首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rates of delivery of regulatory solutes such as cytokinins and mineral ions from the roots to competing shoot tissues can influence rates of metabolism and development. A 15 min pulse of a synthetic xylem mobile and phloem-immobile solute, acid fuchsin, was used to quantify relative rates of solute delivery to competing organs on excised transpiring bean shoots (Phaseolus vulgaris L. cv. Contender) at different stages of development. Stem, flower and fruit tissues received comparatively low rates of solute delivery. The relative rate of solute delivery to newly opened leaves was initially low, but increased during rapid leaf expansion and then declined progressively as the leaves exceeded 70% of their final area. The relative rate of solute delivery to tissues of the basal primary leaves declined progressively from 2 weeks onwards. This decline appeared to be caused by progressive internally regulated increases in both stomatal resistances and hydraulic resistances to xylem flow up to and into the leaf blade. Thus combined abaxial and adaxial stomatal resistance values in the primary leaves (Rs) increased from 3 to ≥ 7 s cm?1 between 2 and 5 weeks. Similarly, mean values for the connection resistances (Rc) to hydraulic flow into the primary leaves rose from 7 to 13 TPa · s · m?1 between 2 and 4 weeks. In the same period pathway resistance from stem to primary leaf petioles (Rp), as determined by direct pressure flow assay, increased from 7 to 15 TPa · s · m?1. Senescence-associated declines in protein and chlorophyll levels in the primary leaves were initiated in parallel with, or after, declines in relative rates of solute delivery. The provision of extra illumination at the basal leaf level between 2 and 5 weeks did not prevent declines in chlorophyll and soluble protein or increases in stomatal resistance. We suggest that internally programmed changes in the hydraulic architecture of the plant progressively divert xylem-transported root supplies of nutrients and cytokinins from basal to more apical leaves and thus regulate the progressive senescence of leaves from the base upwards.  相似文献   

2.
Excised soybean (Glycine max [L.] Merrill) cv Anoka leaf discs tend to remain green even after the corresponding intact leaves have turned yello on fruiting plants. We have found that explants which include a leaf along with a stem segment (below the node) and one or more pods (maintained on distilled H2O) show similar but accelerated leaf yellowing and abscission compared with intact plants. In podded explants excised at pre-podfill, the leaves begin to yellow after 16 days, whereas those excised at late podfill begin to yellow after only 6 days. Although stomatal resistances remain low during the first light period after excision, they subsequently increase to levels above those in leaves of intact plants. Explants taken at mid to late podfill with one or more pods per node behave like intact plants in that pod load does not affect the time lag to leaf yellowing. Explant leaf yellowing and abscission are delayed by removal of the pods or seeds or by incubation in complete mineral nutrient solution or in 4.6 micromolar zeatin. Like chorophyll breakdown, protein loss is accelerated in the explants, but minerals or especially zeatin can retard the loss. Pods on explants show rates and patterns of color change (green to yellow to brown) similar to those of pods on intact plants. These changes start earlier in explants on water than in intact plants, but they can be delayed by adding zeatin. Seed dry weight increased in explants, almost as much as in intact plants. Explants appear to be good analogs of the corresponding parts of the intact plant, and they should prove useful for analyzing pod development and mechanisms of foliar senescence. Moreover, our data suggest that the flux of minerals and cytokinin from the roots could influence foliar senescence in soybeans, but increased stomatal resistance does not seem to cause foliar senescence.  相似文献   

3.
Gas exchange is constrained by the whole-plant hydraulic conductance (K plant). Leaves account for an important fraction of K plant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (K leaf) decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs). Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, K leaf recovered only 2 hours after plants were rewatered. Recovery of K leaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs) showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in K leaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in K leaf.  相似文献   

4.
Xylem pressure potentials and stomatal diffusion resistances were measured in the field in Ilex opaca Ait. during days which differed in temperature and vapor pressure deficit. Water flux into leaves was calculated by combining the field data with laboratory determinations of the relation between tissue water deficit and water potential. Estimates of apparent plant resistance were then calculated from fluxes and differences between soil water potential and xylem tension. The resistance depended strongly on water flux, dropping by a factor of over 7 from low to high water flow rates. This extends the generality of variable plant resistances measured in controlled environment studies to I. opaca as it occurs naturally in the field. The relation of apparent plant resistance to water flux as estimated in this study can be useful in simulation models which calculate water uptake to leaves as a flux driven by a difference in soil and leaf water potentials across a resistance between the bulk soil and the leaf.  相似文献   

