首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Fatty acid-binding proteins (FABP) are distinct but related gene products which are found in many mammalian cell types. They are generally present in high abundance, and are found in those tissues where free fatty acid (ffa) flux is high. The function(s) of FABP is unknown. Also not known is whether all FABP function similarly in their respective cell types, or whether different FABP have unique functions. The purpose of these studies was to assess whether different members of the FABP family exhibit different structural and functional properties. Two fluorescent analogues of ffa were used to compare the liver (L-FABP) and heart (H-FABP) binding proteins. The propionic acid derivative of diphenylhexatriene (PADPH) was used to examine the physical properties of the ffa binding site on L- and H-FABP, as well as the relative distribution of ffa between FABP and membranes. An anthroyloxy-derivative of palmitic acid, 2AP, was used to monitor the transfer kinetics of ffa from liver or heart FABP to acceptor membranes, using a resonance energy transfer assay. The results demonstrate that the ffa binding sites of both FABP are hydrophobic in nature, although the L-FABP site is more nonpolar than the H-FABP site. Equilibration of PADPH between L-FABP and phosphatidylcholine (PC) bilayers resulted in a molar partition preference of > 20: 1, L-FABP : PC. Similar studies with H-FABP resulted in a PADPH partition preference of only 3:1, H-FABP : PC. Finally, the transfer of 2AP from H-FABP to acceptor membranes was found to be 50-fold faster than transfer from L-FABP. These studies demonstrate that important structural and functional differences exist between different members of the FABP family, and therefore imply that the roles of different FABP may be unique.Abbreviations FABP Fatty Acid-Binding Protein - L-FABP Liver FABP - H-FABP Heart FABP - SUV Small Unilamellar Vesicle - PADPH 3-[p-(6-Phenyl)-1,3,5-Hexatrienyl]-phenylpropionic acid - 2AP 2-(9-Anthroyloxy)Palmitic acid - Q Quantum yield - F Fluorescence lifetime  相似文献   

2.
Summary At least three different proteins are implicated in the cellular transport of fatty acid moieties: a plasmalemmal membrane and a cytoplasmic fatty acid-binding protein (FABPPM and FABPC, respectively) and cytoplasmic acyl-CoA binding protein (ACBP). Their putative main physiological significance is the assurance that long-chain fatty acids and derivatives, either in transit through membranes or present in intracellular compartments, are largely complexed to proteins. FABPC distinguishes from the other proteins in that distinct types of FABPC are found in remarkable abundance in the cytoplasmic compartment of a variety of tissues. Although their mechanism of action is not yet fully elucidated, current knowledge suggests that the function of this set of proteins reaches beyond simply aiding cytoplasmic solubilization of hydrophobic ligands, but that they can be assigned several regulatory roles in cellular lipid homeostasis.  相似文献   

3.
Summary A variety of designations is currently being used to refer to cellular fatty acid-binding proteins (FABPs). Besides from the use of other general names (e.g. Z protein), confusion mostly arises from the application of various abbreviations and symbols to denote the tissue(s) of origin and cellular localization (cytoplasm, plasma membrane) of a specific FABP. In order to minimize confusion a more unified and rational nomenclature is proposed, which is based on application of the formula X-FABPy. The prefix X is a capital letter indicating the tissue of greatest abundance, the suffix Y similarly denotes the (sub)cellular localization of the protein. The general and functional name fatty acid-binding protein (FABP) is preferred for the cellular proteins with the property to bind fatty acids, unless future research reveals that the binding of fatty acids is not the primary biological property or physiological role of (some of) these proteins.  相似文献   

