首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Grasslands can be diverse assemblages of grasses and forbs but not much is known how perennial grass species management affects native plant diversity except in a few instances. We studied the use of late-spring prescribed burns over a span of 11 years where the perennial grass Poa secunda was the foundation species, with four additional years of measurements after the final burn. We evaluated burn effects on P. secunda, the rare native annual forb Amsinckia grandiflora and local native and exotic species. Annual burning maintained P. secunda number, resulted in significant expansion, the lowest thatch and exotic grass cover, the highest percentage of bare ground, but also the lowest native forb and highest exotic forb cover. Burning approximately every 3 years maintained a lower number of P. secunda plants, allowed for expansion, and resulted in the highest native forb cover with a low exotic grass cover. Burning approximately every 5 years and the control (burned once from a wildfire) resulted in a decline in P. secunda number, the highest exotic grass and thatch cover and the lowest percentage of bare ground. P. secunda numbers were maintained up to 4 years after the final burn. While local native forbs benefited from burning approximately every 3 years, planted A. grandiflora performed best in the control treatment. A. grandiflora did not occur naturally at the site; therefore, no seed bank was present to provide across-year protection from the effects of the burns. Thus, perennial grass species management must also consider other native species life history and phenology to enhance native flora diversity.  相似文献   

2.
Since the mid-2000s, the exotic coccinellid species Harmonia axyridis (Pallas) has established itself in Northern Italy, raising serious concerns about possible repercussions on native ladybirds. In this study we compared the ladybird assemblages in 2015–2016 with those sampled in 1995–1996, before the arrival of H. axyridis. Surveys were carried out in the same sites and with the same methods for both periods. Aphidophagous ladybirds were sampled in hedgerows and herbaceous habitats at field margins by mechanical knockdown and sweeping net, respectively. The changes in the structure of ladybird communities after the arrival of H. axyridis were significantly different between arboreal and herbaceous habitats. Harmonia axyridis is currently the dominant species in shrubs and trees, and all the native ladybird species taken together account for only approximately one third of the total individuals sampled in 2015–2016. On the other hand, the relative abundance of the exotic species in herbaceous habitats was low, and it has had a negligible relevance on the structure of ladybird communities on grasslands. Among native species, Adalia bipunctata (L.), whose ecological niche largely overlaps with that of H. axyridis, suffered the largest decline between 1995–1996 and 2015–2016. The co-occurrence of H. axyridis invasion and the regression of A. bipunctata suggest a direct impact of the exotic species, because no other major modifications occurred in the studied areas between sampling periods.  相似文献   

3.
Dalmatian toadflax has been a target for biological control in North America since the 1960s. The stem-mining weevil Mecinus janthiniformis was first released in Canada and the western United States in the mid-1990s. Since 2007, a citizen-based monitoring program in Idaho, USA has supplemented data collection to help evaluate the impact of M. janthiniformis on Dalmatian toadflax abundance and assess changes in the surrounding plant community. We monitored and analysed trends in toadflax, weevil, and the plant community abundance following weevil releases at the regional and site level (34 sites) across the state of Idaho, USA. Significant declines in toadflax cover and stem density were recorded across the majority of sites. Weevil populations have established at all release sites. The mechanistic model indicated that the population dynamics of toadflax at our sites are negatively affected by M. janthiniformis abundance. When averaged across the region, 15 years after weevil release, Dalmatian toadflax stem density and cover declined by 93 and 84%, respectively. We observed significant declines in toadflax abundance in over 75% of the sites. Changes to the surrounding plant community following weevil releases were less consistent among sites. At the regional scale we found evidence for an overall increase in average cover of native perennial grasses and other exotic weeds (primarily annual grasses and exotic forbs) but a decline in native forbs.  相似文献   

