首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lactobacillus sakei is a lactic acid bacterium widely represented in the natural flora of fresh meat. The aim of this study was to analyze the differences in protein expression during environmental changes encountered during technological processes in which L. sakei is involved in order to gain insight into the ability of this species to grow and survive in such environments. Using two-dimensional electrophoresis, we observed significant variation of a set of 21 proteins in cells grown at 4 degrees C or in the presence of 4% NaCl. Six proteins could be identified by determination of their N-terminal sequences, and the corresponding gene clusters were studied. Two proteins belong to carbon metabolic pathways, and four can be clustered as general stress proteins. A phenotype was observed at low temperature for five of the six mutants constructed for these genes. The survival of four mutants during stationary phase at 4 degrees C was affected, and surprisingly, one mutant showed enhanced survival during stationary phase at low temperatures.  相似文献   

2.
Legionella pneumophila type II secretion mutants showed reduced survival in both tap water at 4 to 17°C and aquatic amoebae at 22 to 25°C. Wild-type supernatants stimulated the growth of these mutants, indicating that secreted factors promote low-temperature survival. There was a correlation between low-temperature survival and secretion function when 12 additional Legionella species were examined.  相似文献   

3.
When Campylobacter jejuni NCTC 11351 was grown microaerobically in rich medium at 39°C, entry into stationary phase was followed by a rapid decline in viable numbers to leave a residual population of 1% of the maximum number or less. Loss of viability was preceded by sublethal injury, which was seen as a loss of the ability to grow on media containing 0.1% sodium deoxycholate or 1% sodium chloride. Resistance of cells to mild heat stress (50°C) or aeration was greatest in exponential phase and declined during early stationary phase. These results show that C. jejuni does not mount the normal phenotypic stationary-phase response which results in enhanced stress resistance. This conclusion is consistent with the absence of rpoS homologues in the recently reported genome sequence of this species and their probable absence from strain NCTC 11351. During prolonged incubation of C. jejuni NCTC 11351 in stationary phase, an unusual pattern of decreasing and increasing heat resistance was observed that coincided with fluctuations in the viable count. During stationary phase of Campylobacter coli UA585, nonmotile variants and those with impaired ability to form coccoid cells were isolated at high frequency. Taken together, these observations suggest that stationary-phase cultures of campylobacters are dynamic populations and that this may be a strategy to promote survival in at least some strains. Investigation of two spontaneously arising variants (NM3 and SC4) of C. coli UA585 showed that a reduced ability to form coccoid cells did not affect survival under nongrowth conditions.  相似文献   

4.
Heat Shock Proteins in Tobacco Cell Suspension during Growth Cycle   总被引:8,自引:6,他引:2       下载免费PDF全文
Tobacco (Nicotiana tabacum L. cv Wisconsin 38) cells grown in suspension culture at 26°C produce heat shock proteins (HSPs) when exposed to elevated temperature of 34 to 42°C. At 34 and 38°C, synthesis of normal proteins is maintained while HSPs are expressed within 30 minutes after initiation of the shock. At 42°C, HSPs are still expressed but normal proteins are made at a reduced rate or not at all. Exposure of cells to 38°C allows for a full expression of HSPs without inhibition of the synthesis of normal proteins. Induced synthesis of HSPs at 38°C is maximal 1 to 2 hours after elevation of temperature and diminishes thereafter through at least 6 hours. Cells growing asynchronously in the logarithmic phase of growth produce HSPs at a much higher rate than those in the stationary phase. The ability to synthesize HSPs disappears about one generation time before the cells reach a growth plateau.  相似文献   

