首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A considerable amount of evidence has established that gap junctional intercellular communication (GJIC) suppresses tumor development by halting the stage of tumor promotion. Consistently, GJIC is downregulated in tumors. The downregulation of GJIC is caused by not only the reduced expression level of connexin proteins but also their aberrant cytoplasmic localization. Although it has long been thought that cytoplasmic localization of connexin proteins is merely one of the mechanisms of the downregulation of GJIC, careful studies with human tumor samples have indicated that the expression level of intracytoplasmic connexin proteins correlates well with the grade of malignancy and the progression stage of tumors. Hypothesizing that intracytoplasmic connexin proteins should have their proper functions and that their increase should facilitate tumor progression such as cell migration, invasion and metastasis, we examined the effects of overexpressed connexin32 (Cx32) protein on the phenotype of human HuH7 hepatoma cells, which express a basal level of endogenous Cx32 only in cytoplasm. The cells were retrovirally transduced with the Tet-off Cx32 construct so that withdrawal of doxycycline from the culture medium could induce overexpression of Cx32 protein in cytoplasm. Even when overexpressed, Cx32 protein was retained in cytoplasm, i.e., Golgi apparatuses, and did not induce GJIC. However, overexpression of Cx32 protein in cytoplasm enhanced both the motility and the invasiveness of HuH7 cells and induced metastasis when the cells were xenografted into SCID mice. Taken together, cytoplasmic accumulation of connexin proteins may exert effects favorable for tumor progression.  相似文献   

2.
All-trans retinoic acid (ATRA) can down regulate the anti-apoptotic protein Bcl-2 and the cell cycle proteins cyclin D1 and cdk2 in estrogen receptor-positive breast cancer cells. We show here that retinoids can also reduce expression of the inhibitor of apoptosis protein, survivin. Here we have compared the regulation of these proteins in MCF-7 and ZR-75 breast cancer cells by natural and synthetic retinoids selective for the RA receptors (RARs) alpha, beta, and gamma then correlated these with growth inhibition, induction of apoptosis and chemosensitization to Taxol. In both cell lines ATRA and 9-cis RA induced the most profound decreases in cyclin D1 and cdk2 expression and also mediated the largest growth inhibition. The RARalpha agonist, Ro 40-6055 also strongly downregulated these proteins although did not produce an equivalent decrease in S-phase cells. Only ATRA induced RARbeta expression. ATRA, 9-cis RA and 4-HPR initiated the highest level of apoptosis as determined by mitochondrial Bax translocation, while only ATRA and 9-cis RA strongly reduced Bcl-2 and survivin protein expression. Enumeration of dead cells over 96 h correlated well with downregulation of both survivin and Bcl-2. Simultaneous retinoid-mediated reduction of both these proteins also predicted optimal Taxol sensitization. 4-HPR was much weaker than the natural retinoids with respect to Taxol sensitization, consistent with the proposed requirement for reduced Bcl-2 in this synergy. Neither the extent of cell cycle protein regulation nor AP-1 inhibition fully predicted the antiproliferative effect of the synthetic retinoids suggesting that growth inhibition requires regulation of a spectrum of RAR-regulated gene products in addition even to pivotal cell cycle proteins.  相似文献   

3.
Lovastatin, an inhibitor of cellular cholesterol synthesis, has an apparent anti-cancer property, but the detailed mechanisms of its anti-cancer effects remain poorly understood. We investigated the molecular mechanism of Lovastatin anti-tumor function through the study of its effect on membrane ion flow, gap junctional intercellular communication (GJIC), and the pathways of related signals in MCF-7 mammary cancer cells. After treatment for 24–72 h with 4, 8 or 16 μmol/L Lovastatin, cellular proliferation was examined via the MTT assay, and changes in membrane potential and cellular [Ca2+]i were monitored using confocal laser microscopy. In addition, the expression of plasma membrane calcium ATPase isoform 1 (PMCA1) mRNA was analyzed via RT-PCR, the GJIC function was examined using the scrape-loading dye transfer (SLDT) technique, and MAPK phosphorylation levels were tested with the kinase activity assay. The results showed that Lovastatin treatment significantly inhibited the growth of MCF-7 breast cancer cells. It also increased the negative value of the membrane potential, leading to the hyperpolarization of cells. Moreover, Lovastatin treatment continuously enhanced [Ca2+]i, although the levels of PMCA1 mRNA were unchanged. GJIC was also upregulated in MCF-7 cells, with transfer of LY Fluorescence reaching 4 to 5 rows of cells from the scraped line after treatment with 16 μmol/L Lovastatin for 72 h. Finally, downregulation of ERK1 and p38MAPK phosphorylation were found in Lovastatin-treated MCF-7 cells. It could be deduced that Lovastatin can induce changes in cellular hyperpolarization and intracellular Ca2+ distributions, and increase GJIC function. These effects may result in changes in the downstream signal cascade, inhibiting the growth of MCF-7 cells.  相似文献   