4.
In grasslands, litter has been recognized as an important factor promoting grass persistence and the suppression of forbs. The invasive European annual grass Bromus diandrus (ripgut brome) is widespread throughout California, where it produces a persistent and thick litter layer. The native grass, Stipa pulchra, is also common in some grassland settings and can also produce persistent litter, yet it is typically associated with more forbs. Very little is known about the mechanisms through which these two common grass species influence seedling establishment of both exotic invasive and native herbs. Here, we evaluated the effect of B. diandrus and S. pulchra litter on seedling establishment of two invasive (the grass B. diandrus and the forb Centaurea melitensis) and two native (the grass S. pulchra, and the forb Clarkia purpurea) herbaceous plants in a greenhouse setting. Our results showed that B. diandrus litter cover hindered seedling establishment of the four species tested, but that the degree and mechanism of inhibition was dependent on which species was tested, life form (e.g. monocot/dicot) and seed size. Seedling emergence of the two forb species was more vulnerable to litter cover than either grass species and both forbs had smaller seed size. After germination, only seedling biomass of B. diandrus itself was reduced by litter (both B. diandrus and S. pulchra). We found no significant effects of leachate of either grass species on seedling emergence of any species, while a high concentration of B. diandrus leachates inhibited root growth of all species including B. diandrus seedlings. Stipa pulchra litter leachates did not affect S. pulchra or C. melitensis seedlings although it did suppress B. diandrus and C. purpurea seedling growth. Our findings provide direct experimental evidence for the mechanism of effect of litter on these coexisting invasive and native species. Such evidence helps advance our understanding of role of B. diandrus and S. pulchra litter in California grassland.  相似文献   

5.
Invasion by exotic plant species and herbivory can individually alter native plant species diversity, but their interactive effects in structuring native plant communities remain little studied. Many exotic plant species escape from their co-evolved specialized herbivores in their native range (in accordance with the enemy release hypothesis). When these invasive plants are relatively unpalatable, they may act as nurse plants by reducing herbivore damage on co-occurring native plants, thereby structuring native plant communities. However, the potential for unpalatable invasive plants to structure native plant communities has been little investigated. Here, we tested whether presence of an unpalatable exotic invader Opuntia ficus-indica was associated with the structure of native plant communities in an ecosystem with a long history of grazing by ungulate herbivores. Along 17 transects (each 1000 m long), we conducted a native vegetation survey in paired invaded and uninvaded plots. Plots that harboured O. ficus-indica had higher native plant species richness and Shannon–Wiener diversity H′ than uninvaded plots. However, mean species evenness J was similar between invaded and uninvaded plots. There was no significant correlation between native plant diversity and percentage plot cover by O. ficus-indica. Presence of O. ficus-indica was associated with a compositional change in native community assemblages between paired invaded and uninvaded plots. Although these results are only correlative, they suggest that unpalatable exotic plants may play an important ecological role as refugia for maintenance of native plant diversity in intensely grazed ecosystems.  相似文献   

6.
Although insect herbivory can modify subsequent quantity and quality of their host plants, change in plant quantity following herbivory has received less attention than plant quality. In particular, little is known about how previous herbivore damage determines plant growth and biomass in an insect species-specific manner. We explored whether herbivore species-specific food demand influences plant growth and biomass. To do this, we conducted a series of experiments and field survey using two specialist butterflies, Sericinus montela and Atrophaneura alcinous, and their host plant, Aristolochia debilis. It is known that A. alcinous larva requires four times more food resources to fulfill its development than S. montela larva. Despite that A. alcinous larvae imposed greater damage on plants than S. montela larvae, plant growth did not differ due to herbivory by these species both in single and multiple herbivory events. On the other hand, total aboveground biomass of the plants was reduced more by A. alcinous than S. montela feeding regardless of the number of herbivory events. Feeding on plants with a history of previous herbivory neither decreased nor increased larval growth. Our results suggest that food demand of the two butterfly species determined subsequent plant biomass, although the plant response may depend on tolerance of the host plant (i.e., ability to compensate for herbivore damage). Such difference in the effects of different herbivore species on host plant biomass is more likely to occur than previously thought, because food demand differs in most herbivore species sharing a host plant.  相似文献   

7.
Extreme climatic events disturb plant communities, altering species composition, and abundance. For herbaceous populations on coastal beaches, responses to disturbance are often spatially heterogeneous and depend on species’ life history. This study documents the effects of two overwash events, caused by Hurricane Irene in August 2011 and Superstorm Sandy in October 2012, on the abundance of native species on a low-lying, unprotected beach on Staten Island, New York, USA. Temporary plots (33 cm diameter) spaced at 3-m intervals along 30-m transects perpendicular to shoreline, were used in September 2007, 2011, 2012, and 2013 to survey lower (0–9 m), middle (12–21 m), and upper (24–30 m) regions of the same beach. The same procedure was used to quantify seedling recruitment in spring (May) after each overwash. Complex changes in density the year after each overwash were specific for distinct beach regions and depended on species’ life history. Rhizomatous perennial grasses (Ammophila breviligulata and Panicum amarum) maintained or increased ramet populations, possibly stimulated by sand deposition on the middle and upper beach. The first overwash was early enough in the growing season to permit subsequent seed production during autumn, and seedling recruitment occurred for three native annuals (Cenchrus tribuloides, Heterotheca subaxillaris, and Triplasis purpurea), and the tall perennial Solidago sempervirens the next spring. The second overwash was later in autumn and probably removed seeds from the site and/or deeply buried the seeds of two annuals (Cenchrus and Heterotheca) which did not recruit seedlings the next spring. Triplasis seedlings were abundant in a blowout on the lower beach. Given more frequent storms and sea-level rise in the future, it becomes imperative to maintain an assemblage of native plant species with diverse life histories when restoring coastal beaches.  相似文献   