5.
Effect of heat shock on the growth of cultured sugarcane cells (Saccharum officinarum L.) was measured. Heat shock (HS) treatment at 36 to 38°C (2 hours) induced the development of maximum thermotolerance to otherwise nonpermissive heat stress at 54°C (7 minutes). Optimum thermotolerance was observed 8 hours after heat shock. Development of thermotolerance was initiated by treatments as short as 30 minutes at 36°C. Temperatures below 36°C or above 40°C failed to induce maximum thermotolerance. In vivo labeling revealed that HS at 32 to 34°C induced several high molecular mass heat shock proteins (HSPs). A complex of 18 kilodalton HSPs required at least 36°C treatment for induction. The majority of the HSPs began to accumulate within 10 minutes, whereas the synthesis of low molecular mass peptides in the 18 kilodalton range became evident 30 minutes after initiation of HS. HS above 38°C resulted in progressively decreased HSP synthesis with inhibition first observed for HSPs larger than 50 kilodaltons. Analysis of two-dimensional gels revealed a complex pattern of label incorporation including the synthesis of four major HSPs in the 18 kilodalton range and continued synthesis of constitutive proteins during HS.  相似文献   

6.
A recombinant protein expression system working at low temperatures is expected to be useful for the production of thermolabile proteins. We constructed a low-temperature expression system using an Antarctic cold-adapted bacterium, Shewanella sp. strain Ac10, as the host. We evaluated the promoters for proteins abundantly produced at 4°C in this bacterium to express foreign proteins. We used 27 promoters and a broad-host-range vector, pJRD215, to produce β-lactamase in Shewanella sp. strain Ac10. The maximum yield was obtained when the promoter for putative alkyl hydroperoxide reductase (AhpC) was used and the recombinant cells were grown to late stationary phase. The yield was 91 mg/liter of culture at 4°C and 139 mg/liter of culture at 18°C. We used this system to produce putative peptidases, PepF, LAP, and PepQ, and a putative glucosidase, BglA, from a psychrophilic bacterium, Desulfotalea psychrophila DSM12343. We obtained 48, 7.1, 28, and 5.4 mg/liter of culture of these proteins, respectively, in a soluble fraction. The amounts of PepF and PepQ produced by this system were greater than those produced by the Escherichia coli T7 promoter system.  相似文献   

7.
The interaction of temperature (4, 10, 18, and 30°C), pH (6, 7, and 8), and NaCl (0, 2.5, and 5%) and their effects on specific growth rate, lag phase, and pectinolytic enzymes of Pseudomonas marginalis were evaluated. Response surface methodology was adapted to describe the response of growth parameters to environmental changes. To obtain good conditions of storage, the combined action of salt and temperature is necessary. At 4°C with an NaCl concentration of 5% and a pH of 7, the lag time was 8 days and no growth was observed at 4°C with 5% NaCl and a pH of 6. In the absence of salt, P. marginalis could grow regardless of temperature and pH. Pectate lyase and pectin lyase were produced by P. marginalis, while pectin methyl esterase activity was not observed in our culture conditions. The enzyme production depended on temperature, pH, and salt concentration but also on the age of the culture. Pectinolytic enzymes were abundantly excreted during the stationary phase, and even at 4°C, after 2 weeks of storage, enzyme activities in supernatant culture were sufficient to damage vegetables. Both bacterial growth and enzymatic production have to be taken into account in order to estimate correctly the shelf life of vegetables.  相似文献   

8.
The effect of low temperatures on the survival, structure, and metabolism of Campylobacter coli SP10, a virulent strain, was investigated. C. coli became nonculturable rapidly at 20 and 10°C and slightly later at 4°C. Incubation in a microaerobic atmosphere improved survival, but after day 8, campylobacters were detectable by direct-count procedures only. The increase in the number of coccoid cells was most pronounced at 37°C but also was noticeable at 20 and 10°C. Two forms of coccoid cells were seen electron microscopically, but only one (20 and 10°C) seemed to be a degenerative form. The flagella were shorter at 20 and 10°C, a result which correlates well with the observed slight changes in the 62-kDa protein band. The fatty acid composition of bacterial cells was influenced significantly by low temperatures. An increase in the short-chain and unsaturated acids was noted; above all, a drastic increase in C19:0 cyc at 20°C with a concomitant decrease in C18:1 trans9,cis11 was seen. The concentrations of excreted metabolites were analyzed to obtain information on metabolic activity. Depending on the magnitude of the temperature downshift, the production of organic acids decreased, but it was always observable after a temperature-specific lag phase and regardless of ability to be cultured. Under optimal conditions, succinate, lactate, and acetate were the main metabolites, other acids being of less importance. The pattern changed significantly at lower temperatures. Succinate was never detected at 20°C and was only occasionally detected at 10 and 4°C. At the same time, fumarate concentrations, which are normally not detectable at 37°C, were highest at 20°C and reduced at 10 and 4°C. Inactivation of fumarate reductase was considered to be a possible explanation.  相似文献   