4.
The mammalian fatty acid-binding proteins (FABPs) are thought to be important for the transport and metabolism of fatty acids in numerous cell types. The transfer of FA from different members of the FABP family to membranes has been shown to occur by two distinct mechanisms, an aqueous diffusion-based mechanism and a collisional mechanism, wherein the FABP interacts directly with membrane acceptors. Much of the work that underlies this concept comes from efforts using rodent FABPs. Given the increasing awareness of links between FABPs and several chronic diseases in humans, it was important to establish the mechanisms of FA transfer for human FABPs. In the present studies, we examined the rate and mechanism of fatty acid transfer from four pairs of human and rodent (rat or mouse, as specified) FABPs: hLFABP and rLFABP, hIFABP and rIFABP, hHFABP and rHFABP, and hAFABP and mAFABP. In the case of human IFABP, both the Ala54 and Thr54 forms were examined. The results show clearly that for all FABPs examined, the mechanisms of ligand transfer observed for rodent proteins hold true for their human counterparts. Moreover, it appears that the Ala to Thr substitution at residue 54 of the human IFABP does not alter the fundamental mechanism of ligand transfer to membranes, but nevertheless causes a consistent decrease in the rate of transfer.  相似文献   

5.
Fatty acid-binding proteins in the heart   总被引:12,自引:0,他引:12  
Long-chain fatty acids are important fuel molecules for the heart, their oxidation in mitochondria providing the bulk of energy required for cardiac functioning. The low solubility of fatty acids in aqueous solutions impairs their cellular transport. However, cardiac tissue contains several proteins capable of binding fatty acids non-covalently. These fatty acid-binding proteins (FABPs) are thought to facilitate both cellular uptake and intracellular transport of fatty acids. The majority of fatty acids taken up by the heart seems to pass the sarcolemma through a carrier-mediated translocation mechanism consisting of one or more membrane-associated FABPs. Intracellular transport of fatty acids towards sites of metabolic conversion is most likely accomplished by cytoplasmic FABPs. In this review, the roles of membrane-associated and cytoplasmic FABPs in cardiac fatty acid metabolism under (patho)physiological circumstances are discussed.  相似文献   

6.
Summary Bile acid-binding polypeptides were examined using basolateral membrane vesicles and enterocytes isolated from rat ileum. The uptake of a photolabile taurocholate derivative, (7,7,-azo-3, 12-dihydroxy-5[3-3H]cholan-24-oyl)-2-aminoethanesulfonate, 7,7-azo-TC, in ileal vesicles preloaded with paraaminohippurate (PAH) was stimulated with respect to uptake in unpreloaded vesicles. The PAH-transstimulated uptake of 7,7-azo-TC was inhibited by taurocholate and vice versa. Irradiation of membrane vesicles in the presence of 7,7-azo-TC irreversibly inhibited PAH-transtimulated taurocholate uptake. Photoaffinity labeling of basolateral membrane vesicles directly with [3H] 7,7-azo-TC and separation of proteins by SDS-PAGE revealed incorporation of radioactivity into several polypeptides. Photoaffinity labeling of vesicles in the presence of taurocholate inhibited the labeling of 54,000 and 59,000 mol. wt. polypeptides. The efflux of taurocholate from ileal enterocytes wascis-inhibited by 7,7-azo-TC andtransstimulated by PAH. Irradiation of enterocytes in the presence of 7,7-azo-TC inhibited taurocholate efflux greater than the presence of 7.7-azo-TC in the dark. When enterocytes that were irradiated in the presence of [3H] 7,7-azo-TC were fractionated and the resultant basolateral membrane fraction was subjected to SDS-PAGE, incorporation of radioactivity into the 54,000 and 59,000 mol. wt. polypeptides was seen. In contrast, when the brush-border membrane fraction was subjected to SDS-PAGE, greatest incorporation of radioactivity was seen in the previously described 99,000 mol. wt. polypeptide. These studies suggest that 7,7-azo-TC shared transporters with natural bile acid and identified polypeptides that may be involved in bile acid and identified polypeptides that may be involved in bile acid transport across the basolateral membrane and differ from that seen in the brush-border membrane of the ileal epithelial cell.  相似文献   

