L-Omp19-matured DC also have decreased endocytic activity and displayed enhanced T cell stimulatory activity in a MLR. Pre-incubation of DC with anti-TLR2 mAb blocked L-Omp19-mediated cytokine production. These results demonstrate that B. abortus lipoproteins can stimulate DC maturation providing a mechanism by which these bacteria generate a Th1-type immune response.  相似文献   

14.
Effective vaccines should confer long-term protection against future outbreaks of severe acute respiratory syndrome (SARS) caused by a novel zoonotic coronavirus (SARS-CoV) with unknown animal reservoirs. We conducted a cohort study examining multiple parameters of immune responses to SARS-CoV infection, aiming to identify the immune correlates of protection. We used a matrix of overlapping peptides spanning whole SARS-CoV proteome to determine T cell responses from 128 SARS convalescent samples by ex vivo IFN-gamma ELISPOT assays. Approximately 50% of convalescent SARS patients were positive for T cell responses, and 90% possessed strongly neutralizing Abs. Fifty-five novel T cell epitopes were identified, with spike protein dominating total T cell responses. CD8(+) T cell responses were more frequent and of a greater magnitude than CD4(+) T cell responses (p < 0.001). Polychromatic cytometry analysis indicated that the virus-specific T cells from the severe group tended to be a central memory phenotype (CD27(+)/CD45RO(+)) with a significantly higher frequency of polyfunctional CD4(+) T cells producing IFN-gamma, TNF-alpha, and IL-2, and CD8(+) T cells producing IFN-gamma, TNF-alpha, and CD107a (degranulation), as compared with the mild-moderate group. Strong T cell responses correlated significantly (p < 0.05) with higher neutralizing Ab. The serum cytokine profile during acute infection indicated a significant elevation of innate immune responses. Increased Th2 cytokines were observed in patients with fatal infection. Our study provides a roadmap for the immunogenicity of SARS-CoV and types of immune responses that may be responsible for the virus clearance, and should serve as a benchmark for SARS-CoV vaccine design and evaluation.  相似文献   

15.
Cervarix™ is approved as a preventive vaccine against infection with the human papillomavirus (HPV) strains 16 and 18, which are causally related to the development of cervical cancer. We are the first to investigate in vitro the effects of this HPV vaccine on interleukin (IL)-15 dendritic cells (DC) as proxy of a naturally occurring subset of blood DC, and natural killer (NK) cells, two innate immune cell types that play an important role in antitumour immunity. Our results show that exposure of IL-15 DC to the HPV vaccine results in increased expression of phenotypic maturation markers, pro-inflammatory cytokine production and cytotoxic activity against HPV-positive tumour cells. These effects are mediated by the vaccine adjuvant, partly through Toll-like receptor 4 activation. Next, we demonstrate that vaccine-exposed IL-15 DC in turn induce phenotypic activation of NK cells, resulting in a synergistic cytotoxic action against HPV-infected tumour cells. Our study thus identifies a novel mode of action of the HPV vaccine in boosting innate immunity, including killing of HPV-infected cells by DC and NK cells.  相似文献   

16.
Sugiol and 12-hydroxy-6,7-secoabieta-8,11,13-triene-6,7-dial (Secoferruginol) are diterpenes isolated from the heartwood of Cryptomeria japonica and are pharmacologically active substances. Dendritic cells (DC) have a key influence on the differentiation of na?ve T cells into Th1 or Th2 effector cells. We demonstrate that Sugiol and Secoferruginol activate human DC as documented by phenotypic and functional maturation and altered cytokine production. Human monocytes were exposed to Sugiol or Secoferruginol alone, or in combination with LPS and thereafter co-cultured with na?ve T cells. The expression levels of CD83 on Sugiol-primed DC were enhanced. Sugiol dose-dependently inhibited IL-12p70 production by LPS-primed DC and to a lesser extent, the production of the proinflammatory cytokines. Na?ve T cells co-cultured with Sugiol-primed DC, turned into typical Th2 which produced large quantities of IL-4 and released small amounts of IFN-gamma and reduced Th1 cell polarizing capacity. Sugiol-primed DC induced the development of Th2 cells via the enhanced expression of OX40L and augmented the Th2 cell polarizing capacity of DC via the inhibition of IL-12p70. Similar results were obtained with Secoferruginol. These results suggest that some diterpenes modulate human DC function in a fashion that favors Th2 cell polarization and might have implication in autoimmune diseases.  相似文献   

