首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human non-synonymous SNPs: server and survey   总被引:37,自引:0,他引:37       下载免费PDF全文
  相似文献   

2.
Shen J  Deininger PL  Zhao H 《Cytokine》2006,35(1-2):62-66
Understanding the functions of single nucleotide polymorphisms (SNPs) can greatly help to understand the genetics of the human phenotype variation and especially the genetic basis of human complex diseases. However, how to identify functional SNPs from a pool containing both functional and neutral SNPs is challenging. In this study, we analyzed the genetic variations that can alter the expression and function of a group of cytokine proteins using computational tools. As a result, we extracted 4552 SNPs from 45 cytokine proteins from SNPper database. Of particular interest, 828 SNPs were in the 5'UTR region, 961 SNPs were in the 3' UTR region, and 85 SNPs were non-synonymous SNPs (nsSNPs), which cause amino acid change. Evolutionary conservation analysis using the SIFT tool suggested that 8 nsSNPs may disrupt the protein function. Protein structure analysis using the PolyPhen tool suggested that 5 nsSNPs might alter protein structure. Binding motif analysis using the UTResource tool suggested that 27 SNPs in 5' or 3'UTR might change protein expression levels. Our study demonstrates the presence of naturally occurring genetic variations in the cytokine proteins that may affect their expressions and functions with possible roles in complex human disease, such as immune diseases.  相似文献   

3.
MOTIVATION: The NCBI dbSNP database lists over 9 million single nucleotide polymorphisms (SNPs) in the human genome, but currently contains limited annotation information. SNPs that result in amino acid residue changes (nsSNPs) are of critical importance in variation between individuals, including disease and drug sensitivity. RESULTS: We have developed LS-SNP, a genomic scale software pipeline to annotate nsSNPs. LS-SNP comprehensively maps nsSNPs onto protein sequences, functional pathways and comparative protein structure models, and predicts positions where nsSNPs destabilize proteins, interfere with the formation of domain-domain interfaces, have an effect on protein-ligand binding or severely impact human health. It currently annotates 28,043 validated SNPs that produce amino acid residue substitutions in human proteins from the SwissProt/TrEMBL database. Annotations can be viewed via a web interface either in the context of a genomic region or by selecting sets of SNPs, genes, proteins or pathways. These results are useful for identifying candidate functional SNPs within a gene, haplotype or pathway and in probing molecular mechanisms responsible for functional impacts of nsSNPs. AVAILABILITY: http://www.salilab.org/LS-SNP CONTACT: rachelk@salilab.org SUPPLEMENTARY INFORMATION: http://salilab.org/LS-SNP/supp-info.pdf.  相似文献   

4.
Recent progress in identification and mapping of single nucleotide polymorphisms (SNPs) in the human genome generates an unprecedented opportunity to explore cause-effect relationships between genetic variations and susceptibility to common diseases. For this purpose, one promising strategy would be to select a set of SNPs that potentially alter the function of proteins involved in the pathogenesis of the diseases and compare their frequencies in the affected individuals and the healthy population. In this respect, SNPs that change amino acid sequences (nonsynonymous SNPs; nsSNPs) are of particular interest, since they are more likely to affect protein functions. In this study, we have constructed a catalog of nsSNPs (PicSNP), whose unique features are (i) nsSNPs are classified according to the functions of the affected genes and are searchable under the guidance of hierarchical lists of protein functions and (ii) nsSNPs that lead to amino acid changes in the known functional sites and domains of proteins are highlighted. Out of 1,190,295 SNPs extracted from public database, we identified 3793 nsSNPs and classified them in 1247 categories of protein functions. 495 sites and domains annotated in the Swiss-Prot database were found to include nsSNPs, including 2 nsSNPs in disulfide-binding sites and 38 nsSNPs in transmembrane regions. PicSNP is available via the World Wide Web (http://picsnp.org) and would support research questing for SNPs involved in common diseases.  相似文献   