8.
A plant’s growth and fitness are influenced by species interactions, including those belowground. In primary successional systems, belowground organisms are known to have particularly important control over plant growth. Exotic plant invasions in these and other habitats may in part be explained by altered associations with belowground organisms compared to native plants. We investigated the growth responses of two foundation grasses on Great Lakes sand dunes, the native grass Ammophila breviligulata and the exotic grass Leymus arenarius, to two groups of soil organisms with important roles in dune succession: arbuscular mycorrhizal fungi (AMF) and plant-parasitic nematodes (PPN). We manipulated the presence/absence of two generalist belowground species known to occur in Great Lakes dunes, Rhizophagus intraradices (AMF) and Pratylenchus penetrans (PPN) in a factorial greenhouse experiment and assessed the biomass production and root architectural traits of the plants. There were clear differences in growth and above- and belowground architecture between Ammophila and Leymus, with Leymus plants being bigger, taller, and having longer roots than Ammophila. Inoculation with Rhizophagus increased above- and belowground biomass production by ~32% for both plant species. Inoculation with Pratylenchus decreased aboveground biomass production by ~36% for both plant species. However belowground, the exotic Leymus was significantly more resistant to PPN than the native Ammophila, and gained more benefits from AMF in belowground tri-trophic interactions than Ammophila. Overall, our results indicate that differences in plant architecture coupled with altered belowground interactions with AMF and PPN have the potential to promote exotic plant invasion.  相似文献   

9.
Plant communities are structured by both competition and facilitation. The interplay between the two interactions can vary depending on environmental factors, nature of stress, and plant traits. However, whether positive or negative interactions dominate in regions of high biotic and abiotic stress remains unclear. We studied herbaceous plant communities associated with a dwarf shrub Caragana versicolor in semi-arid, high altitude Trans-Himalayan rangelands of Spiti, India. We surveyed 120 pairs of plots (within and outside shrub canopies) across four watersheds differing in altitude, aspect, and dominant herbivores. Herbaceous communities within shrub canopies had 25% higher species richness, but similar abundance when compared to communities outside the canopy, with the shrub edge having higher diversity than the centre of the canopy. Grasses and erect forbs showed positive associations with the shrub, while prostrate plants occurred at much lower abundance within the canopy. Rare species showed stronger positive associations with Caragana than abundant species. Experimental removal of herbaceous vegetation from within shrub canopies led to 42% increase in flowering in Caragana, indicating a cost to the host shrubs. Our study indicates a robust pattern of a dwarf shrub facilitating local community diversity across this alpine landscape, increasing diversity at the plot level, facilitating rare species, and yet incurring a cost to hosts from the presence of herbaceous plants. Given these large influences of this shrub on the vegetation of these high altitude rangelands, we suggest that the shrub microhabitat be explicitly considered in any analyses of ecosystem health in such rangelands.  相似文献   

10.
Invasive plants may establish strong interactions with species in their new range which could limit or enhance their establishment and spread. These interactions depend upon traits of the invader and the recipient community, and may alter interactions among native species. In the Patagonian steppe we studied interactions of native ant assemblages with seeds of native and exotic plants, and asked whether ant–seed interactions differ with seed types and disturbance levels and whether the amount and type of ant–seed interactions can be predicted if both ant and seed traits are known. To characterize and quantify ant–seed interactions, we offered baits with large seeds of Pappostipa speciosa (native) and medium-sized elaiosome-bearing seeds of Carduus thoermeri (exotic), near and far from a road (high vs. low disturbed areas), and compared ant abundance and composition between areas. Interaction frequency was the highest for C. thoermeri seeds far from the road. Composition of ants interacting with C. thoermeri in these areas differed from that near the road and from that interacting with native seeds. Ant composition and abundance were similar between areas, but some species interacted more with exotic seeds in low disturbed areas. Ant foraging type predicted ant–seed interactions since the abundance of seed harvesters was positively correlated to interactions with P. speciosa, and that of generalists and predators, with interactions with C. thoermeri. The high interaction of ants with exotic seeds in low invaded areas suggests that ant activity could influence plant invasion, either by predating or dispersing seeds of invasive plants.  相似文献   