7.
Fatty acid-binding protein and its relation to fatty acid oxidation   总被引:12,自引:0,他引:12  
A relation between fatty acid oxidation capacity and cytosolic FABP content was found in heart and various muscles of the rat. Other tissues do not show such a relation, since they are involved in more or other pathways of fatty acid metabolism. At postnatal development FABP content and fatty acid oxidation capacity rise concomitantly in heart and quadriceps muscle in contrast to in liver and kidney. A dietary fat content of 40 en. % increased only the FABP content of liver and adipose tissue. Peroxisomal proliferators increased fatty acid oxidation in both liver and kidney, but only the FABP content of liver, and had no effect on heart and skeletal muscle. The FABP content of muscle did not show adaptation to various conditions. Only it increased in fast-twitch muscles upon chronic electrostimulation and endurance training.  相似文献   

8.
When delipidated Mr>10,000 cut-off human fetal lung cytosol was separated on gel filtration and ion-exchange chromatography on Auto-FPLC system, two fatty acid-binding proteins (FABPs) of pI 6.9 and pI 5.4 were purified to homogeneity. On Western blotting analysis with the anti-human fetal lung pI 6.9 FABP, these two proteins showed immunochemical cross reactivity with each other and with purified hepatic FABPs but not with cardiac or gut FABP. These two FABPs have identical molecular mass of 15.2 kDa, which is slightly higher than that of the hepatic proteins (14.2 kDa). Carbohydrate covalently linked to FABPs, that may substantially add to the molecular mass, was not detected in the purified protein preparations. Amino acid analysis revealed that both the proteins have same amino acid composition each containing one Trp residue that is lacking in hepatic FABP. Different isoforms of lung FABP exhibited different binding ability for their natural ligands. These proteins bind palmitoyl CoA with higher affinity than oleic acid. pI 6.9 FABP can more rapidly and efficiently transfer fatty acid than can pI 5.4 FABP from unilammelar liposomes. Thus these FABPs may play a critical role in fatty acid transport during human fetal lung development.Abbreviations AO anthroyloxy - 12-AS 12-(9-anthroyloxy)stearic acid - FABP fatty acid-binding protein - NBD-PE [N-(4-nitrobenzo-2-oxa-1,3-diazole)phosphatidylethanolamine - Pal-CoA palmitoyl coenzyme A - PITC phenylisothiocyanate - PBS phosphate-buffered saline - PtdCho phosphatidylcholine - SUV small unilamellar vesicle - Tris tris(hydroxymethyl) amino methane  相似文献   

9.
The BODIPY-labeled fatty acid analogues are a useful addition to the tools employed to study the cellular uptake and metabolism of lipids. In this study, we show that BODIPY FL C16 binds to purified liver and intestinal fatty acid-binding proteins with high affinity at a site similar to that for the physiological fatty acid oleic acid. Further, in human intestinal Caco-2 cells BODIPY FL C16 co-localizes extensively with mitochondria, endoplasmic reticulum/Golgi, and L-FABP. Virtually no esterification of BODIPY FL C16 was observed under the experimental conditions employed. We conclude that BODIPY FL C16 may be a useful tool for studying the distribution and function of FABPs in a cellular environment.  相似文献   

10.
A radiochemical procedure for the assay of fatty acid binding by proteins   总被引:7,自引:0,他引:7  
Protein-bound and unbound fatty acids can be efficiently separated at 0 degree C using a hydrophobic column-packing material (Lipidex 1000) similar to the separation of protein-bound and unbound steroids (E. Dahlberg, M. Snochowski, and J.-A. Gustafsson (1980) Anal Biochem. 106, 380-388). Protein-bound fatty acids are also removed by Lipidex 1000 when treatment is performed at 37 degrees C. Lipidex 1000 does not exhibit binding properties for soluble proteins at 0 and 37 degrees C, in contrast to dextran-coated charcoal. Lipidex 1000 appeared to be useful for the delipidation of protein samples at 37 degrees C and for a radiochemical assay of fatty acid-binding by microgram amounts of protein at 0 degree C. With this assay we obtained results on palmitate binding to serum albumin similar to those reported on the basis of equilibrium dialysis. Delipidated proteins from dealbuminized rat liver cytosol maximally bind about 4 nmol palmitate/mg protein.  相似文献   