5.
6.
The relationship between sequence polymorphisms and human disease has been studied mostly in terms of effects of single nucleotide polymorphisms (SNPs) leading to single amino acid substitutions that change protein structure and function. However, less attention has been paid to more drastic sequence polymorphisms which cause premature termination of a protein’s sequence or large changes, insertions, or deletions in the sequence. We have analyzed a large set (n = 512) of insertions and deletions (indels) and single nucleotide polymorphisms causing premature termination of translation in disease-related genes. Prediction of protein-destabilization effects was performed by graphical presentation of the locations of polymorphisms in the protein structure, using the Genomes TO Protein (GTOP) database, and manual annotation with a set of specific criteria. Protein-destabilization was predicted for 44.4% of the nonsense SNPs, 32.4% of the frameshifting indels, and 9.1% of the non-frameshifting indels. A prediction of nonsense-mediated decay allowed to infer which truncated proteins would actually be translated as defective proteins. These cases included the proteins linked to diseases inherited dominantly, suggesting a relation between these diseases and toxic aggregation. Our approach would be useful in identifying potentially aggregation-inducing polymorphisms that may have pathological effects.  相似文献   

7.
Single nucleotide polymorphisms (SNPs) are the most common type of genetic variations in humans and play a major role in the genetics of human phenotype variation and the genetic basis of human complex diseases. Recently, there is considerable interest in understanding the possible role of the CYP11B2 gene with corticosterone methyl oxidase deficiency, primary aldosteronism, and cardio-cerebro-vascular diseases. Hence, the elucidation of the function and molecular dynamic behavior of CYP11B2 mutations is crucial in current genomics. In this study, we investigated the pathogenic effect of 51 nsSNPs and 26 UTR SNPs in the CYP11B2 gene through computational platforms. Using a combination of SIFT, PolyPhen, I-Mutant Suite, and ConSurf server, four nsSNPs (F487V, V129M, T498A, and V403E) were identified to potentially affect the structure, function, and activity of the CYP11B2 protein. Furthermore, molecular dynamics simulation and structure analyses also confirmed the impact of these nsSNPs on the stability and secondary properties of the CYP11B2 protein. Additionally, utilizing the UTRscan, MirSNP, PolymiRTS and miRNASNP, three SNPs in the 3′UTR region were predicted to exhibit a pattern change in the upstream open reading frames (uORF), and eight microRNA binding sites were found to be highly affected due to 3′UTR SNPs. This cataloguing of deleterious SNPs is essential for narrowing down the number of CYP11B2 mutations to be screened in genetic association studies and for a better understanding of the functional and structural aspects of the CYP11B2 protein.  相似文献   

8.
《Journal of molecular biology》2019,431(19):3933-3942
The molecular mechanisms of pathological non-synonymous single-nucleotide polymorphisms are still the object of intensive research. To this end, we explore here whether non-synonymous single-nucleotide polymorphisms can work via allosteric mechanisms. Using structure-based statistical mechanical model of allostery and analyzing energetics of the effects of mutations in a set of 27 proteins with at least 50 pathological SNPs in each molecule, we found that, indeed, some SNPs can work allosterically. We illustrate the molecular basis of disease phenotypes caused by allosteric SNPs with the case studies of human galactose 1-phosphate uridyltransferase (GALT) and glucose-6-phosphate dehydrogenase (G6PD). We also found that mutations of a number of other residues in the protein may cause modulation comparable to those observed for known pathological SNPs. In order to explain this, we propose a notion of allosteric polymorphism, which implies the presence of a number of critical positions in the protein sequence, whose mutations can allosterically disrupt the protein function and result in a disease phenotype. We conclude that the emerging importance of allosteric polymorphism calls for the development of computational framework for analyzing the allosteric effects of mutations and their role in the modulation of protein activity.  相似文献   

