首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
拟南芥细胞死亡突变体mod1突变座位的精细物理图谱构建   总被引:1,自引:0,他引:1  
拟南芥细胞死亡突变体mod1突变位点位于第2染色体分子标记IGS1和mi421之间. 以这一区域YAC重叠群中的YAC克隆末端DNA片段CIC9A3R, CIC11C7L, CIC2G5R及RFLP分子标记克隆CDs3为探针筛选TAMU BAC文库, 获得31个阳性BAC克隆. 用BAC克隆的末端DNA片段杂交所有阳性BAC克隆, 确立了由T6P5, T7M23, T12A21, T8L6及T18A18等克隆组成的MOD1基因所在区域的BAC重叠群. 同时在这一区域发展出11个CAPS分子标记和12个STS序标, 为MOD1基因的图位克隆与鉴定分析及这一区域的全序列测定奠定了基础.  相似文献   

2.
细菌人工染色体的研究和应用   总被引:4,自引:0,他引:4  
细菌人工染色体 (Bacterialartificialchromosome ,BAC)是第二代大片段DNA的克隆载体系统。因其嵌合率低 ,遗传稳定性好 ,重组DNA容易分离和制备 ,转化效率高等 ,弥补了YAC的不足 ,很快在基因组研究中处于中心地位。近年来 ,已有多种BAC载体被构建出来 ,这些BAC载体在复杂基因组大片段文库的构建 ,基因的图位克隆 ,基因组物理图谱的构建 ,基因和基因组测序 ,基因组织结构分析 ,染色体组织和进化 ,以及基因的遗传转化和调控研究中得到了广泛的应用。  相似文献   

3.
酵母人工染色体克隆技术及其进展   总被引:1,自引:0,他引:1  
酵母人工染色体克隆(YAC)是最近几年发展起来的大分子 DNA 克隆技术.文章综述了 YAC 克隆技术的发展,YAC 的分离、分析与鉴定,以及这一技术在分子生物学中的应用.  相似文献   

4.
随着人类和植物基因组计划的实施,能容纳大片段的人工染色体载体发展迅速。而用YAC、BAC和PAC等基因组文库进行目的基因的筛选,在获得候选克隆后,通常要进行亚克隆,然后对每个亚克隆逐一进行基因功能互补试验,不仅工作量大,而且有遗漏目的基因的危险。TAC载体含P1质粒和Ri质粒的复制子,可直接转化植物,大大加速了工作进程。概括性的叙述了TAC载体的发展,TAC文库构建的程序及文库鉴定的问题。  相似文献   

5.
以pYAC4为载体,以正常人白细胞和含4条X染色体的细胞株GM1414为DNA源构建成人基因组YAC(Yeast Artificial Chromosome,酵母人工染色体)分子克隆库,已得到原始克隆近2万个,插入DNA片段长度在400—1000kb,从其中选出一组YAC克隆,它们含有DMD基因全部DNA顺序。  相似文献   

6.
黄胜  李娜  周俊  何璟 《微生物学报》2012,52(1):30-37
【目的】很多链霉菌来源的天然产物的生物合成基因簇往往很大,用传统的cosmid载体很难完整的克隆和异源表达。本研究通过载体改造,成功构建出一个新的细菌人工染色体(BAC)载体,用于链霉菌来源的天然产物生物合成基因簇的克隆及异源表达实验。【方法】从复合型载体pCUGIBAC1出发,通过λRED介导的PCR-targeting方法,用链霉素抗性基因替换掉原有的氯霉素抗性基因标记,同时插入链霉菌中常用的安普拉霉素抗性标记、转移起始位点oriT、φC31整合酶基因int、整合位点attP等元件。【结果】成功构建出可装载链霉菌大片段DNA的BAC载体pMSBBACs。使用pMSBBACs构建出链霉菌U27的基因组BAC文库,平均插入片段大小为100 kb。选取其中一个大小为140 kb的BAC质粒进行功能验证,实验证明通过接合转移和原生质体转化的方法都能够将这个大型BAC质粒导入链霉菌模式菌株,并通过位点特异性重组整合到染色体中进行异源表达。【结论】BAC载体pMSBBACs可成功用于放线菌大片段基因组DNA的克隆和异源表达实验。  相似文献   