11.
Summary Cardiac-type fatty acid-binding protein (cFABP) from human heart muscle of three individuals was isolated and characterized as pI 5.3-cFABP. The proteins were structurally analyzed by tryptic peptide mapping, application of plasma desorption time-of-flight mass spectrometry and amino acid sequencing. All three preparations of human heart FABP, having 132 amino acids, differed from the published sequence [Offner et al. Biochem J 251: 191–198, 1988] in position 104, where Leu is found instead of Lys, and in position 124, where Cys is found instead of Ser.  相似文献   

12.
Summary For evaluation whether the membrane fatty acid-binding protein is related to mGOT, studies on the structure and function of both purified proteins were performed. Physicochemical characterization revealed that both proteins are different: the membrane fatty acid-binding protein has a molecular weight of 40 kD and a pI of 8.5–9.0, whereas rat mGOT has a molecular weight of 44 kD and a pI of 9.5–10.0. According to this distinct differences, they migrated separately on 2-dimensional electrophoresis. Furthermore, monospecific antibodies against the membrane fatty acid binding protein did not react with rat mGOT. In co-chromatography studies only the membrane fatty acid-binding protein showed affinity for long chain fatty acids, but not mGOT. Moreover, membrane binding studies were performed with the monospecific antibody to the membrane fatty acid binding protein. The inhibitory effect of this antibody on plasma membrane binding of oleate was reversed after preabsorption of the antibody with the membrane fatty acid binding protein, but was not affected after preabsorption with mGOT. These results indicate that the membrane fatty acid binding protein and mGOT are structurally and functionally not related. The data also support the significance of this membrane protein in the plasma membrane binding process of long chain fatty acids.  相似文献   

13.
Ischemia of the heart is accompanied by the tissue accumulation of long-chain fatty acids and their metabolic derivatives such as -hydroxy fatty acids and fatty acyl-CoA and acyl-L-carnitine esters. These substances might be detrimental for proper myocardial function. Previously, it has been suggested that intracellular lipid binding proteins like cytoplasmic fatty acid-binding protein (FABP) and acyl-CoA binding protein (ACBP) may bind these accumulating fatty acyl moieties to prevent their elevated levels from potentially harmful actions. In addition, the suggestion has been made that the abundantly present FABP may scavenge free radicals which are generated during reperfusion of the ischemic heart. However, these protective actions are challenged by the continuous physico-chemical partition of fatty acyl moieties between FABP and membrane structures and by the rapid release of FABP from ischemic and reperfused cardiac muscle. Careful evaluation of the available literature data reveals that at present no definite conclusion can be drawn about the potential protective effect of FABP on the ischemic and reperfused heart. Biochem123: 167–173, 1993)Abbreviations FABP Fatty Acid-Binding Protein - ACBP Acyl-CoA Binding Protein - MDGI Mammary-Derived Growth Inhibitor - CK Creatine Kinase - LDH Lactate Dehydrogenase  相似文献   

14.
Since insect flight muscles are among the most active muscles in nature, their extremely high rates of fuel supply and oxidation pose interesting physiological problems. Long-distance flights of species like locusts and hawkmoths are fueled through fatty acid oxidation. The lipid substrate is transported as diacylglycerol in the blood, employing a unique and efficient lipoprotein shuttle system. Following diacylglycerol hydrolysis by a flight muscle lipoprotein lipase, the liberated fatty acids are ultimately oxidized in the mitochondria. Locust flight muscle cytoplasm contains an abundant fatty acid-binding protein (FABP). The flight muscle FABP ofLocusta migratoria is a 15 kDa protein with an isoelectric point of 5.8, binding fatty acids in a 1:1 molar stoichiometric ratio. Binding affinity of the FABP for longchain fatty acids (apparent dissociation constant Kd=5.21±0.16 M) is however markedly lower than that of mammalian FABPs. The NH2-terminal amino acid sequence shares structural homologies with two insect FABPs recently purified from hawkmoth midgut, as well as with mammalian FABPs. In contrast to all other isolated FABPs, the NH2 terminus of locust flight muscle FABP appeared not to be acetylated. During development of the insect, a marked increase in fatty acid binding capacity of flight muscle homogenate was measured, along with similar increases in both fatty acid oxidation capacity and citrate synthase activity. Although considerable circumstantial evidence would support a function of locust flight muscle FABP in intracellular uptake and transport of fatty acids, the finding of another extremely well-flying migratory insect, the hawkmothAcherontia atropos, which employs the same lipoprotein shuttle system, however contains relatively very low amounts of FABP in its flight muscles, renders the proposed function of FABP in insect flight muscles questionable.  相似文献   

