首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intact cells of Bacillus stearothermophilus PV72 revealed, after conventional thin-sectioning procedures, the typical cell wall profile of S-layer-carrying gram-positive eubacteria consisting of a ca. 10-nm-thick peptidoglycan-containing layer and a ca. 10-nm-thick S layer. Cell wall preparations obtained by breaking the cells and removing the cytoplasmic membrane by treatment with Triton X-100 revealed a triple-layer structure, with an additional S layer on the inner surface of the peptidoglycan. This profile is characteristic for cell wall preparations of many S-layer-carrying gram-positive eubacteria. Among several variants of strain PV72 obtained upon single colony isolation, we investigated the variant PV72 86-I, which does not exhibit an inner S layer on isolated cell walls but instead possesses a profile identical to that observed for intact cells. In the course of a controlled mild autolysis of isolated cell walls, S-layer subunits were released from the peptidoglycan of the variant and assembled into an additional S layer on the inner surface of the walls, leading to a three-layer cell wall profile as observed for cell wall preparations of the parent strain. In comparison to conventionally processed bacteria, freeze-substituted cells of strain PV72 and the variant strain revealed in thin sections a ca. 18-nm-wide electron-dense peptidoglycan-containing layer closely associated with the S layer. The demonstration of a pool of S-layer subunits in such a thin peptidoglycan layer in an amount at least sufficient for generating one coherent lattice on the cell surface indicated that the subunits must have occupied much of the free space in the wall fabric of both the parent strain and the variant. It can even be speculated that the rate of synthesis and translation of the S-layer protein is influenced by the packing density of the S-layer subunits in the periplasm of the cell wall delineated by the outer S layer and the cytoplasmic membrane. Our data indicate that the matrix of the rigid wall layer inhibits the assembly of the S-layer subunits which are in transit to the outside.  相似文献   

2.
Chemical Composition of the Cell Walls of Bacillus stearothermophilus   总被引:4,自引:1,他引:3  
Cell walls were isolated by mechanical disruption of mid-log phase cells of Bacillus stearothermophilus NCA 1503-4R grown in Trypticase-yeast extract-fructose medium at 55 C. The cell walls were purified by treatment with sodium dodecyl sulfate (SDS) and incubation with deoxyribonuclease and trypsin. The cell wall peptidoglycan contained glucosamine, muramic acid, alpha, epsilon-diaminopimelic acid, and glutamic acid. Low amounts of glycine, galactosamine, serine, aspartic acid, lysine, and valine were also present. The relative mole ratios of glutamic acid-alpha, epsilon-diaminopimelic acid-glycine-alanine were 1.00:1.26:0.08:1.55. The cell walls were free from ribonucleic acid and deoxyribonucleic acid and contained less than 0.2% chloroform-methanol extractable lipid and 0.09 mumole of phosphorus per mg of cell wall. Teichoic acid was not detected in the cell walls of this organism. Cell walls isolated without treatment with SDS contained 7.5% chloroform-methanol extractable lipid, 0.24 mumole of phosphorus per mg of cell wall, and relatively high concentrations of all amino acids. These results suggest that the extracted lipid is not a cell wall component per se, but a contaminant from the lipoprotein cell membrane.  相似文献   

3.
The cell walls of a number of filamentous, gliding cyanobacteria of the genus Oscillatoria were examined by transmission electron microscopy of ultrathin sections, of freeze-etched replicas, and of whole cells crushed between glass slides and negatively stained. All three techniques revealed the presence of a highly ordered array of parallel fibrils, seen in transverse sections to be situated between the peptidoglycan and the outer membrane. Approximately 200 individual fibrils, each 25 to 30 nm in width, form a parallel, helical array that completely surrounds each cyanobacterial filament, running at an angle of 25 to 30° to its long axis. This highly regular arrangement of the fibrillar layer may imply some underlying symmetry responsible for its organization. A possible source of such symmetry would be the peptidoglycan, and some form of interaction between this layer and the fibrils might provide the necessary scaffolding for the fibrillar array. In crushed, negatively stained samples of fresh cells, individual fibrils were seen outside the filament, released from the cell wall. These released fibrils were of the same width as those observed in situ but were in short lengths, mostly of 100 to 200 nm, and were invariably bent, sometimes even into U shapes, implying great flexibility. Negative staining of released fibrils showed no evidence that they were hollow tubes but did give some indication of a substructure, implying that they were composed of many subunits. The function of this fibrillar array is unknown, although its position in the cell wall, as well as the correspondence between the angle of the fibrils with respect to the long axis of the filament and the rotation of the filament during gliding, may imply an involvement in gliding motility.  相似文献   