7.
如何快速、方便地保存和修饰基因组较大的DNA和RNA病毒核酸一直是病毒学研究的重点。细菌人工染色体(bacterial artificial chromosome,BAC)为解决这两个问题提供了便利,它可以容纳300 kb的基因序列,能够通过大肠杆菌诱变技术进行有效修饰,目前已经成为编辑大基因组病毒基因的有效工具。DNA病毒,如疱疹病毒和痘病毒的基因组已被克隆到BAC载体上。此外,一些RNA病毒,如冠状病毒和黄病毒科病毒等也建立了基于BAC的反向遗传操作系统。现概述不同病毒重组BAC构建策略,总结了常用的对BACs进行基因修饰的技术,介绍了BAC载体重组病毒的拯救以及将BAC序列从病毒基因组中删除的方法,简述了病毒重组细菌人工染色体的应用。  相似文献   

8.
基因组文库是分子克隆和基因组学的技术基础,它主要经历了噬菌体系列文库、人工染色体系列文库和多元载体系列文库三个阶段。介绍了λ噬菌体文库、cosmid文库、P1噬菌体及PAC文库、fosmid文库、YAC文库、BAC文库、MAC文库、HAC文库、BIBAC文库和TAC文库,罗列了部分文库的研究成果和发展情况,总结了基因组文库的发展进程,并对基因组文库向多基因发展作了展望。  相似文献   

9.
转基因动物乳腺生物反应器位点效应的影响是制备转基因动物乳腺生物反应器过程中的主要问题。酵母人工染色体(YAC)和细菌人工染色体(BAC)具有容量大的特性,可以将乳蛋白的整个基因座包括所有调控序列全部装载进去,有可能克服位点效应的影响,是一种理想的载体。YAC和BAC载体转基因技术可能成为避开基因打靶获得高效表达的转基因动物乳腺生物反应器的另一途径.  相似文献   

10.
关于细菌人工染色体(BAC)文库载体DNA制备的研究   总被引:5,自引:0,他引:5  
姜涛  刘越  孔秀英  贾继增 《遗传学报》2002,29(12):1126-1131
细菌人工染色体(BAC)文库在基因组研究中起着关键作用。构建BAG文库的一个关键步骤就是BAC载体DNA的制备,制备高质量的BAC载体DNA受到包括酶切,脱磷等诸多因素的影响。以BAC载体pECBAC1为材料,分别采用限制性内切酶BamHⅠ和HK脱磷酶对其进行酶切和脱磷,并结合凝胶回收缩化技术,制备了可用于进一步构建BAC文库的线性载体DNA。并在此基础上,确定了制备BAC载体DNA的适宜条件,其中包括确定适宜限制内切酶用量及酶切时间,脱磷酶种类及浓度和凝胶回收纯化线性载体DNA等关系步骤。  相似文献   

11.
在基因克隆时,如应用通常的一些基因组文库如YAC、BAC 和PAC 等进行目的基因的筛选,在获得候选克隆后,通常进行亚克隆,然后对每个亚克隆逐一进行基因功能互补试验,不仅工作量大,而且有遗漏的可能。近年来,对一些通常的基因组文库载体进行改建,已发展了既可用于克隆,又能直接进行转化的载体,这将大大方便大片段DNA的转移。  相似文献   

12.
Development of efficient methods to transfer large DNA fragments into plants will greatly facilitate the map-based cloning of genes. The recently developed BIBAC and TAC vectors have shown potential to deliver large DNA fragments into plants via Agrobacterium-mediated transformation. Here we report that BIBAC and TAC clones containing potato genomic DNA fragments larger than 100 kb are not stable in Agrobacterium. We tested the possible factors that may cause instability, including the insert sizes of the BIBAC and TAC constructs, potato DNA fragments consisting of highly repetitive or largely single-copy DNA sequences, different Agrobacterium transformation methods and different Agrobacterium strains. The insert sizes of the potato BIBAC and TAC constructs were found to be critical to their stability in Agrobacterium. All constructs containing a potato DNA fragment larger than 100 kb were not stable in any of the four tested Agrobacterium strains, including two recA deficient strains. We developed a transposon-based technique that can be used to efficiently subclone a BAC insert into two to three BIBAC/TAC constructs to circumvent the instability problem.Communicated by J. Dvorak  相似文献   