15.
Summary We have studied the effects of Efamol evening primrose oil (EPO) on fatty acid-binding proteins (L-FABP) of rat liver. EPO contains 72% cis-linoleic acid and 9% cis-gamma linolenic acid. EPO has been clinically used for treatment of a number of diseases in humans and animals. EPO is also known to lower cholesterol level in humans and animals. Feeding of an EPO supplemented diet to rats (n = 9) for 2 months decreases the oleate binding capacity of purified L-FABP of rat liver whereas the palmitate binding activity was increased by 38%. However, EPO feeding did not alter the L-FABP concentrations significantly as measured by using the fluorescence fatty acid probe, dansylamino undecanoic acid. Endogenous fatty acid analysis of L-FABPs revealed significant qualititative and quantitative changes in fatty acid pattern after EPO feeding. EPO feeding decreased the endogenous palmitate level by 53% and oleate level by 64% in L-FABPs and also EPO feeding decreased the total endogenous fatty acid content from 62 nanomole per mg of protein to 42 nanomole per mg of L-FABP (n = 3).  相似文献   

16.
Intestinal fatty acid-binding protein (I-FABP) has a clam-shaped structure that may serve as a scaffold for the design of artificial enzymes and drug carriers. In an attempt to optimize the scaffold for increased access to the interior-binding cavity, several helix-less variants of I-FABP have been engineered. The solution-state NMR structure of the first generation helix-less variant, known as Delta17-SG, revealed a larger-than-expected and structurally ill-defined loop flanking the deletion site. We hypothesized that the presence of this loop, on balance, was energetically unfavorable for the stability of the protein. The structure exhibited no favorable pairwise or nonpolar interactions in the loop that could offset the loss of configurational entropy associated with the folding of this region of the protein. As an attempt to generate a more stable protein, we engineered a second-generation helix-less variant of I-FABP (Delta27-GG) by deleting 27 contiguous residues of the wild-type protein and replacing them with a G-G linker. The deletion site of this variant (D9 through N35) includes the 10 residues spanning the unstructured loop of Delta17-SG. Chemical denaturation experiments using steady-state fluorescence spectroscopy showed that the second-generation helix-less variant is energetically more stable than Delta17-SG. The three-dimensional structure of apo-Delta27-GG was solved using triple-resonance NMR spectroscopy along with the structure calculation and refinement protocols contained in the program package ARIA/CNS. In spite of the deletion of 27 residues, the structure assumes a compact all-beta-sheet fold with no unstructured loops and open access to the interior cavity.  相似文献   

17.
To obtain insight into the relation between the release of heart-type fatty acid-binding protein (H-FABPc) and of long-chain fatty acids (FA) from injured cardiac tissue, rat hearts were Langendorff perfused according to the following scheme: 30 min normoxia, 60 min ischemia, 30 min reperfusion, 10 min Ca2+ free perfusion and finally 10 min Ca2+ repletion. During this protocol right ventricular (Q rv ) and interstitial effluent samples (Q i ) were collected at regular intervals. During reperfusion a total of 0.8±0.1 nmol H-FABPc but no FA were detected in the effluents. However, during Ca2+ readmission, 45±4 nmol H-FABPc (80–90% of total tissue content) was released with an initial (first 3 min) simultaneous release of FA (FA/H-FABPc ratio 0.90±0.07 mol/mol). Thereafter, FA release continued at 10–15 nmol per min mainly inQ rv while the rate of H-FABPc release decreased. During Ca2+ repletion, tissue FA content raised rapidly from 168±20 to 1918±107 nmol/g dry weight. These findings suggest that after severe cardiac damage initially FA is released bound to H-FABPc, whereas further FA release occurs in a non-protein bound manner.  相似文献   