4.
CELL WALL AND PEPTIDOGLYCAN FROM Lactobacillus fermenti   总被引:6,自引:4,他引:2       下载免费PDF全文
Cell walls from Lactobacillus fermenti were prepared by differential centrifugation of disrupted cells, with and without trypsin treatment. Approximately 16% of the dry weight of walls was found in a crude trichloroacetic acid extract of the walls; half of this amount remained upon further purification. The purufied extract lacked alanine, but contained substantial amounts of glucosamine. The walls constituted 23 to 33% of the dry weight of the cell. The chemical composition of the various types of wall preparations and of the peptidoglycan from them was studied. The peptidoglycan contained equimolar proportions of glucosamine, muramic acid, l-alanine, d-glutamic acid, and lysine, with somewhat lower proportions of d-aspartic acid and d-alanine. The chemical composition of the peptidoglycan is similar to that reported for three other lactobacilli. In addition to the major constituents of walls and peptidoglycan, there were several minor amino acids. The protein and the amounts of the minor amino acids decreased, and among these threonine and arginine were completely absent from preparations obtained with trypsin. Such preparations contained higher proportions of the d-isomers of alanine, glutamic acid, and aspartic acid as compared to walls and peptidoglycan prepared without trypsin. In addition, walls isolated with the use of trypsin were susceptible to lysozyme, whereas those prepared without trypsin were not. However, the trypsin treatment did not result in any change of the ultrastructure as revealed by electron microscope studies.  相似文献   

5.
The peptidoglycan layer of Spirillum serpens cell walls was isolated from intact cells after treatment with sodium dodecylsulfate and digestion with Pronase. The isolated peptidoglycan contained glucosamine, muramic acid, alanine, glutamic acid, and meso-diaminopimelic acid in the approximate molar ratio of 1:1:2:1:1. Aspartic acid and glycine were the only other amino acids found in significant quantities. N-terminal amino acid analyses of the tetrapeptide amino acids in the peptidoglycan revealed that 54% of the diaminopimelic acid molecules are involved in cross-linkage between tetrapeptides. This amount of cross-linkage is greater than that found in the peptidoglycan of previously studied cell walls of gram-negative bacteria. The polysaccharide backbone was isolated, after myxobacter AL-1 enzyme digestion of the peptidoglycan, by fractionation with ECTEOLA-cellulose and Sephadex G-100. An average length of 99 hexosamines for the polysaccharide chains was found (ratio of total hexosamines to reducing end groups).  相似文献   

6.
Bacillus brevis 47 had two protein layers (the outer and middle walls) and a peptidoglycan layer (the inner wall) and contained two major proteins with approximate molecular weights of 130,000 and 150,000 in the cell wall. Both the total and Triton-insoluble envelopes revealed a hexagonal lattice array with a lattice constant of 14.5 nm. The proteins of 130,000 and 150,000 molecular weight isolated from the Triton-insoluble envelopes were serologically different from each other and assembled in vitro on the peptidoglycan layer. A mixture of 130,000- and 150,000-molecular-weight proteins led to the formation of a five-layered cell wall structure, two layers on each side of the peptidoglycan layer, which resembled closely the Triton-insoluble envelopes. A three-layered cell wall structure, one layer on each side of the peptidoglycan layer, was reconstituted when only the 150,000-molecular-weight protein was used. Both five- and three-layered cell walls reconstituted in vitro also contained hexagonally arranged arrays with the same lattice constant as that of the total and Triton-insoluble envelopes. A mutant, strain 47-57, which was isolated as a phage-resistant colony, had a two-layered cell wall consisting of the middle and inner wall layers and contained only 150,000-molecular-weight protein as the major cell wall protein. The cell envelopes of the mutant revealed the hexagonal arrays with the same lattice constant as that of the wild-type cell envelopes. We conclude that the outer and middle wall layers consist of proteins with approximate molecular weights of 130,000 and 150,000, respectively. Furthermore, the 150,000-molecular-weight protein formed the hexagonal arrays in the middle wall layer.  相似文献   