4.
5.
6.
Antony ML  Kim SH  Singh SV 《PloS one》2012,7(2):e32267
Benzyl isothiocyanate (BITC), a constituent of edible cruciferous vegetables, decreases viability of cancer cells by causing apoptosis but the mechanism of cell death is not fully understood. The present study was undertaken to determine the role of Bcl-2 family proteins in BITC-induced apoptosis using MDA-MB-231 (breast), MCF-7 (breast), and HCT-116 (colon) human cancer cells. The B-cell lymphoma 2 interacting mediator of cell death (Bim) protein was dispensable for proapoptotic response to BITC in MCF-7 and MDA-MB-231 cells as judged by RNA interference studies. Instead, the BITC-treated MCF-7 and MDA-MB-231 cells exhibited upregulation of p53 upregulated modulator of apoptosis (PUMA) protein. The BITC-mediated induction of PUMA was relatively more pronounced in MCF-7 cells due to the presence of wild-type p53 compared with MDA-MB-231 with mutant p53. The BITC-induced apoptosis was partially but significantly attenuated by RNA interference of PUMA in MCF-7 cells. The PUMA knockout variant of HCT-116 cells exhibited significant resistance towards BITC-induced apoptosis compared with wild-type HCT-116 cells. Attenuation of BITC-induced apoptosis in PUMA knockout HCT-116 cells was accompanied by enhanced G2/M phase cell cycle arrest due to induction of p21 and down regulation of cyclin-dependent kinase 1 protein. The BITC treatment caused a decrease in protein levels of Bcl-xL (MCF-7 and MDA-MB-231 cells) and Bcl-2 (MCF-7 cells). Ectopic expression of Bcl-xL in MCF-7 and MDA-MB-231 cells and that of Bcl-2 in MCF-7 cells conferred protection against proapoptotic response to BITC. Interestingly, the BITC-treated MDA-MB-231 cells exhibited induction of Bcl-2 protein expression, and RNA interference of Bcl-2 in this cell line resulted in augmentation of BITC-induced apoptosis. The BITC-mediated inhibition of MDA-MB-231 xenograft growth in vivo was associated with the induction of PUMA protein in the tumor. In conclusion, the results of the present study indicate that Bim-independent apoptosis by BITC in cancer cells is mediated by PUMA.  相似文献   