18.
Summary A plasma membrane fatty acid-binding protein (h-FABPPm) has been isolated from rat hepatocytes. Analogous proteins have also been identified in adipocytes, jejunal enterocytes and cardiac myocytes, all cells with high transmembrane fluxes of fatty acids. These 43 kDa, highly basic (pl = 9.1) FABPpm 's appear unrelated to the smaller, cytosolic FABP's (designated FABP's) identified previously in the same tissues. h-FABPpm appears closely related to the mitochondrial isoform of glutamic-oxaloacetic transaminase (mGOT), and both the purified protein and liver cell plasma membranes (LPM) possess GOT enzymatic activity. From their relative GOT specific activities it is estimated that h-FABPpm constitutes approximately 2% of LPM protein, or about 0.7 × 107 sites per cell. A monoclonal antibody-based competitive inhibition enzyme immunoassay (CIEIA) for h-FABPpm is described; it yields an estimate of 3.4 x 107 h-FABPpm sites per hepatocyte. Quantitated by either method, h-FABPPm appears to be a highly abundant protein constituent of LPM.  相似文献   

19.
Summary Heart tissue contains appreciable amounts of fatty acid-binding protein (FABP). FABP is thought to play a crucial role in the transport of fatty acids from the cellular membrane to the intracellular site of oxidation and also, in case of endothelial cells, in the transfer of fatty acids from the vascular to the interstitial compartment through the endothelial cytoplasm. The present study was designed to delineate a possible quantitative relationship between the capacity of different cell types in the heart to oxidize fatty acids and the presence of FABP. Palmitate oxidation capacity, measured in homogenates of cells isolated from adult rat hearts, was 2 nmol/min per mg tissue protein in freshly isolated cardiomyocytes (CMC), but only 0.09 and 0.31 nmol/min per mg tissue protein in cultivated endothelial (CEC) and fibroblast-like cells (CFLC), respectively. Palmitate oxidation rates were closely related to the cytochrome C oxidase activity and, hence, to the mitochondrial density in the cells under investigation. In CMC the content of cytosolic H-FABP (H-FABPc) was about 4.51 µg/mg tissue protein. However, in CEC and CFLC the FABP content was less than 0.01 and 0.004 µg/mg tissue protein, respectively, corresponding to at maximum 0.2% of the FABP content of CMC. These findings indicate a marked difference between CMC and non-myocytal cells in the heart regarding their capacity to oxidize fatty acids, and a marked disproportion between the fatty acid oxidation capacity and immunochemically determined FABP content in both CEC and CFLC. The functional implication of these observations remains to be elucidated.  相似文献   

20.
Summary A cytosolic protein, able to facilitate intermembrane movements of phospholipids in vitro, has been purified to homogeneity from sunflower seedlings. This protein, which has the properties of a lipid-transfer protein (UP), is also able to bind oleoyl-CoA, as shown by FPLC chromatography. This finding, in addition to previous observations suggesting that a lipid-transfer protein from spinach leaves can bind oleic acid and that oat seedlings contain a fatty acid-binding protein with similar features than lipid transfer proteins, provides a clear demonstration that plant cells contain bifunctional fatty acid/lipid transfer proteins. These proteins can play an active role in fatty acid metabolism which involves movements of oleyl-CoA between intracellular membranes.Abbreviations FABP Fatty Acid-Binding Proteins - UP Lipid-Transfer Protein - PC Phosphatidylcholine - PI Phosphatidylinositol - PE Phosphatidylethanolamine - pI Isoelectric point  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号