13.
Q Tao  H B Zhang 《Nucleic acids research》1998,26(21):4901-4909
Bacterial artificial chromosome (BAC) and P1-derived artificial chromosome (PAC) systems were previously developed for cloning of very large eukaryotic DNA fragments in bacteria. We report the feasibility of cloning very large fragments of eukaryotic DNA in bacteria using conventional plasmid-based vectors. One conventional plasmid vector (pGEM11), one conventional binary plasmid vector (pSLJ1711) and one conventional binary cosmid vector (pCLD04541) were investigated using the widely used BAC (pBeloBAC11 and pECBAC1) and BIBAC (BIBAC2) vectors as controls. The plasmid vector pGEM11 yielded clones ranging in insert sizes from 40 to 100 kb, whereas the two binary vectors pCLD04541 and pSLJ1711 yielded clones ranging in insert sizes from 40 to 310 kb. Analysis of the pCLD04541 and pSLJ1711 clones indicated that they had insert sizes and stabilities similar to the BACs and BIBACs. Our findings indicate that conventional plasmid-based vectors are capable of cloning and stably maintaining DNA fragments as large as BACs and PACs in bacteria. These results suggest that many existing plasmid-based vectors, including plant and animal transformation and expression binary vectors, could be directly used for cloning of very large eukaryotic DNA fragments. The pCLD04541 and pSLJ1711 clones were shown to be present at at least 4-5 copies/cell. The high stability of these clones indicates that stability of clones does not seem contingent on single-copy status. The insert sizes and the copy numbers of the pCLD04541 and pSLJ1711 clones indicate that Escherichia coli can stably maintain at least 1200 kb of foreign DNA per cell. These results provide a new conceptual and theoretical basis for development of improved and new vectors for large DNA fragment cloning and transformation. According to this discovery, we have established a system for large DNA fragment cloning in bacteria using the two binary vectors, with which several very large-insert DNA libraries have been developed.  相似文献   

14.
We describe a simple electroelution method for purifying large, gel-fractionated DNA molecules that alleviates the need for melting of the agarose and subsequent enzymatic agarose digestion. The method yields DNA that is visibly more intact than that purified from a standard agarose-digestion protocol and is more amenable to large-fragment cloning with PAC and BAC vectors. These findings are notable in that PAC and BAC library construction is a very labor-intensive and costly procedure, such that any net improvement in cloning efficiency is highly advantageous. This method also should prove useful towards other applications which require purification of very large DNA molecules, such as YAC cloning.  相似文献   

15.
We have constructed a physical map of Arabidopsis thaliana chromosome3 by ordering the clones from CIC YAC, P1, TAC and BAC librariesusing the sequences of a variety of genetic and EST markersand terminal sequences of clones. The markers used were 112DNA markers, 145 YAC end sequences, and 156 end sequences ofP1, TAC and BAC clones. The entire genome of chromosome 3, exceptfor the centromeric and telomeric regions, was covered by twolarge contigs, 13.6 Mb and 9.2 Mb long. This physical map willfacilitate map-based cloning experiments as well as genome sequencingof chromosome 3. The map and end sequence information are availableon the KAOS (Kazusa Arabidopsis data Opening Site) web siteat http://www.kazusa.or.jp/arabi/.  相似文献   