7.
Cell walls were isolated by sonic disruption of log-phase cells of Clostridium botulinum type A strain 190L and purified by treatment with sodium dodecyl sulfate (SDS) followed by digestion with proteases. Electron microscopy revealed that the cell walls thus obtained were free of both cytoplasmic membrane and cytoplasmic fragments. The purified cell wall contained 8.7% total nitrogen, 15.0% total hexosamines, 22.4% reducing groups, 8.3% carbohydrate, and 3.1% glucose. The content of total phosphorus was very low (0.02%), and therefore it was expected that teichoic acid might be absent in the cell wall. The wall peptidoglycan contained glutamic acid, alanine, diaminopimelic acid, glucosamine and muramic acid in the molar ratios of 1.00:1.85:0:85:1.06:0.67. A low amount of galactosamine was also present, but no other amino acids were found in significant quantities. The SDS-treated cell walls were not attacked by lysozyme, but after extraction with hot formamide they were completely dissolved by the enzyme and released reducing groups. The lysozyme digest was separated into two constituents, the saccharide moiety and the peptide moiety on Sephadex G-50.  相似文献   

8.
The morphological appearance of deproteinized Group A and C streptococcal walls after treatment by different procedures extracting teichoic acids and polysaccharides (formamide, hydrochloric acid, nitrous acid, trichloroacetic acid, sulphuric acid, sodium hydroxide and sodium deoxycholate) was compared with the content of teichoic acids and polysaccharides remaining in the treated walls. All procedures extracted teichoic acids almost completely, but polysaccharides were extracted to various degrees. The ultrastructural appearance of walls after these extractions still exhibited the triple-layered wall profile; only a reduction of thickness of the wall and of electron density of the layers occurred. There was no direct correlation between the reduction of rhamnose content and thickness of walls. The ultrastructural localization of peptidoglycan in the streptococcal walls was explored by means of the indirect immunoferritin technique using anti-peptidoglycan antibodies isolated from anti-Group A-variant antisera. Ferritin particles were bound predominantly to filamentous structures which protruded from both surfaces of peptidoglycan fragments and isolated walls. Peptidoglycan was also detected on the filamentous protrusions of whole cocci. These results contradict models of the streptococcal wall in which peptidoglycan forms the innermost layer and support a mosaic structure in which peptidoglycan forms a network of the peptidoglycan-polysaccharide complex.  相似文献   

9.
Arabinogalactan-protein (AGP, "beta-lectin") was isolated from leek seeds, tested for specificity, conjugated with gold colloids, and used as a cytochemical probe to detect beta-linked bound sugars in ultrathin sections of wheat leaves infected with a compatible race of stem rust fungus. Similar sections were probed with other gold-labeled lectins to detect specific sugars. AGP-gold detected beta-glycosyl in all fungal walls and in the extrahaustorial matrix. Other lectin gold conjugates localized galactose in all fungal walls except in walls of the haustorial body. Limulus polyphemus lectin bound only to the outermost layer of intercellular hyphal walls of the fungus. Binding of these lectins was inhibited by their appropriate haptens and was diminished or abolished in specimens pretreated with protease, indicating that the target substances in the tissue were proteinaceous or that polysaccharides possessing affinity to the lectin probes had been removed by the enzyme from a proteinaceous matrix by passive escape. Binding of Lotus tetragonolobus lectin was limited to the two outermost fungal wall layers but was not hapten-inhibitable. Limax flavus lectin, specific for sialic acids, had no affinity to any structure in the sections. In the fungus, the most complex structure was the outermost wall layer of intercellular hyphal cells; it had affinity to all lectins tried so far, except to Limax flavus lectin and to wheat germ lectin included in an earlier study. In the host, AGP and the galactose-specific lectins bound to the inner domain of the wall in areas not in contact with the fungus. At host cell penetration sites, affinity to these lectins often extended throughout the host wall, confirming that it is modified at these sites. Pre-treatment with protease had no effect on lectin binding to the host wall. After protease treatment, host starch granules retained affinity to galactose-specific lectins, but lost affinity for AGP.  相似文献   