7.
The chemotherapeutic drug paclitaxel induces microtubular stabilization and mitotic arrest associated with increased survivin expression. Survivin is a member of the inhibitor of apoptosis (iap) family which is highly expressed in during G2/M phase where it regulates spindle formation during mitosis. It is also constitutively overexpressed in most cancer cells where it may play a role in chemotherapeutic resistance. MCF-7 breast cancer cells stably overexpressing the sense strand of survivin (MCF-7(survivin-S) cells) were more resistant to paclitaxel than cells depleted of survivin (MCF-7(survivin-AS) despite G2/M arrest in both cell lines. However, survivin overexpression did not protect cells relative to control MCF-7(pcDNA3) cells. Paclitaxel-induced cytotoxicity can be enhanced by retinoic acid and here we show that RA strongly reduces survivin expression in MCF-7 cells and prevents paclitaxel-mediated induction of survivin expression. Mitochondrial release of cytochrome c after paclitaxel alone or in combination with RA was weak, however robust Smac release was observed. While RA/paclitaxel-treated MCF-7 (pcDNA3) cultures contained condensed apoptotic nuclei, MCF-7(survivin-S) nuclei were morphologically distinct with hypercondensed disorganized chromatin and released mitochondrial AIF-1. RA also reduced paclitaxel-associated levels of cyclin B1 expression consistent with mitotic exit. MCF-7(survivin-S) cells displayed a 30% increase in >2N/<4N ploidy while there was no change in this compartment in vector control cells following RA/paclitaxel. We propose that RA sensitizes MCF-7 cells to paclitaxel at least in part through survivin downregulation and the promotion of aberrant mitotic progression resulting in apoptosis. In addition we provide biochemical and morphological data which suggest that RA-treated MCF-7(survivin-S) cells can also undergo catastrophic mitosis when exposed to paclitaxel.  相似文献   

8.
Lipotropes (methyl group containing nutrients, including methionine, choline, folate, and vitamin B(12)) are dietary methyl donors and cofactors that are involved in one-carbon metabolism, which is important for genomic DNA methylation reactions and nucleic acid synthesis. One-carbon metabolism provides methyl groups for all biological methylation pathways and is highly dependent on dietary supplementation of methyl nutrients. Nutrition is an important determinant of breast cancer risk and tumor behavior, and dietary intervention may be an effective approach to prevent breast cancer. Apoptosis is important for the regulation of homeostasis and tumorigenesis. The anti-apoptotic protein Bcl-2 may be a regulatory target in cancer therapy; controlling or modulating its expression may be a therapeutic strategy against breast cancer. In this study, the effects of lipotrope supplementation on the growth and death of human breast cancer cell lines T47D and MCF-7 were examined and found to inhibit growth of both T47D and MCF-7 cells. Furthermore, the ratios of apoptotic cells to the total number of cells were approximately 44% and 34% higher in the lipotrope-supplemented treatments of T47D and MCF-7 cancer cells, respectively, compared with the control treatments. More importantly, Bcl-2 protein expression was decreased by approximately 25% from lipotrope supplementation in T47D cells, suggesting that lipotropes can induce breast cancer cell death by direct downregulation of Bcl-2 protein expression. Cancer treatment failure is often correlated with Bcl-2 protein upregulation. These data may be useful in the development of effective nutritional strategies to prevent and reduce breast cancer in humans.  相似文献   

9.
10.
11.
Epidermal growth factor (EGF) has been found to induce enhanced gap junctional intercellular communication (GJIC) in the human kidney epithelial cell line K7. This is in contrast to what is reported for other cell types, which all show decreased GJIC in response to EGF. In the present study it is shown that 12-O-tetradecanoylphorbol-13-acetate (TPA) and EGF induce similar phosphorylation pattern of the gap junction protein connexin43 (Cx43) in K7 cells, although their effects on GJIC are opposite. Tyrosine phosphorylation of a 42 kD protein was observed to be induced concomitantly with phosphorylation of Cx43. EGF was however found to induce only serine phosphorylation of Cx43, indicating that the tyrosine kinase activity of the EGF receptor was not directly affecting the gap junction protein. The 42 kD protein phosphorylated on tyrosine was identified to be a mitogen activated protein (MAP) kinase. Both EGF and TPA was found to activate MAP kinase in these cells. Phosphorylation of Cx43 and enhancement of GJIC in response to EGF occurred with difference in time course. Phosphorylation of Cx43 was completed within 15 min, while the enhanced GJIC appeared 2-3 h later. It is therefore possible that regulation of synthesis or transport of Cx43 is responsible for the increase in GJIC, rather than direct involvement of Cx43 phosphorylation. This is in support of our previous finding that protein synthesis is necessary for EGF induced upregulation of GJIC in K7 cells.  相似文献   