9.
Shewanella livingstonensis Ac10, a psychrotrophic gram-negative bacterium isolated from Antarctic seawater, produces eicosapentaenoic acid (EPA) as a component of phospholipids at low temperatures. EPA constitutes about 5% of the total fatty acids of cells grown at 4°C. We found that five genes, termed orf2, orf5, orf6, orf7, and orf8, are specifically required for the synthesis of EPA by targeted disruption of the respective genes. The mutants lacking EPA showed significant growth retardation at 4°C but not at 18°C. Supplementation of a synthetic phosphatidylethanolamine that contained EPA at the sn-2 position complemented the growth defect. The EPA-less mutant became filamentous, and multiple nucleoids were observed in a single cell at 4°C, indicating that the mutant has a defect in cell division. Electron microscopy of the cells by high-pressure freezing and freeze-substitution revealed abnormal intracellular membranes in the EPA-less mutant at 4°C. We also found that the amounts of several membrane proteins were affected by the depletion of EPA. While polyunsaturated fatty acids are often considered to increase the fluidity of the hydrophobic membrane core, diffusion of a small hydrophobic molecule, pyrene, in the cell membranes and large unilamellar vesicles prepared from the lipid extracts was very similar between the EPA-less mutant and the parental strain. These results suggest that EPA in S. livingstonensis Ac10 is not required for bulk bilayer fluidity but plays a beneficial role in membrane organization and cell division at low temperatures, possibly through specific interaction between EPA and proteins involved in these cellular processes.  相似文献   

10.
Translational thermotolerance in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1       下载免费PDF全文
While protein synthesis is rapidly inactivated in Saccharomyces cerevisiae, cells shifted from log growth at 30°C to 43°C, a 1-h 37°C treatment given to cells just prior to the shift to 43°C partially blocks this inactivation. By contrast, such a pre-heat shock treament has no protective effect on translational inactivation at 45°C or higher. Cells allowed to approach stationary phase not only develop an enhanced thermotolerance relative to log cells but also exhibit a pronounced resistance to inactivation of protein synthesis at 43°C as well as at 45°C. We have found that this ‘translational thermotolerance’ can also be induced in S. cerevisiae by briefly treating log phase cells at 30°C with cycloheximide. Using such a procedure to induce stabilization of protein synthesis at 43°C, we have been able to show that heat shock-induced proteins are not responsible for the establishment of this protective effect. This work shows that enhanced thermotolerance can be induced in log cells even after a shift to 43°C, as long as a prior translational thermotolerance has been established. Futhermore, we show that the capacity of plateau cells to maintain translation at 43°C contributes significantly to their state of enhanced thermotolerance.  相似文献   

11.
Temperature compensation of circadian period length in 12 clock mutants of Neurospora crassa has been examined at temperatures between 16 and 34°C. In the wild-type strain, below 30°C (the “breakpoint” temperature), the clock is well-compensated (Q10 = 1), while above 30°C, the clock is less well-compensated (Q10 = 1.3). For mutants at the frq locus, mutations that shorten the circadian period length (frq-1, frq-2, frq-4, and frq-6) do not alter this temperature compensation response. In long period frq mutants (frq-3, frq-7, frq-8), however, the breakpoint temperature is lowered, and the longer the period length of the mutants the lower the breakpoint temperature. Long period mutants at other loci exhibit other types of alterations in temperature compensation—e.g. chr is well-compensated even above 30°C, while prd-3 has a Q10 significantly less than 1 below 30°C. Prd-4, a short period mutant, has several breakpoint temperatures. Among four double mutants examined, the only unusual interaction between the individual mutations occurred with chr prd, which had an unusually low Q10 value of 0.86 below 27°C. There was no correlation between circadian period length and growth rate. These strains should be useful tools to test models for the temperature compensation mechanism.  相似文献   