9.
Endometriosis is a complex disorder of the female reproductive system where endometrial tissue embeds and grows at extrauterine location leading to inflammation and pain. Hundreds of polymorphisms in several genes have been studied as probable risk factors of this debilitating disease. Bioinformatics tools have come a long way in augmenting the search for putative functional polymorphisms in human diseases. In this study we have explored 16 genes involved in the detoxification of xenobiotic chemicals that are implicated in endometriosis by utilising publically available programs like SIFT, Polyphen, Panther, FastSNP, SNPeffect and PhosSNP. The variations among different ethnic populations of the SNPs were studied. We then calculated the extent to which bioinformatics based predictions are concurrent with real world epidemiological, genotyping studies using a set of SNPs that have been studied in endometriosis case–control studies. Our study shows that there is a significant positive correlation (r = 0.569, p < 0.005) between the summary of the predicted scores taken from 4 different servers and the odds ratio found from epidemiological studies. This report has identified and catalogued various deleterious SNPs that could be important in endometriosis and could aid in further analysis by in vitro and in vivo methods for the better understanding of the disease pathophysiology.  相似文献   

10.
Single-nucleotide polymorphisms (SNPs) play a major role in the understanding of the genetic basis of many complex human diseases. Also, the genetics of human phenotype variation could be understood by knowing the functions of these SNPs. It is still a major challenge to identify the functional SNPs in a disease-related gene. In this work, we have analyzed the genetic variation that can alter the expression and the function of the BRCA1 gene using computational methods. Of the total 477 SNPs, 65 were found to be nonsynonymous (ns) SNPs. Among the 14 SNPs in the untranslated region, 4 were found in the 5' and 10 were found in the 3' untranslated region (UTR). It was found that 16.9% of the nsSNPs were damaging, by both the SIFT and the PolyPhen servers. The UTR Resource tool suggested that 2 of 4 SNPs in the 5' UTR and 3 of 10 SNPs in the 3' UTR might change the protein expression levels. We identified major mutations from proline to serine at positions 1776 and 1812 of the native protein of the BRCA1 gene. From a comparison of the stabilizing residues of the native and mutant proteins, we propose that an nsSNP (rs1800751) could be an important candidate for the breast cancer caused by the BRCA1 gene.  相似文献   

11.
12.
Genetic sources of phenotypic variation have been a focus of plant studies aimed at improving agricultural yield and understanding adaptive processes. Genome‐wide association studies identify the genetic background behind a trait by examining associations between phenotypes and single‐nucleotide polymorphisms (SNPs). Although such studies are common, biological interpretation of the results remains a challenge; especially due to the confounding nature of population structure and the systematic biases thus introduced. Here, we propose a complementary analysis (SNPeffect) that offers putative genotype‐to‐phenotype mechanistic interpretations by integrating biochemical knowledge encoded in metabolic models. SNPeffect is used to explain differential growth rate and metabolite accumulation in A. thaliana and P. trichocarpa accessions as the outcome of SNPs in enzyme‐coding genes. To this end, we also constructed a genome‐scale metabolic model for Populus trichocarpa, the first for a perennial woody tree. As expected, our results indicate that growth is a complex polygenic trait governed by carbon and energy partitioning. The predicted set of functional SNPs in both species are associated with experimentally characterized growth‐determining genes and also suggest putative ones. Functional SNPs were found in pathways such as amino acid metabolism, nucleotide biosynthesis, and cellulose and lignin biosynthesis, in line with breeding strategies that target pathways governing carbon and energy partition.  相似文献   