16.
The reported draft human genome sequence includes many contigs that are separated by gaps of unknown sequence. These gaps may be due to chromosomal regions that are not present in the Escherichia coli libraries used for DNA sequencing because they cannot be cloned efficiently, if at all, in bacteria. Using a yeast artificial chromosome (YAC)/ bacterial artificial chromosome (BAC) library generated in yeast, we found that approximately 6% of human DNA sequences tested transformed E. coli cells less efficiently than yeast cells, and were less stable in E. coli than in yeast. When the ends of several YAC/BAC isolates cloned in yeast were sequenced and compared with the reported draft sequence, major inconsistencies were found with the sequences of those YAC/BAC isolates that transformed E. coli cells inefficiently. Two human genomic fragments were re-isolated from human DNA by transformation-associated recombination (TAR) cloning. Re-sequencing of these regions showed that the errors in the draft are the results of both missassembly and loss of specific DNA sequences during cloning in E. coli. These results show that TAR cloning might be a valuable method that could be widely used during the final stages of the Human Genome Project.  相似文献   

17.
The pBAC 108L and pFos 1 vectors were developed as stable propagation vectors which, due to their extremely low copy number, facilitate the cloning of a large-sized insert containing repeated DNA. However, the low copy number requires laborious end-DNA preparation for end sequencing and chromosome walking. Here we describe efficient methods for end-DNA isolation. The entire process, including small-scale DNA preparation, restriction digestion, self-ligation, and PCR with vector-based primers, is carried out in 96-well formats. Using a Fosmid library of genomic DNA of Candida albicans, PCR products ranging in size from 0.1 to 8 kbp were generated from 118 end sequences in 140 reactions from 70 Fosmid clones. A single or a prominent band was found in 101 of these reactions. Twenty-six of these bands were tested for walking and all of them proved to be specific. Thus, the system overcomes the disadvantage caused by low copy number. This system allows rapid physical mapping of genomes, and is adaptable for several other vectors including BAC (bacterial artificial chromosome), PAC (P1-derived artificial chromosome), and YAC (yeast artificial chromosome).  相似文献   

18.
Maize is one of the most important food crops and a key model for genetics and developmental biology. A genetically anchored and high-quality draft genome sequence of maize inbred B73 has been obtained to serve as a reference sequence. To facilitate evolutionary studies in maize and its close relatives, much like the Oryza Map Alignment Project (OMAP) (www.OMAP.org) bacterial artificial chromosome (BAC) resource did for the rice community, we constructed BAC libraries for maize inbred lines Zheng58, Chang7-2, and Mo17 and maize wild relatives Zea mays ssp. parviglumis and Tripsacum dactyloides. Furthermore, to extend functional genomic studies to maize and sorghum, we also constructed binary BAC (BIBAC) libraries for the maize inbred B73 and the sorghum landrace Nengsi-1. The BAC/BIBAC vectors facilitate transfer of large intact DNA inserts from BAC clones to the BIBAC vector and functional complementation of large DNA fragments. These seven Zea Map Alignment Project (ZMAP) BAC/BIBAC libraries have average insert sizes ranging from 92 to 148 kb, organellar DNA from 0.17 to 2.3%, empty vector rates between 0.35 and 5.56%, and genome equivalents of 4.7- to 8.4-fold. The usefulness of the Parviglumis and Tripsacum BAC libraries was demonstrated by mapping clones to the reference genome. Novel genes and alleles present in these ZMAP libraries can now be used for functional complementation studies and positional or homology-based cloning of genes for translational genomics.  相似文献   

19.
Large-insert BAC (bacterial artificial chromosome) and BIBAC (binary BAC) libraries are essential for modern genomics research for all organisms. We helped pioneer the BAC and BIBAC technologies, and by using them we have constructed hundreds of BAC and BIBAC libraries for different species of plants, animals, marine animals, insects, algae and microbes. These libraries have been used globally for different aspects of genomics research. Here we describe the procedure with the latest improvements that we have made and used for construction of BIBAC libraries. The procedure includes the preparation of BIBAC vectors, the preparation of clonable fragments of the desired size from the source DNA, the construction and transformation of BIBACs and, finally, the characterization and assembly of BIBAC libraries. We also specify the modifications necessary for construction of BAC libraries using the protocol. The entire protocol takes ~7 d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号