11.
Perennial C4 grasses, especially Miscanthus sinensis, are widely distributed in the degraded lands in South China. We transplanted native and exotic tree seedlings under the canopy of M. sinensis to assess the interaction (competition or facilitation) between dominant grass M. sinensis and tree seedlings. The results of growth, chlorophyll fluorescence, and ultrastructure showed that negative effects may be stronger in perennial dominant grass M. sinensis. Although M. sinensis buffered the air temperature, improved soil structure, and increased soil phosphorus content, these beneficial effects were outweighed by the detrimental effect, especially overshading. To ensure the establishment of target native species in M. sinensis communities in degraded lands of South China, restoration strategies should include removing aboveground vegetation, planting target species seedlings in openings to reduce the effects of canopy shading, and/or selecting competition-tolerant target species. Also, seedlings of exotic species used in restoration engineering cannot be directly planted under the canopy of M. sinensis.  相似文献   

12.
The evolution of redirecting resources from plant defense to growth or reproduction may explain why some exotic species are successful invaders in new environments. For example, the evolution of increased competitive ability hypothesis posits that escape from herbivores by invasive plants results in the selection of more vigorous genotypes that reduce their allocation of resources to defense. In addition, understanding the defense strategy of an invasive plant may help forecast the likely impact of herbivory. We tested the prediction of reduced defense (i.e., resistance) in Genista monspessulana, measured indirectly as the performance of a specialist psyllid herbivore, by comparing five native and introduced plant populations. We also examined the ability of G. monspessulana to compensate for herbivory in the presence and the absence of psyllids for a single plant population from the native and introduced regions. Plant origin (native or introduced) did not influence the psyllid’s abundance and population growth rate, suggesting no change in resistance to herbivory for introduced plants. Similarly, we found no overall difference in plant performance between individuals in the presence and the absence of psyllid herbivory, suggesting that G. monspessulana was able to fully compensate for herbivory. Damaged plants compensated by changing the pattern of branching, which also resulted in greater dry leaf biomass. We conclude that evolution of reduced defenses does not explain the success of G. monspessulana as an invader and that compensation for herbivory may limit the efficacy of the psyllid as a biological control agent.  相似文献   

13.
Revegetation using native species requires the development of seed transfer zones that capture genetic distinctiveness and adaptive potentials while avoiding potential maladaptation and genetic contamination by exotic genotypes. Delineation based on phylogeographic information has recently been used to establish seed transfer zones; however, only a few herbaceous species that are suitable for revegetation have been investigated in the temperate regions of Japan. We investigated the phylogeography of non-coding regions of chloroplast DNA of ten native species in the temperate regions of Japan. Although no species showed clear-cut geographical distributions of the 2–14 haplotypes identified, spatially constrained Bayesian clustering showed two clusters in five species (Calamagrostis epigejos, Eragrostis ferruginea, Imperata cylindrica, Microstegium japonicum, and Microstegium vimineum) but not for others. Posterior modes of clusters for I. cylindrica and M. vimineum showed delineations at Chubu (the middle of Honshu Island), which divide the study region into northeastern and southwestern regions, indicating that these species had recovered from glacial refugia. Posterior mode of cluster for E. ferruginea showed that one consists of a coastal zone along the Pacific Ocean side of western Japan, while the other consists of the remaining area, indicating range expansion from south coast to north. Delineation of C. epigejos and M. japonicum were unclear. The mixed results indicated that establishing seed transfer zones for herbaceous species in Japan will require phylogeographical studies on a wide range of species that may be suitable for revegetation.  相似文献   