13.
14.
Proteins destined for secretion or membrane compartments possess signal peptides for insertion into the membrane. The signal peptide is therefore critical for localization and function of cell surface receptors and ligands that mediate cell-cell communication. About 4% of all human proteins listed in UniProt database have signal peptide domains in their N terminals. A comprehensive literature survey was performed to retrieve functional and disease associated genetic variants in the signal peptide domains of human proteins. In 21 human proteins we have identified 26 disease associated mutations within their signal peptide domains, 14 mutations of which have been experimentally shown to impair the signal peptide function and thus influence protein transportation. We took advantage of SignalP 3.0 predictions to characterize the signal peptide prediction score differences between the mutant and the wild-type alleles of each mutation, as well as 189 previously uncharacterized single nucleotide polymorphisms (SNPs) found to be located in the signal peptide domains of 165 human proteins. Comparisons of signal peptide prediction outcomes of mutations and SNPs, have implicated SNPs potentially impacting the signal peptide function, and thus the cellular localization of the human proteins. The majority of the top candidate proteins represented membrane and secreted proteins that are associated with molecular transport, cell signaling and cell to cell interaction processes of the cell. This is the first study that systematically characterizes genetic variation occurring in the signal peptides of all human proteins. This study represents a useful strategy for prioritization of SNPs occurring within the signal peptide domains of human proteins. Functional evaluation of candidates identified herein may reveal effects on major cellular processes including immune cell function, cell recognition and adhesion, and signal transduction.  相似文献   

15.
16.
17.
Many existing databases annotate experimentally characterized single nucleotide polymorphisms (SNPs). Each non-synonymous SNP (nsSNP) changes one amino acid in the gene product (single amino acid substitution;SAAS). This change can either affect protein function or be neutral in that respect. Most polymorphisms lack experimental annotation of their functional impact. Here, we introduce SNPdbe-SNP database of effects, with predictions of computationally annotated functional impacts of SNPs. Database entries represent nsSNPs in dbSNP and 1000 Genomes collection, as well as variants from UniProt and PMD. SAASs come from >2600 organisms; 'human' being the most prevalent. The impact of each SAAS on protein function is predicted using the SNAP and SIFT algorithms and augmented with experimentally derived function/structure information and disease associations from PMD, OMIM and UniProt. SNPdbe is consistently updated and easily augmented with new sources of information. The database is available as an MySQL dump and via a web front end that allows searches with any combination of organism names, sequences and mutation IDs. AVAILABILITY: http://www.rostlab.org/services/snpdbe.  相似文献   

18.
Single nucleotide polymorphisms (SNPs) are a major contributor to genetic and phenotypic variation within populations. Non-synonymous SNPs (nsSNPs) modify the sequence of proteins and can affect their folding or binding properties. Experimental analysis of all nsSNPs is currently unfeasible and therefore computational predictions of the molecular effect of nsSNPs are helpful to guide experimental investigations. While some nsSNPs can be accurately characterized, for instance if they fall into strongly conserved or well annotated regions, the molecular consequences of many others are more challenging to predict. In particular, nsSNPs affecting less structured, and often less conserved regions, are difficult to characterize. Binding sites that mediate protein-protein or other protein interactions are an important class of functional sites on proteins and can be used to help interpret nsSNPs. Binding sites targeted by the PDZ modular peptide recognition domain have recently been characterized. Here we use this data to show that it is possible to computationally identify nsSNPs in PDZ binding motifs that modify or prevent binding to the proteins containing the motifs. We confirm these predictions by experimentally validating a selected subset with ELISA. Our work also highlights the importance of better characterizing linear motifs in proteins as many of these can be affected by genetic variations.  相似文献   

19.
We have developed two methods of identifying which non-synonomous single base changes have a deleterious effect on protein function in vivo. One method, described elsewhere, analyzes the effect of the resulting amino acid change on protein stability, utilizing structural information. The other method, introduced here, makes use of the conservation and type of residues observed at a base change position within a protein family. A machine learning technique, the support vector machine, is trained on single amino acid changes that cause monogenic disease, with a control set of amino acid changes fixed between species. Both methods are used to identify deleterious single nucleotide polymorphisms (SNPs) in the human population. After carefully controlling for errors, we find that approximately one quarter of known non-synonymous SNPs are deleterious by these criteria, providing a set of possible contributors to human complex disease traits.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号