12.
13.
Direct cell-to-cell transfer of ions and small signaling molecules via gap junctions plays a key role in vessel wall homeostasis. Vascular endothelial gap junctional channels are formed by the connexin (Cx) proteins Cx37, Cx40, and Cx43. The mechanisms regulating connexin expression and assembly into functional channels have not been fully identified. We investigated the dynamic regulation of endothelial gap junctional intercellular communication (GJIC) by fluid flow and the participation of each vascular connexin in functional human endothelial gap junctions in vitro. Human aortic endothelial cells (HAEC) were exposed for 5, 16, and 24 h to physiological flows in a parallel-plate flow chamber. Connexin protein expression and localization were evaluated by immunocytochemistry, and functional GJIC was evaluated by dye injection. Connexin-mimetic peptide inhibitors were used to assess the specific connexin composition of functional channels. HAEC monolayers in culture exhibited baseline functional communication at a striking low level despite abundant expression of Cx43 and Cx40 localized at cell-to-cell appositions. Upon exposure to flow, GJIC by dye spread demonstrated a significant time-dependent increase from baseline levels, reaching 7.5-fold in 24 h. Inhibition studies revealed that this response was mediated primarily by Cx40, with lesser contributions of the other two vascular connexins assembled into functional homotypic and/or heterotypic channels. This is the first study to demonstrate that flow simultaneously and differentially regulates expression of the Cx37, Cx40, and Cx43 proteins and their involvement in the augmentation of intercellular communication by dye transfer in human endothelial cells in vitro.  相似文献   

14.
耿怀成  王冰蝉 《生物磁学》2011,(20):3830-3834
目的:研究乳腺癌细胞中丝/苏氨酸蛋白激酶Plk1基因表达下调后对其恶性生物表型的影响。方法:利用pSitencer4.1-CMVneo质粒,分别构建针对Plk1基因的RNA干涉载体(pSilencer4.1-shPlk1),利用脂质体Lipofectamine2000转染MCF-7细胞,G418筛选稳定的转染细胞系。半定量RT—PCR和Western blot分别检测Plk1基因mRNA和蛋白表达,MTT和克隆形成试验检测细胞增殖活性的变化,流式细胞仪分析细胞周期和凋亡的变化,最后分析MCF-7细胞对紫杉类药物(紫杉醇和多西他赛)化疗敏感性的变化。结果:成功筛选了稳定转染细胞系(MCF-7/shPlk1和MCF-7/shcontro1)。同MCF-7/shPlk1细胞相比,MCF-7/shPtkl细胞中Plk1基因mRNA和蛋白表达水平分别下调65.8%和74.4%(P〈0.05)。同MCF-7/shcontrol,MCF-7tshPlk1细胞增殖速度显著抑制,到第5天时抑制率达到44.9±3.2%(P〈0.05)。同时,MCF-7/shPlk1细胞的克隆形成能力显著降低(P〈0.01)流式细胞仪技术分析细胞周期结果表明:MCF-7/shPlk1细胞的G2/M期细胞比例显著增加了21.1±4.1%,而S期细胞比例则显著降低了(18.5±3.1%;P〈0.05)。流式细胞仪技术分析细胞凋亡结果表明:MCF-7/shPlk1细胞的凋亡率约显著增加了13.1±213%(P〈0.05),同时还发现:MCF-7/shPlk1细胞中激活的caspase-3蛋白显著增加,Bcl-2蛋白显著降低,而Bax蛋白则显著增加。结论:RNA干涉载体能特异性下调乳腺癌细胞中Plk1基因的表达,从而抑制乳腺癌细胞的增殖和体外克隆形成能力,同时诱导乳腺癌细胞的G2/M期阻滞和细胞凋亡率显著增加。因此,靶向Plk1基因的生物治疗有望成为未来临床乳腺癌的一个重要的辅助治疗策略.  相似文献   