17.
Dendritic cells (DCs) are potent mediators of the immune response, and can be activated by exogenous pathogen components. Galectin-1 is a member of the conserved beta-galactoside-binding lectin family that binds galactoside residues on cell surface glycoconjugates. Galectin-1 is known to play a role in immune regulation via action on multiple immune cells. However, its effects on human DCs are unknown. In this study, we show that galectin-1 induces a phenotypic and functional maturation in human monocyte-derived DCs (MDDCs) similar to but distinct from the activity of the exogenous pathogen stimuli, LPS. Immature human MDDCs exposed to galectin-1 up-regulated cell surface markers characteristic of DC maturation (CD40, CD83, CD86, and HLA-DR), secreted high levels of IL-6 and TNF-alpha, stimulated T cell proliferation, and showed reduced endocytic capacity, similar to LPS-matured MDDCs. However, unlike LPS-matured DCs, galectin-1-treated MDDCs did not produce the Th1-polarizing cytokine IL-12. Microarray analysis revealed that in addition to modulating many of the same DC maturation genes as LPS, galectin-1 also uniquely up-regulated a significant subset of genes related to cell migration through the extracellular matrix (ECM). Indeed, compared with LPS, galectin-1-treated human MDDCs exhibited significantly better chemotactic migration through Matrigel, an in vitro ECM model. Our findings show that galectin-1 is a novel endogenous activator of human MDDCs that up-regulates a significant subset of genes distinct from those regulated by a model exogenous stimulus (LPS). One unique effect of galectin-1 is to increase DC migration through the ECM, suggesting that galectin-1 may be an important component in initiating an immune response.  相似文献   

18.
Dendritic cells (DC) are activated by pathogens, cytokines and activated T cells. We investigated the impact of a transient initial DC stimulation on the kinetics of maturation using a combination of double-stranded RNA and TNFalpha and subsequent restimulation by T cell-derived stimuli. Transient stimulation of DC was sufficient to start an irreversible program of phenotypic maturation which proceeded in the absence of the initial stimulus. Transiently stimulated DC secreted lower amounts of IL-12 during the 48-h period of the first stimulation than cells activated for 48 h. Although both DC preparations expressed the same level of maturation-associated markers at 48 h, DC stimulated for shorter periods preserved higher sensitivity to boosting upon subsequent stimulation by T cell-derived signals. We showed that DC initially stimulated for shorter periods were more potent stimulators of T lymphocytes and they induced a more polarized Th1 response. These results indicate that short exposure of DC to maturation stimuli enables an efficient defensive immune response induction by differentially regulating phenotypic maturation and cytokine production of DC.  相似文献   

19.
IL-4 and IL-13 play key roles in Th2 immunity and asthma pathogenesis. Although the function of these cytokines is partially linked through their shared use of IL-4Ralpha for signaling, the interplay between these cytokines in the development of memory Th2 responses is not well delineated. In this investigation, we show that both IL-4 and IL-13 influence the maturation of dendritic cells (DC) in the lung and their ability to regulate secretion of IFN-gamma and Th2 cytokines by memory CD4(+) T cells. Cocultures of wild-type T cells with pulmonary DC from allergic, cytokine-deficient mice demonstrated that IL-4 enhanced the capacity of DC to stimulate T cell secretion of Th2 cytokines, whereas IL-13 enhanced the capacity of DC to suppress T cell secretion of IFN-gamma. Because IL-4Ralpha is critical for IL-4 and IL-13 signaling, we also determined how variants of IL-4Ralpha influenced immune cell function. T cells derived from allergic mice expressing a high-affinity IL-4Ralpha variant produced higher levels of IL-5 and IL-13 compared with T cells derived from allergic mice expressing a low-affinity IL-4Ralpha variant. Although DC expressing different IL-4Ralpha variants did not differ in their capacity to influence Th2 cytokine production, they varied in their capacity to inhibit IFN-gamma production by T cells. Thus, IL-4 and IL-13 differentially regulate DC function and the way these cells regulate T cells. The affinity of IL-4Ralpha also appears to be a determinant in the balance between Th2 and IFN-gamma responses and thus the severity of allergic disease.  相似文献   

20.
Dendritic cells (DC) are professional antigen-presenting cells of the immune system that play a key role in regulating T cell-based immunity. In vivo, the capacity of DC to activate T cells depends on their ability to migrate to the T cell areas of lymph nodes as well as on their maturation state. Depending on their cytokine-secreting profile, DC are able to skew the immune response in a specific direction. In particular, IL-12p70 producing DC drive T cells towards a T helper 1 type response. A serious disadvantage of current clinical grade ex vivo generated monocyte-derived DC is the poor IL-12p70 production. We have investigated the effects of Toll-like receptor (TLR)-mediated maturation on ex vivo generated human monocyte-derived DC. We demonstrate that in contrast to cytokine-matured DC, DC matured with poly(I:C) (TLR3 ligand) and/or R848 (TLR7/8 ligand) are able to produce vast amounts of IL-12p70, but exhibit a reduced migratory capacity. The addition of prostaglandin E(2) (PGE(2)) improved the migratory capacity of TLR-ligand matured DC while maintaining their IL-12p70 production upon T cell encounter. We propose a novel clinical grade maturation protocol in which TLR ligands poly(I:C) and R848 are combined with PGE(2) to generate DC with both high migratory capacity and IL-12p70 production upon T cell encounter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号