5.
Susceptibility of plants to vascular disruption by macromolecules   总被引:3,自引:1,他引:2       下载免费PDF全文
The xylem of alfalfa (Medicago sativa L.) was found to be susceptible to vascular obstruction by picomole quantities of dextrans. Not all parts of the xylem were equally susceptible to this plugging. The quantity of dextran of 2 × 106 molecular weight required to stop vascular flow was 8 picomoles in petiole junctions and 0.4 picomole in leaflet veins. Vascular flow through stems was greatly reduced but not stopped, even by over 150 picomoles of the dextran. The ability of dextrans to interfere with vascular conductance was directly correlated with their molecular weight. Dextrans of molecular weight less than 250,000 had little ability to stop vascular flow.  相似文献   

6.
The degree of plant iso/anisohydry, a widely used framework for classifying species‐specific hydraulic strategies, integrates multiple components of the whole‐plant hydraulic pathway. However, little is known about how it associates with coordination of functional and structural traits within and across different organs. We examined stem and leaf hydraulic capacitance and conductivity/conductance, stem xylem anatomical features, stomatal regulation of daily minimum leaf and stem water potential (Ψ), and the kinetics of stomatal responses to vapour pressure deficit (VPD) in six diverse woody species differing markedly in their degree of iso/anisohydry. At the stem level, more anisohydric species had higher wood density and lower native capacitance and conductivity. Like stems, leaves of more anisohydric species had lower hydraulic conductance; however, unlike stems, their leaves had higher native capacitance at their daily minimum values of leaf Ψ. Moreover, rates of VPD‐induced stomatal closure were related to intrinsic rather than native leaf capacitance and were not associated with species' degree of iso/anisohydry. Our results suggest a trade‐off between hydraulic storage and efficiency in the leaf, but a coordination between hydraulic storage and efficiency in the stem along a spectrum of plant iso/anisohydry.  相似文献   

7.
Leaves constitute a substantial fraction of the total resistance to water flow through plants. A key question is how hydraulic resistance within the leaf is distributed among petiole, major veins, minor veins, and the pathways downstream of the veins. We partitioned the leaf hydraulic resistance (R(leaf)) for sugar maple (Acer saccharum) and red oak (Quercus rubra) by measuring the resistance to water flow through leaves before and after cutting specific vein orders. Simulations using an electronic circuit analog with resistors arranged in a hierarchical reticulate network justified the partitioning of total R(leaf) into component additive resistances. On average 64% and 74% of the R(leaf) was situated within the leaf xylem for sugar maple and red oak, respectively. Substantial resistance-32% and 49%- was in the minor venation, 18% and 21% in the major venation, and 14% and 4% in the petiole. The large number of parallel paths (i.e. a large transfer surface) for water leaving the minor veins through the bundle sheath and out of the leaf resulted in the pathways outside the venation comprising only 36% and 26% of R(leaf). Changing leaf temperature during measurement of R(leaf) for intact leaves resulted in a temperature response beyond that expected from changes in viscosity. The extra response was not found for leaves with veins cut, indicating that water crosses cell membranes after it leaves the xylem. The large proportion of resistance in the venation can explain why stomata respond to leaf xylem damage and cavitation. The hydraulic importance of the leaf vein system suggests that the diversity of vein system architectures observed in angiosperms may reflect variation in whole-leaf hydraulic capacity.  相似文献   

8.
9.
Structural and hydraulic correlates of heterophylly in Ginkgo biloba   总被引:1,自引:0,他引:1  
This study investigates the functional significance of heterophylly in Ginkgo biloba, where leaves borne on short shoots are ontogenetically distinct from those on long shoots. Short shoots are compact, with minimal internodal elongation; their leaves are supplied with water through mature branches. Long shoots extend the canopy and have significant internodal elongation; their expanding leaves receive water from a shoot that is itself maturing. Morphology, stomatal traits, hydraulic architecture, Huber values, water transport efficiency, in situ gas exchange and laboratory-based steady-state hydraulic conductance were examined for each leaf type. Both structure and physiology differed markedly between the two leaf types. Short-shoot leaves were thinner and had higher vein density, lower stomatal pore index, smaller bundle sheath extensions and lower hydraulic conductance than long-shoot leaves. Long shoots had lower xylem area:leaf area ratios than short shoots during leaf expansion, but this ratio was reversed at shoot maturity. Long-shoot leaves had higher rates of photosynthesis, stomatal conductance and transpiration than short-shoot leaves. We propose that structural differences between the two G. biloba leaf types reflect greater hydraulic limitation of long-shoot leaves during expansion. In turn, differences in physiological performance of short- and long-shoot leaves correspond to their distinct ontogeny and architecture.  相似文献   