15.
16.
Lipotropes, a methyl group containing nutrients, including choline, methionine, folic acid, and vitamin B(12), are essential nutrients for humans. They are important methyl donors that interact in the metabolism of one-carbon units and are essential for the synthesis and methylation of deoxyribonucleic acid. The purpose of this study was to examine the effects of excess lipotropes on the growth of a human breast cancer cell line, MCF-7, and normal mammary cells, MCF-10A, in culture. Both cell lines were grown in basal culture medium for 24 h and then switched to medium supplemented with 50 times the amount of each lipotrope as basal culture medium (control). Although there were no significant differences in growth between treatments in either cell line, gene array and Northern analysis revealed that expression of bcl-2 was decreased in lipotrope-treated MCF-7 cells. The ability to induce tumor cell death could have many uses in the prevention and treatment of cancer. Bcl-2 regulates apoptosis and has been shown to directly affect the sensitivity of cancer cells to chemotherapy agents, and it is suggested that strategies designed to block Bcl-2 might prove useful in sensitizing tumor cells to chemotherapy-induced apoptosis. This study shows that although excess lipotropes do not inhibit the growth of breast cancer cells, they can down-regulate the bcl-2 gene, suggesting that lipotropes may increase the susceptibility of breast cancer cells to anticancer drugs.  相似文献   

17.
18.
Choline kinase-α (Chk-α) and autophagy have gained much attention, as they relate to the drug-resistance of breast cancer. Here, we explored the potential connection between Chk-α and autophagy in the mechanisms driving to tamoxifen (TAM) resistance, in estrogen receptor positive (ER+) breast cancer cells (BCCs). Human BCC lines (MCF-7 and TAM-resistant MCF-7 (MCF-7/TAM) cells) were used. Chk-α expression and activity was suppressed by the transduction of shRNA (shChk-α) with lentivirus and treatment with CK37, a Chk-α inhibitor. MCF-7/TAM cells had higher Chk-α expression and phosphocholine levels than MCF-7 cells. A specific downregulation of Chk-α by the transduction of shChk-α exhibited a significant decrease in phosphocholine levels in MCF-7 and MCF-7/TAM cells. The autophagy-related protein, cleaved microtubule-associated protein light chain 3 (LC3) and autophagosome-like structures were significantly increased in shChk-α-transduced or CK37-treated MCF-7 and MCF-7/TAM cells. The downregulation of Chk-α attenuated the phosphorylation of AKT, ERK1/2, and mTOR in both MCF-7 and MCF-7/TAM cells. In MCF-7 cells, the downregulation of Chk-α resulted in an induction of autophagy, a decreased proliferation ability and an activation of caspase-3. In MCF-7/TAM cells, despite a significant decrease in proliferation ability and an increase in the percentage of cells in the G0/G1 phase of the cell cycle, the downregulation of Chk-α did not induced caspase-dependent cell death and further enhanced autophagy and G0/G1 phase arrest. An autophagy inhibitor, methyladenine (3-MA) induced death and attenuated the level of elevated LC3 in MCF-7/TAM cells. Elucidating the interplay between choline metabolism and autophagy will provide unique opportunities to identify new therapeutic targets and develop novel treatment strategies that preferentially target TAM-resistance.  相似文献   

19.
MCF-7 and ZR-75 breast cancer cells infected with an adenovirus constitutively expressing high levels of cyclin D1 demonstrated widespread mitochondrial translocation of Bax and cytochrome c release that was approximately doubled after the addition of all-trans retinoic acid (RA) or Bcl-2 antisense oligonucleotide. By comparison, the percentage of cells in Lac Z virus-infected cultures containing translocated Bax and cytoplasmic cytochrome c was markedly less even after RA treatment. Despite this, RA-treated Lac Z and untreated cyclin D1 virus-infected cultures contained similarly low proportions of cells with active caspase or cells that were permeable to propidium iodide. Bax activation was p53-dependent and accompanied by arrest in G(2) phase. Although constitutive Bcl-2 expression prevented Bax activation, it did not alter cyclin D1-induced cell cycle arrest, illustrating the independence of these events. Both RA and antisense Bcl-2 oligonucleotide decreased Bcl-2 protein levels and markedly increased caspase activity and apoptosis in cyclin D1-infected cells. Thus amplified cyclin D1 expression initiates an apoptotic signal inhibited by different levels of cellular Bcl-2 at two points. Whereas high cellular levels of Bcl-2 prevent mitochondrial Bax translocation, lower levels can prevent apoptosis by inhibition of caspase activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号