10.
The biochemical composition of the cell envelope of Renibacterium salmoninarum was investigated in a total of 13 strains isolated from different salmonid fish species at various geographical locations of the United States, Canada, and Europe. A marked similarity with the type strain R. salmoninarum ATCC 33209 was found both in the peptidoglycan and the cell wall polysaccharide. The primary structure of the peptidoglycan was found to be consistent with lysine in the third position of the peptide subunit, a glycyl-alanine interpeptide bridge between lysine and D-alanine of adjacent peptide subunits, and a D-alanine amide substituent at the alpha-carboxyl group of D-glutamic acid in position 2 of the peptide subunit. The cell wall polysaccharide contained galactose as the major sugar component which was accompanied by rhamnose, N-acetylglucosamine, and N-acetylfucosamine. The polysaccharide amounted to more than 60% of the dry weight of the cell walls. It was found to be covalently linked to the peptidoglycan and was released by hot formamide treatment. On gel filtration chromatography the extracted polysaccharide behaved like a homogeneous polymeric compound. The purified cell wall polysaccharide showed antigenic activity with antiserum obtained by immunization of rabbits with heat-inactivated trypsinized cells of R. salmoninarum. Immunoblotting experiments with nontrypsinized cell walls and antisera raised against R. salmoninarum cells revealed that antigenic proteins were attached to the cell walls.  相似文献   

11.
Two membrane antigens were found by cross immunoelectrophoresis in the cell walls of Bacillus brevis var. G.-B., R form, which started to synthesize gramicidin S (20 mg per 1 ml of cultural broth). The cell wall contained no membrane components in cells at the beginning of the logarithmic growth phase. The protein with a molecular mass of 100 kDa is a component of the cell wall outer layer. The protein is not digested by trypsin or pronase when it comprises the cell walls of cells synthesizing gramicidin S. In the preparation of isolated cell walls, this protein becomes susceptible to the action of the above proteases only when the peptidoglycan layer is broken down by lysozyme. Electron microscopy of cells treated with proteases and shadowed with a metal revealed that many cells lacked the cytoplasm. Therefore, the outer layer of B. brevis R cell wall contains small regions susceptible to the action of protease along with regions composed of the 100 kDa protein and resistant to these enzymes. It is possible that the small regions contain membrane components.  相似文献   

12.
Envelope structure of four gliding filamentous cyanobacteria.   总被引:7,自引:4,他引:3       下载免费PDF全文
The cell walls of four gliding filamentous Oscillatoriaceae species comprising three different genera were studied by freeze substitution, freeze fracturing, and negative staining. In all species, the multilayered gram-negative cell wall is covered with a complex external double layer. The first layer is a tetragonal crystalline S-layer anchored on the outer membrane. The second array is formed by parallel, helically arranged surface fibrils with diameters of 8 to 12 nm. These fibrils have a serrated appearance in cross sections. In all cases, the orientation of the surface fibrils correlates with the sense of revolution of the filaments during gliding, i.e., clockwise in both Phormidium strains and counterclockwise in Oscillatoria princeps and Lyngbya aeruginosa. The lack of longitudinal corrugations or contractions of the surface fibrils and the identical appearances of motile and nonmotile filaments suggest that this structure plays a passive screw thread role in gliding. It is hypothesized that the necessary propulsive force is generated by shear forces between the surface fibrils and the continuing flow of secreted extracellular slime. Furthermore, the so-called junctional pores seem to be the extrusion sites of the slime. In motile cells, these pores exhibit a different staining behavior than that seen in nonmotile ones. In the former, the channels of the pores are filled with electron-dense material, whereas in the latter, the channels appear comparatively empty, highly contrasting the peptidoglycan. Finally, the presence of regular surface structures in other gliding prokaryotes is considered an indication that comparable structures are general features of the cell walls of gliding microbes.  相似文献   

13.
The bag shaped peptidoglycan layer of Rhizobium cell wall was isolated from intact cells after treatment with sodium dodecylsulfate and trypsin, chymotrypsin or pepsin digestion. Results of chemical analysis of acid hydrolyzed peptidoglycan revealed beside two amino sugars: glucosamine and muramic acid, three major amino acids; alanine, glutamic acid and 2,6-diaminopimelic acid and also significant amount of glucose. Evidence were provided that the polyglucose found in peptidoglycan preparations of three strains of Rhizobium trifolii, one of Rhizobium leguminosarum and one of Rhizobium meliloti consist of cellulose microfibrils. The content of cellulose present in Rhizobium peptidoglycans ranged from 60 to 80%. Methods of peptidoglycan purification from the cellulose microfibrils are described.  相似文献   