12.
13.
14.
15.
During alcoholic fermentation, Saccharomyces cerevisiae is exposed to a host of environmental and physiological stresses. Extremes of fermentation temperature have previously been demonstrated to induce fermentation arrest under growth conditions that would otherwise result in complete sugar utilization at “normal” temperatures and nutrient levels. Fermentations were carried out at 15°C, 25°C, and 35°C in a defined high-sugar medium using three Saccharomyces cerevisiae strains with diverse fermentation characteristics. The lipid composition of these strains was analyzed at two fermentation stages, when ethanol levels were low early in stationary phase and in late stationary phase at high ethanol concentrations. Several lipids exhibited dramatic differences in membrane concentration in a temperature-dependent manner. Principal component analysis (PCA) was used as a tool to elucidate correlations between specific lipid species and fermentation temperature for each yeast strain. Fermentations carried out at 35°C exhibited very high concentrations of several phosphatidylinositol species, whereas at 15°C these yeast strains exhibited higher levels of phosphatidylethanolamine and phosphatidylcholine species with medium-chain fatty acids. Furthermore, membrane concentrations of ergosterol were highest in the yeast strain that experienced stuck fermentations at all three temperatures. Fluorescence anisotropy measurements of yeast cell membrane fluidity during fermentation were carried out using the lipophilic fluorophore diphenylhexatriene. These measurements demonstrate that the changes in the lipid composition of these yeast strains across the range of fermentation temperatures used in this study did not significantly affect cell membrane fluidity. However, the results from this study indicate that fermenting S. cerevisiae modulates its membrane lipid composition in a temperature-dependent manner.  相似文献   

16.
A potential may exist for survival of and resistance development by Escherichia coli O157:H7 in environmental niches of meat plants applying carcass decontamination interventions. This study evaluated (i) survival or growth of acid-adapted and nonadapted E. coli O157:H7 strain ATCC 43895 in acetic acid (pH 3.6 ± 0.1) or in water (pH 7.2 ± 0.2) fresh beef decontamination runoff fluids (washings) stored at 4, 10, 15, or 25°C and (ii) resistance of cells recovered from the washings after 2 or 7 days of storage to a subsequent lactic acid (pH 3.5) stress. Corresponding cultures in sterile saline or in heat-sterilized water washings were used as controls. In acetic acid washings, acid-adapted cultures survived better than nonadapted cultures, with survival being greatest at 4°C and lowest at 25°C. The pathogen survived without growth in water washings at 4 and 10°C, while it grew by 0.8 to 2.7 log cycles at 15 and 25°C, and more in the absence of natural flora. E. coli O157:H7 cells habituated without growth in water washings at 4 or 10°C were the most sensitive to pH 3.5, while cells grown in water washings at 15 or 25°C were relatively the most resistant, irrespective of previous acid adaptation. Resistance to pH 3.5 of E. coli O157:H7 cells habituated in acetic acid washings for 7 days increased in the order 15°C > 10°C > 4°C, while at 25°C cells died off. These results indicate that growth inhibition by storage at low temperatures may be more important than competition by natural flora in inducing acid sensitization of E. coli O157:H7 in fresh meat environments. At ambient temperatures in meat plants, E. coli O157:H7 may grow to restore acid resistance, unless acid interventions are applied to inhibit growth and minimize survival of the pathogen. Acid-habituated E. coli O157:H7 at 10 to 15°C may maintain a higher acid resistance than when acid habituated at 4°C. These responses should be evaluated with fresh meat and may be useful for the optimization of decontamination programs and postdecontamination conditions of meat handling.  相似文献   