10.
We explored potential of morphological and anatomical leaf traits for predicting ecophysiological key functions in subtropical trees. We asked whether the ecophysiological parameters stomatal conductance and xylem cavitation vulnerability could be predicted from microscopy leaf traits. We investigated 21 deciduous and 19 evergreen subtropical tree species, using individuals of the same age and from the same environment in the Biodiversity‐Ecosystem Functioning experiment at Jiangxi (BEF‐China). Information‐theoretic linear model selection was used to identify the best combination of morphological and anatomical predictors for ecophysiological functions. Leaf anatomy and morphology strongly depended on leaf habit. Evergreen species tended to have thicker leaves, thicker spongy and palisade mesophyll, more palisade mesophyll layers and a thicker subepidermis. Over 50% of all evergreen species had leaves with multi‐layered palisade parenchyma, while only one deciduous species (Koelreuteria bipinnata) had this. Interactions with leaf habit were also included in best multi‐predictor models for stomatal conductance (gs) and xylem cavitation vulnerability. In addition, maximum gs was positively related to log ratio of palisade to spongy mesophyll thickness. Vapour pressure deficit (vpd) for maximum gs increased with the log ratio of palisade to spongy mesophyll thickness in species having leaves with papillae. In contrast, maximum specific hydraulic conductivity and xylem pressure at which 50% loss of maximum specific xylem hydraulic conductivity occurred (Ψ50) were best predicted by leaf habit and density of spongy parenchyma. Evergreen species had lower Ψ50 values and lower maximum xylem hydraulic conductivities. As hydraulic leaf and wood characteristics were reflected in structural leaf traits, there is high potential for identifying further linkages between morphological and anatomical leaf traits and ecophysiological responses.  相似文献   

11.
The leaf hydraulic conductance (K(leaf)) is a major determinant of plant water transport capacity. Here, we measured K(leaf), and its basis in the resistances of leaf components, for fully illuminated leaves of five tree species that regenerate in deep shade, and five that regenerate in gaps or clearings, in Panamanian lowland tropical rainforest. We also determined coordination with stomatal characters and leaf mass per area. K(leaf) varied 10-fold across species, and was 3-fold higher in sun- than in shade-establishing species. On average, 12% of leaf hydraulic resistance (= 1/K(leaf)) was located in the petiole, 25% in the major veins, 25% in the minor veins, and 39% outside the xylem. Sun-establishing species had a higher proportion of leaf resistance in the xylem. Across species, component resistances correlated linearly with total leaf resistance. K(leaf) correlated tightly with indices of stomatal pore area, indicating a coordination of liquid- and vapor-phase conductances shifted relative to that of temperate woody species. Leaf hydraulic properties are integrally linked in the complex of traits that define differences in water use and carbon economy across habitats and vegetation zones.  相似文献   

12.
The cause of reduced leaf-level transpiration under elevated CO2 remains largely elusive. Here, we assessed stomatal, hydraulic, and morphological adjustments in a long-term experiment on Aleppo pine (Pinus halepensis) seedlings germinated and grown for 22–40 months under elevated (eCO2; c. 860 ppm) or ambient (aCO2; c. 410 ppm) CO2. We assessed if eCO2-triggered reductions in canopy conductance (gc) alter the response to soil or atmospheric drought and are reversible or lasting due to anatomical adjustments by exposing eCO2 seedlings to decreasing [CO2]. To quantify underlying mechanisms, we analyzed leaf abscisic acid (ABA) level, stomatal and leaf morphology, xylem structure, hydraulic efficiency, and hydraulic safety. Effects of eCO2 manifested in a strong reduction in leaf-level gc (−55%) not caused by ABA and not reversible under low CO2 (c. 200 ppm). Stomatal development and size were unchanged, while stomatal density increased (+18%). An increased vein-to-epidermis distance (+65%) suggested a larger leaf resistance to water flow. This was supported by anatomical adjustments of branch xylem having smaller conduits (−8%) and lower conduit lumen fraction (−11%), which resulted in a lower specific conductivity (−19%) and leaf-specific conductivity (−34%). These adaptations to CO2 did not change stomatal sensitivity to soil or atmospheric drought, consistent with similar xylem safety thresholds. In summary, we found reductions of gc under elevated CO2 to be reflected in anatomical adjustments and decreases in hydraulic conductivity. As these water savings were largely annulled by increases in leaf biomass, we do not expect alleviation of drought stress in a high CO2 atmosphere.