14.
nov-12, a novobiocin-resistant mutant of Bacillus licheniformis ATCC 9945, grows as long chains of cells, a characteristic of autolytic-deficient (Lyt-) mutants. Isolated walls from nov-12 autolyzed at a rate equal to 5% of that displayed by wild-type walls, thus confirming the Lyt- phenotype. Protein-free nov-12 walls displayed marked resistance to, and also failure to bind, added autolysin solubilized from wild-type walls. Comparison of isolated cell walls revealed a deficiency in teichuronic acid in the mutant. Lesser differences were observed in walls of this strain, including a reduction in galactose, an increase in the proportion of peptidoglycan, and small quantitative differences in peptidoglycan composition though the proportions of protein and teichoic acid were similar in walls of both strains. Autolytic sensitivity was studied in walls in which protein, teichoic acid, and teichuronic acid were removed successively by selective extraction procedures. Autolysis of wild-type walls was unaffected by removal or protein or teichoic acid, but teichuronic acid removal rendered wild-type walls as insensitive to autolysis as mutant walls had been throughout. Therefore, in this mutant, deficiency in teichuronic acid alone leads to the Lyt- phenotype and, hence, activity and binding of autolysin(s) are dependent upon teichuronic acid but not teichoic acid. Also, the potential rate of autolysis of cell walls in this organism was correlated with the proportion of teichuronic acid in the wall. The possible significance of these findings with respect to control of autolysis and cell separation is discussed.  相似文献   

15.
Major sites of metal binding in Bacillus licheniformis walls.   总被引:6,自引:2,他引:4       下载免费PDF全文
Isolated and purified walls of Bacillus licheniformis NCTC 6346 his contained peptidoglycan, teichoic acid, and teichuronic acid (0.36 mumol of diaminopimelic acid, 0.85 mumol of organic phosphorus, and 0.43 mumol of glucuronic acid per mg [dry weight] of walls, respectively). The walls also contained a total of 0.208 mumol of metal per mg. When these walls were subjected to metal-binding conditions (T. J. Beveridge and R. G. E. Murray, J. Bacteriol. 127:1502-1518, 1976) for nine metals, the amount of bound metal above background ranged from 0.910 mumol of Na to 0.031 mumol of Au per mg of walls. Most were in the 0.500-mumol mg-1 range. Electron-scattering profiles from unstained thin sections indicated that the metal was dispersed throughout the wall fabric. Mild alkali treatment extracted teichoic acid from the walls (97% based on phosphorus) but left the peptidoglycan and teichuronic acid intact. This treatment reduced their capacity for all metals but Au. Thin sections revealed that the wall thickness had been reduced by one-third, but metal was still dispersed throughout the wall fabric. Trichloroacetic acid treatment of the teichoic acid-less walls removed 95% of the teichuronic acid (based on glucuronic acid) but left the peptidoglycan intact (based on sedimentable diaminopimelic acid). The thickness of these walls was not further reduced, but little binding capacity remained (usually less than 10% of the original binding). The staining of these walls with Au produced a 14.4-nm repeat frequency within the peptidoglycan fabric. Sedimentation velocity experiments with the extracted teichuronic acid in the presence of metal confirmed it to be a potent metal-complexing polymer. These results indicated that teichoic and teichuronic acids are the prime sites of metal binding in B. licheniformis walls.  相似文献   

16.
The peptidoglycan layer of a marine pseudomonad was observed by electron microscopy in thin sections of plasmolyzed intact cells and mureinoplasts but not in untreated intact cells. Only fragments of this layer could be isolated by sodium lauryl sulfate (SLS) treatment of mureinoplast envelopes. Sacculus-like peptidoglycan structures were obtained from growing cells by immediate heat inactivation of cellular autolytic enzymes and subsequent SLS, trypsin, and nuclease treatments. Recently, similar peptidoglycan sacculus-like structures have been obtained by adding SLS to the growing culture and treating the isolated particulate material with nucleases. Thin-sectioned and negatively stained preparations of whole cell peptidoglycan showed compressed profiles of cell-shaped sacculi. Peptidoglycan prepared by SLS treatment of mureinoplast envelopes had a similar composition to that prepared from whole cells. The major amino sugars and amino acids in the peptidoglycan component were glucosamine, muramic acid, alanine, glutamic acid and diaminopimelic acid in the molar ratios 1.18:1.24:1.77:1.00:0.79. Forty-five per cent of the epsilon-amino groups of diaminopimelic acid were cross-linked. The peptidoglycan was estimated to account for about 1% of the cell dry weight.  相似文献   