14.
The Brazilian Atlantic Forest suffered a severe geographic contraction along the last five centuries that reduced drastically most vascular epiphyte populations. Among the range of man-made matrixes, tree monocultures have the potential to contribute positively to the maintenance of the regional epiphyte diversity. Here, we test the similarity in abundance, richness, and species composition between vascular epiphytic communities established in managed monocultures of exotic and native species with natural communities occurring in neighboring native Araucaria Forest patches. In the São Francisco de Paula National Forest (Rio Grande do Sul state, Brazil), we recorded 62 epiphyte species from 300 phorophytes occurring in 12, one-hectare plots of Araucaria Forest and managed plantations of Pinus, Eucalyptus and Araucaria. Species richness, rarefied richness and abundance were significantly higher in Araucaria Forest in comparison to the exotic stands. Species composition was also substantially differentiated as Araucaria Forest patches harbored a greater number of zoochorous species than those of the exotic stands. Additionally, plantations of Araucaria angustifolia, a native species, sustained more individuals and more species than the exotic plantations. Neither tree height nor DBH explained epiphyte richness; however, both phorophyte diversity and stand age together accounted for 92% of the among-site variation in epiphytic species richness. We conclude that substrate heterogeneity in combination with time available for colonization contribute significantly to beta-diversity of epiphytes in Araucaria forests. However, demographic experimental studies are necessary in order to disentangle the role of substrate quality from metapopulation processes, such as dispersal limitation, at both temporal and spatial scales.  相似文献   

15.
We analyzed how abiotic stress and competition interact to control the abundance and performance of the native annual grass Vulpia microstachys (Lonard and Gould; Poaceae) in a heterogeneous environment. At our study site, V. microstachys grows in nonserpentine grasslands dominated by tall invasive grasses, serpentine meadows dominated by short native forbs, and rocky serpentine slopes with a sparse native herb cover. We hypothesized that these three intermixed habitats acted as a gradient of increasing abiotic stress and decreasing aboveground competition, respectively. We further expected that the abundance and performance of V. microstachys would be highest in serpentine meadows, where neither aboveground competition nor abiotic stress were maximal. Soil and biotic variables showed roughly the expected patterns, but V. microstachys did not show the predicted peak in the middle of the gradient. Emergence, seedling survival, and abundance of V. microstachys were highest, and growth and seed production of survivors were lowest, on rocky serpentine slopes. Field experiments revealed that removal of competitors enhanced all demographic parameters, but only in the more productive habitats. An interaction between seed source and habitat, affecting emergence and survival, indicated ecotypic adaptation to the rocky serpentine slope habitat. We conclude that individual variation caused by local adaptation and phenotypic plasticity allows V. microstachys to survive in widely different habitats, none of which are optimal, resulting in considerable variation in demography.  相似文献   

16.
The colonization of an exotic species by native herbivores is more likely to occur if that herbivore is a generalist. There is little information on the life-history mechanisms used by native generalist insects to colonize exotic hosts and how these mechanisms are affected by host properties. We examined the ability of the generalist seed beetle Stator limbatus Horn to colonize an exotic species. We compared its host preference, acceptability, performance, and egg size when ovipositing and developing on two native (Pithecellobium dulce (Roxb.) Benth and Senegalia riparia (Kunth)) and one exotic legume species (Leucaena leucocephala (Lam.)). We also analyzed the seed chemistry. We found that females recognize the exotic species as an unfavorable host for larval development and that they delayed oviposition and laid fewer and larger eggs on the exotic species than on the native species. Survivorship on the exotic host was 0%. Additionally, seeds of the native species contain five chemical compounds that are absent in the exotic species, and the exotic species contains three sterols, which are absent in the native legumes. Genetically based differences between beetles adapted to different hosts, plastic responses toward new hosts, and chemical differences among seeds are important in host colonization and recognition of the exotic host. In conclusion, the generalist nature of S. limbatus does not influence its ability to colonize L. leucocephala. Explanations for the colonization of exotic hosts by generalist native species and for the success of invasive species must be complemented with studies measuring local adaptation and plasticity.  相似文献   

17.
Many plants release allelopathic chemicals that can inhibit germination, growth, and/or survival in neighboring plants. These impacts appear magnified with the invasion of some non-native plants which may produce allelochemicals against which native fauna have not co-evolved resistance. Our objective was to examine the potential allelopathic impact of an invasive non-native shrub/tree on multiple plant species using field observation and experimental allelopathy studies. We surveyed and collected an invasive, non-native tree/shrub (Rhamnus cathartica) at Tifft Nature Preserve (a 107-ha urban natural area near Lake Erie in Buffalo, NY). We also surveyed understory plant communities in the urban forest to examine correlations between R. cathartica abundance and local plant community abundance and richness. We then used experimental mesocosms to test if patterns observed in the field could be explained by adding increased dosages of R. cathartica to soils containing five plant species, including native and non-native woody and herbaceous species. In the highly invaded urban forest, we found that herbaceous cover, shrubs and woody seedlings negatively covaried with R. cathartica basal area and seedlings density. In the mesocosm experiments, R. cathartica resulted in significant decreases in plant community species richness, abundance, and shifted biomass allocation from roots. Our results provide evidence that R. cathartica is highly allelopathic in its invaded range, that R. cathartica roots have an allelopathic effect and that some plant species appear immune. We suggest that these effects may explain the plant’s ability to form dense monocultures and resist competitors, as well as shift community composition with species-specific impacts.  相似文献   