Increases in atmospheric CO2 can trigger structural modifications in leaves and branches, which contribute to lower leaf-level water loss, but do not affect the drought sensitivity in Aleppo pine.  相似文献   

13.
Abstract. Localized burning of a leaf causes a rapid change in apoplastic electrical potential throughout the shoot of wheat seedlings ('variation potential'). It also causes marked increases in turgor pressure in epidermal cells of adjoining leaves. These turgor increases indicate rapid propagation throughout the seedling, of a hydraulic pressure wave from the site of wounding. Evidence is presented that this pressure wave is caused by relief of xylem tension, by water released from damaged cells in the wounded region. It is demonstrated that, in the absence of wounding, pressure waves imposed at the tip of one leaf can travel to neighbouring leaves, and can there induce change in apoplastic electrical potential similar to a 'variation potential'. This indicates that the hydraulic event produced by wounding is the signal responsible for systemic induction of the 'variation potential'. This signal has been termed 'Ricca's factor'. It is suggested that arrival of the hydraulic wave alters leaf water potential and thereby induces stomatal activity. Leaf surface potential may be dominated by electrogenic ion pumping or flux at stomatal cells, and the 'variation potential' may therefore be a reflection of stomatal activity induced by the hydraulic signal.  相似文献   

14.
Salix psammophila and Caragana korshinskii are two common shrubs in the southern Mu Us Desert, China. Their hydraulic strategies for adapting to this harsh, dry desert environment are not yet clear. This study examined the hydraulic transport efficiency, vulnerability to cavitation, and daily embolism refilling in the leaves and stems of these two shrubs during the dry season. In order to gain insight into water use strategies of whole plants, other related traits were also considered, including daily changes in stomatal conductance, leaf mass per area, leaf pressure–volume parameters, wood density and the Huber value. The leaves and stems of S. psammophila had greater hydraulic efficiency, but were more vulnerable to drought-induced hydraulic dysfunction than C. korshinskii. The difference between leaf and stem water potential at 50 % loss of conductivity was 0.12 MPa for S. psammophila and 0.81 MPa for C. korshinskii. Midday stomatal conductance decreased by 74 % compared to that at 8:30 in S. psammophila, whereas no change occurred in C. korshinskii. Daily embolism and refilling occurred in the stems of S. psammophila and leaves of C. korshinskii. These results suggest that a stricter stomatal regulation, daily embolism repair in stems, and a higher stem water capacitance could be partially compensating for the greater susceptibility to xylem embolism in S. psammophila, whereas higher leaf elastic modulus, greater embolism resistance in stems, larger difference between leaf and stem hydraulic safety, and drought-induced leaf shedding in C. korshinskii were largely responsible for its more extensive distribution in arid and desert steppes.  相似文献   

15.
Two tropical trees, Acacia confusa and Litsea glutinosa, were grown under controlled conditions with their roots subjected to soil drying and soil compaction treatments. In both species, a decline in stomatal conductance resulting from soil drying took place much earlier than the decline of leaf water potential. Soil compaction treatment also resulted in a substantial decrease in stomatal conductance but had little effect on leaf water potential. A rapid and substantial increase in xylem abscisic acid (ABA) concenation ([ABA]), rather than hulk leaf ABA, was closely related to soil drying and soil compaction. A significant relationship between stomatal conductance (gs) and xylem [ABA] was observed in both species. Artificially feeding ABA solutions to excised leaves of both species showed that the relationship bet ween gs and [ABA] was very similar to that obtained from the whole plant, i.e. the relationship between gs and xylem [ABA]. These results suggest that xylem ABA may act as a stress signal in the control of stomatal conductance.  相似文献   

16.
Abstract. Drought avoidance due to cuticular control increases with leaf number to a maximum in the intermediate leaves, decreasing to a minimum in the upper leaves. Dehydrated intermediate leaves do not rehydrate detectably when floated on water for several days. Excision of their petioles when submerged, permits full rehydration, presumably via the xylem. Stressing the plant by withholding water for 1–3 weeks fails to increase this already high resistance to water movement through the leaf surface. It does, however, markedly decrease the loss of water from the fully rehydrated (100% RWC) leaves during the first hour of dehydration, presumably due to a more rapid stomatal closure than in the non-stressed leaves. Dehydration tolerance increases with leaf number, without an intermediate maximum. The intermediate and upper leaves were markedly more tolerant of dehydration after drought-induced stress than when non-stressed. Dehydration tolerance in some cases, was inversely proportional to dehydration rate. It was possible, however, to equalize the rates of dehydration of drought-stressed and non-drought-stressed leaves without affecting the greater tolerance of the drought-stressed leaves. Dehydration avoidance by osmotic adjustment was markedly developed in the slowly dehydrated attached leaves of drought-stressed plants, but not in the rapidly dehydrated excised leaves. This is evidence of drought acclimation. It must, therefore, be concluded that the slow dehydration of the drought-stressed plants also leads to the increase in dehydration tolerance by permitting drought-induced acclimation. The overall drought resistance of cabbage leaves depends on the three components: drought avoidance, dehydration avoidance and dehydration tolerance. The latter two increase during acclimation but the cuticular control of drought avoidance does not.  相似文献   