17.
Microorganisms that hydrolyse the ester linkages between phenolic acids and polysaccharides in plant cell walls are potential sources of enzymes for the degradation of lignocellulosic waste. An anaerobic, mesophilic, spore-forming, xylanolytic bacterium with high hydroxy cinnamic acid esterase activity was isolated from the gut of the grass-eating termite Tumilitermes pastinator. The bacterium was motile and rod-shaped, stained gram-positive, had an eight-layered cell envelope, and formed endospores. Phylogenetic analysis based on 16S rRNA indicated that the bacterium is closely related to Clostridium xylanolyticum and is grouped with polysaccharolytic strains of clostridia. A wide range of carbohydrates were fermented, and growth was stimulated by either xylan or cellobiose as substrates. The bacterium hydrolysed and then hydrogenated the hydroxy cinnamic acids (ferulic and p-coumaric acids), which are esterified to arabinoxylan in plant cell walls. Three cytoplasmic enzymes with hydroxy cinnamic acid esterase activity were identified using non-denaturing gel electrophoresis. This bacterium possesses an unusual multilayered cell envelope in which both leaflets of the cytoplasmic membrane, the peptidoglycan layer and the S layer are clearly discernible. The fate of all these components was easily followed throughout the endospore formation process. The peptidoglycan component persisted during the entire morphogenesis. It was seen to enter the septum and to pass with the engulfing membranes to surround the prespore. It eventually expanded to form the cortex, verification for the peptidoglycan origin of the cortex. Sporogenic vesicles, which are derived from the cell wall peptidoglycan, were associated with the engulfment process. Spore coat fragments appeared early, in stage II, though spore coat formation was not complete until after cortex formation. Received: 11 February 1999 / Accepted: 28 May 1999  相似文献   

18.
The morphology of cells and cell walls was studied in the Bacillus brevis G.-B. R form during its growth and gramicidin S accumulation in it. The membrane apparatus became more complicated and certain other morphological changes were detected in the cells with aging. The cell wall was rather complex even in young cells and consisted of three electron-dense layers where the external and internal layers had an ordered structure. Only the external layer underwent some modifications in the course of growth and these coincided in time with the beginning of intensive gramicidine S biosynthesis. However, the three-layer structure of the cell wall and the ordered organization of the external and internal layers remained unchanged. A preparation of cell walls and preparations of their external and internal layers were isolated from cells synthesizing gramicidine S in the amount of 20 micrograms/ml of the cultural broth. An acid protein having the molecular mass of 100 kD was shown to be the major component of the external layer according to the data of electrophoresis in PAAG with SDS. The middle layer was sensitive to lysozyme, did not have a ordered structure on electron micrographs, and consisted mainly of peptidoglycan.  相似文献   

19.
Cell walls were isolated from cells of Bacillus subtilis strain Marburg during synchronous outgrowth of spores, during the two synchronous cell divisions which followed, and at various times during exponential and early stationary growth. The amounts of teichoic acid and peptidoglycan components were determined in each cell wall preparation. The peptidoglycan is composed of hexosamine, alanine, diaminopimelic acid, and glutamic acid. The ratio of these was relatively constant in the cell walls at each stage of growth. The teichoic acid is composed of glycerol, phosphate, glucose, and ester-linked alanine. With the exception of glucose and ester-linked alanine, the ratios of these components were relatively constant throughout the growth cycle. There was a slight increase in the glucose content of the teichoic acid as the cells aged. There was no correlation between the amount of ester-linked alanine and the stage of growth. The ratio of teichoic acid (based upon phosphate content) to peptidoglycan (based upon diaminopimelic acid content) remained at nearly a constant level throughout the growth cycle. The conclusion is presented that these two cell wall polymers are coordinately synthesized during spore outgrowth and throughout the vegetative growth cycle.  相似文献   

20.
Summary Electron microscopic studies of thin sections of filaments, knots, resettes, gonidia, and gonidial-forming filaments of Leucothrix mucor were carried out. The cell wall is typical of gram-negative bacteria, with a double outer layer of variable thickness, a single thin middle layer which is probably peptidoglycan, and a double inner layer which is the cell membrane. The transverse septa of these filaments show two peptidoglycan layers, and no clearly demarked outer layer. During gonidial formation, there is a gradual rounding up of the cells, and the transverse septa become part of the gonidial wall. The cell membrane contains many invaginations, both along the outer wall and along the transverse septa. Thin sections through rosettes show the holdfast as material which is a heavily-staining amorphous material peripheral to the outer wall layer. Sections through knots show highly contorted cell walls, closely appressed. Fibrillar nuclear material, ribosomes, and storage granules can be seen within the cytoplasmic matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号