18.
Potential impacts of an exotic grass, Hemarthria altissima, on restoration of wet prairie community structure (species richness and cover of indicator species) and assembly processes (temporal turnover rates of plant species) on the Kissimmee River floodplain in Central Florida, USA, were evaluated over a 12-year period before and after restoration of hydrologic regimes (2001), and implementation of herbicide treatments (2006–2007) to control its spread. Thresholds for impacts were derived from comparisons of sample sites with variable levels of H. altissima cover. Prior to herbicide treatments, cover of H. altissima exhibited a logistic increase over time, with peak colonization and expansion occurring during major flood events. Mean post-restoration cover of three native wet prairie indicator species (Polygonum punctatum, Panicum hemitomon, and Luziola fluitans) increased to 37.8 ± 3.4 % in plots in which H. altissima cover was <12 %, and did not exceed 15 % in any plots with H. altissima cover >30 %. Prior to and after herbicide treatments, these indicator species largely accounted for observed differences in wet prairie community structure (i.e., cover of wetland forbs and grasses) between heavily infested sites and plots with low or no cover of H. altissima. The cover threshold at which H. altissima began to have these community-level effects was 40–50 %, but lower species richness was found only where H. altissima cover was >80 %. Increasing cover of H. altissima led to a significant decline in temporal turnover rates of plant species (P < 0.001, r2 = 0.10), but also was largely due to plots with very high (>75 %) cover of H. altissima. Mean temporal turnover rates of plant species increased significantly (P = 0.03) after herbicide treatments and subsequently were highest during an ensuing flood pulse. However, 2–3 years after herbicide treatments, regrowth of H. altissima reestablished high cover (mean = 59 ± 9.5 %) in over half of the treated plots. The ability of H. altissima to establish dominant cover in restored hydrologic conditions on the Kissimmee River floodplain, and documented regrowth following herbicide treatments, increase the potential for this exotic grass species to be a pervasive threat to successful reestablishment of wet prairie community structure and assembly processes.  相似文献   

19.
Many systems are prone to both exotic plant invasion and frequent natural disturbances. Native species richness can buffer the effects of invasion or disturbance when imposed in isolation, but it is largely unknown whether richness provides substantial resistance against invader impact in the face of disturbance. We experimentally examined how disturbance (drought/burning) influenced the impact of three exotic invaders (Centaurea stoebe, Linaria dalmatica, or Potentilla recta) on native abundance across a gradient of species richness, using previously constructed grassland assemblages. We found that invaders had higher cover in experimentally disturbed plots than in undisturbed plots across all levels of native species richness. Although exotic species varied in cover, all three invaders had significant impacts on native cover in disturbed plots. Regardless of disturbance, however, invader cover diminished with increasing richness. Invader impacts on native cover also diminished at higher richness levels, but only in undisturbed plots. In disturbed plots, invaders strongly impacted native cover across all richness levels, as disturbance favoured invaders over native species. By examining these ecological processes concurrently, we found that disturbance exacerbated invader impacts on native abundance. Although diversity provided a buffering effect against invader impact without disturbance, the combination of invasion and disturbance markedly depressed native abundance, even in high richness assemblages.  相似文献   

20.
The distribution of the allochthonous crab Percnon gibbesi and its relationships with other benthic invertebrate species was assessed inside the marine reserve of Cabo de Palos—Islas Hormigas (Mediterranean sea, Spain) and neighbouring non-protected sites. Although a significant spatial variability was detected at finer spatial scale, there was no influence of protection measures or insularity on the abundance of P. gibbesi. The presence of small holes, encrusting algae and low slope favour the colonization success of this crustacean, and the spatial distribution of these habitat features could explain the observed pattern. The abundance of P. gibbesi was similar to that of native crab species; however, a non-significant negative relationship between the abundance of P. gibbesi and native crabs (Pachygrapsus marmoratus and Eriphia verrucosa), urchins (Arbacia lixula and Paracentrotus lividus) and a snail (Phorcus turbinatus) was observed. This work highlights the importance of monitoring alien crab population densities taking structural habitat and other potentially influential factors into account and the likely effect of this alien species on the native ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号