17.
Indole-3-acetic acid (IAA) in highly purified extracts of rose achenes (Rosa rugosa var rubra) was quantified by means of ion-pair reversephase high performance liquid chromatography with spectrofluorimetric detection. Changes in IAA content were determined during a 14-week 4°C stratification, which leads to dormancy breakage, and during subsequent germination at 17°C. IAA was also determined in achenes stratified in parallel at 17°C, which does not induce release from dormancy. IAA decreased during the first 2 weeks of stratification both at 4°C and at 17°C. IAA remained low during the remaining 12 weeks of stratification at 4°C, whereas it continued to decrease in achenes kept at 17°C. An immediate increase in IAA during germination was followed by transients in the IAA level. The results suggest that IAA is without a regulating role in dormancy release although it seems to be involved in the germination process.  相似文献   

18.
Shewanella oneidensis MR-1 is a mesophilic bacterium with a maximum growth temperature of ≈35°C but the ability to grow over a wide range of temperatures, including temperatures near zero. At room temperature (≈22°C) MR-1 grows with a doubling time of about 40 min, but when moved from 22°C to 3°C, MR-1 cells display a very long lag phase of more than 100 h followed by very slow growth, with a doubling time of ≈67 h. In comparison to cells grown at 22°C, the cold-grown cells formed long, motile filaments, showed many spheroplast-like structures, produced an array of proteins not seen at higher temperature, and synthesized a different pattern of cellular lipids. Frequent pilus-like structures were observed during the transition from 3 to 22°C.  相似文献   

19.
Plant growth and fertility strongly depend on environmental conditions such as temperature. Remarkably, temperature also influences meiotic recombination and thus, the current climate change will affect the genetic make-up of plants. To better understand the effects of temperature on meiosis, we followed male meiocytes in Arabidopsis thaliana by live cell imaging under three temperature regimes: at 21°C; at heat shock conditions of 30°C and 34°C; after an acclimatization phase of 1 week at 30°C. This work led to a cytological framework of meiotic progression at elevated temperature. We determined that an increase from 21°C to 30°C speeds up meiosis with specific phases being more amenable to heat than others. An acclimatization phase often moderated this effect. A sudden increase to 34°C promoted a faster progression of early prophase compared to 21°C. However, the phase in which cross-overs mature was prolonged at 34°C. Since mutants involved in the recombination pathway largely did not show the extension of this phase at 34°C, we conclude that the delay is recombination-dependent. Further analysis also revealed the involvement of the ATAXIA TELANGIECTASIA MUTATED kinase in this prolongation, indicating the existence of a pachytene checkpoint in plants, yet in a specialized form.

Live cell imaging of plants exposed to different heat stresses provides a temporal framework of meiosis at high temperatures in wild-type and mutants for several meiotic recombination factors.  相似文献   

20.
Sixteen temperature-sensitive mutants of Autographa californica nuclear polyhedrosis virus were isolated. Several interesting phenotypes were observed. A large proportion of the mutants were unable to form polyhedral occlusion bodies (polyhedra) at the nonpermissive temperature (32.5°C). At 32.5°C, one mutant formed plaques in which the cells lacked polyhedra. Another mutant type was defective in the production of progeny extracellular nonoccluded virus and produced a “plaque” consisting of only a single cell containing polyhedra at 32.5°C. One mutant was defective in plaque formation, progeny nonoccluded virus formation, and polyhedra formation at 32.5°C. Several mutants produced nonoccluded virus but failed to produce plaques or polyhedra at 32.5°C. Other phenotypes were also distinguished. Complementation analyses, performed by either measuring the increase in extracellular nonoccluded virus formation or by observing polyhedra formation in mixed infections at 32.5°C, indicated the presence of 15 complementation groups. A high frequency of recombination was observed. Four of the mutants were found to be host dependent in their temperature sensitivity for polyhedra formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号