17.
As trees grow taller, the energetic cost of moving water to the leaves becomes higher and could begin to limit carbon gain and subsequent growth. The hydraulic limitation hypothesis states that as trees grow taller, the path length and therefore frictional resistance of water flow increases, leading to stomatal closure, reduced photosynthesis and decreased height growth in tall trees. Although this hypothesis is supported by the physical laws governing water movement in trees, its validation has been complicated by the complex structure of most tree species. Therefore, this study tested the hydraulic limitation hypothesis in Washingtonia robusta (H. Wendl.), a palm that, while growing to tall heights, is still structurally simple enough to act as a model organism for testing. There were no discernable relationships between tree height and stomatal conductance, stomatal densities, guard cell lengths, leaf dry mass per unit area (LMA) or sap flux, suggesting that these key aspects of hydraulic limitation are not reduced in taller palms. Taller palms did, however, have higher maximum daily photosynthetic assimilation rates, lower minimum leaf water potentials that occurred earlier in the day and fewer, smaller leaves than did shorter palms. Leaf epidermal cells were also smaller in taller palms compared with shorter ones. These findings are consistent with hydraulic compensation in that tall palms may be overcoming the increased path length resistance through smaller, more efficient leaves and lower leaf water potentials than shorter palms.  相似文献   

18.
Exogenous abscisic acid (ABA) applied to the roots and excised shoots of aspen (Populus tremuloides Michx.) inhibited stomatal conductance. However, the effect of ABA on stomatal conductance was more pronounced in the excised shoots compared with the intact seedlings. Approximately 10% of the ABA concentration applied to the roots was found in the xylem exudates of root systems exposed to a hydrostatic pressure of 0.3 MPa. A similar concentration of ABA applied to the excised shoots produced a faster and greater reduction of stomatal conductance. ABA applied to the roots had no effect on root steady-state flow rate over the 5-h experimental period. Moreover, pre-incubating root systems of intact seedlings for 12 h with 5 x 10(-5) M ABA did not significantly reduce volume flow density. Similarly, ABA had no effect on root hydraulic conductivity and the activation energy of root water flow rates.  相似文献   

19.
Leaf stomatal density is known to co-vary with leaf vein density. However, the functional underpinning of this relation, and how it scales to whole-plant water transport anatomy, is still unresolved. We hypothesized that the balance of water exchange between the vapour phase (in stomata) and liquid phase (in vessels) depends on the consistent scaling between the summed stomatal areas and xylem cross-sectional areas, both at the whole-plant and single-leaf level. This predicted size co-variation should be driven by the co-variation of numbers of stomata and terminal vessels. We examined the relationships of stomatal traits and xylem anatomical traits from the entire plant to individual leaves across seedlings of 53 European woody angiosperm species. There was strong and convergent scaling between total stomatal area and stem xylem area per plant and between leaf total stomatal area and midvein xylem area per leaf across all the species, irrespective of variation in leaf habit, growth-form or relative growth rate. Moreover, strong scaling was found between stomatal number and terminal vessel number, whereas not in their respective average areas. Our findings have broad implications for integrating xylem architecture and stomatal distribution and deepen our understanding of the design rules of plants' water transport network.  相似文献   

20.
Identifying the consequences of grass blade morphology (long, narrow leaves) on the heterogeneity of gas exchange is fundamental to an understanding of the physiology of this growth form. We examined acropetal changes in anatomy, hydraulic conductivity and rates of gas exchange in five grass species (including C(3) and C(4) functional types). Both stomatal conductance and photosynthesis increased along all grass blades despite constant light availability. Hydraulic efficiency within the xylem remained constant along the leaf, but structural changes outside the xylem changed in concert with stomatal conductance. Stomatal density and stomatal pore index remained constant along grass blades but interveinal distance decreased acropetally resulting in a decreased path length for water movement from vascular bundle to stomate. The increase in stomatal conductance was correlated with the decreased path length through the leaf mesophyll. A strong correlation between the distance from vascular bundles to stomatal pores and stomatal conductance has been identified across species; our results suggest this relationship also exists within individual leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号