首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is reported that CNS hemorrage causes membrane dysfunction and may exacerbate this damage as a result of secondary ischemia or hypoxia. Since hyperbaric oxygenation improves oxygen metabolism, it may reduce this membrane damage. The present study was conducted to reveal whether hyperbaric oxygenation influences membrane alteration after hemorrhage. Thirty minutes after subarachnoid hemorrhage induction, rats were treated with hyperbaric oxygenation 2 ATA for 1 hour. Rats were decapitated 2 hours after subarachnoid hemorrhage induction. Na+, K+-ATPase activity measurement, and spin-label studies were performed on crude synpatosomal membranes. Subarachnoid hemorrhage decreased Na+, K+-ATPase activity. Spin label studies showed that hydrophobic portions of near the membrane surface became more rigid and the mobility of the membrane protein labeled sulfhydryl groups decreased after subarachnoid hemorrhage. Hyperbaric oxygenation significantly ameliorated most of the subarachnoid hemorrhage induced alterations. We conclude that hyperbaric oxygenation may be a beneficial treatment for acute subarachnoid hemorrhage.  相似文献   

2.
3.
The peculiarities and conditions of optimal gas exchange for arresting hypoxia during prolonged (3 hours) apnoea or bradypnoea were experimentally studied in 34 dogs, using the method of apnoea oxygenation and extrapulmonary membrane removal of CO2 on "Sever" membrane gas-exchanger. It was shown that successful arrest of severe ventilation disorders of respiration by this method depends on precise registration and skillful use of the factors influencing oxygenation and CO2 removal in membrane gas-exchanger connected with peripheral arteriovenous or venovenous shunts.  相似文献   

4.
It is shown that antihypoxic ionol has promoted normalization of the air-blood lung barrier ultrastructure, activation of the surfactant system under acute hypoxic hypoxia effect as well as compensatory redistribution of the thickness of separate barrier layers due to intensified synthesis of phospholipids which are the components of cytoplasmic membranes and pulmonary surfactant.  相似文献   

5.
High altitude pulmonary oedema (HAPE) severely affects non‐acclimatized individuals and is characterized by alveolar flooding with protein‐ rich oedema as a consequence of blood‐gas barrier disruption. Limited choice for prophylactic treatment warrants effective therapy against HAPE. Keratinocyte growth factor‐2 (KGF‐2) has shown efficiency in preventing alveolar epithelial cell DNA damages in vitro. In the current study, the effects of KGF‐2 intratracheal instillation on mortality, lung liquid balance and lung histology were evaluated in our previously developed rat model of HAPE. We found that pre‐treatment with KGF‐2 (5 mg/kg) significantly decreased mortality, improved oxygenation and reduced lung wet‐to‐dry weight ratio by preventing alveolar‐capillary barrier disruption demonstrated by histological examination and increasing alveolar fluid clearance up to 150%. In addition, KGF‐2 significantly inhibited decrease of transendothelial permeability after exposure to hypoxia, accompanied by a 10‐fold increase of Akt activity and inhibited apoptosis in human pulmonary microvascular endothelial cells, demonstrating attenuated endothelial apoptosis might contribute to reduction of endothelial permeability. These results showed the efficacy of KGF‐2 on inhibition of endothelial cell apoptosis, preservation of alveolar‐capillary barrier integrity and promotion of pulmonary oedema absorption in HAPE. Thus, KGF‐2 may represent a potential drug candidate for the prevention of HAPE.  相似文献   

6.
Experiments on 11 dogs under hypoventilation hypoxia (a decrease in the respiratory minute volume by 40-50%) were made to study the efficacy of membrane oxygenation using a membrane Sever-OMP oxygenator of the blood under the conditions of minor perfusion (14-17% of the minute volume of circulation). The animals of the main series (7 dogs) with a veno-venous connection of the membrane oxygenator (MO) tolerated hypoxia quite well for 2 hours. The control animals died. The conclusion is made that membrane oxygenation with small volumes of perfusion (with the MO connected according to Seldinger) can be used in conjunction with artificial ventilation where the latter one is not effective enough.  相似文献   

7.
The oxidative-hydrolytic mechanism of interaction of coal with tissue medium and the formation of humic acids (HA) and polycarboxylic acids (PCA) from coal in the organism were demonstrated. The composition of PCA obtained from the coal withdrawn from the organism of animals was investigated by gas-liquid chromatography by means of which 28 acids of the aromatic series were identified. The method of elemental spectral analysis revealed the transition of a number of macro- and microelements into the medium of the organism. It has been shown experimentally that the decrease in the mass of coal correlates with the fibrogenic process. The conclusion has been drawn that the soluble products of the oxidative-hydrolytic breakdown of coal in the organism are among the fibrogenic factors of pneumosclerosis in anthracosis. The initial mechanism in the development of fibrosis is the damage caused by polycarboxylic acids to the microcirculatory bed of the lungs and the structures of the aerohematic barrier.  相似文献   

8.
The peculiarities of the functional state of lung surfactant as well as the character and degree of disorders in its phospholipid metabolism during venoarterial perfusion and extrapulmonary 120-min oxygenation carried out with the help of contact-type (foam-film) and membrane ("Sever") oxygenators were studied in 28 experimental dogs. It was shown that the functional state and phospholipid metabolism of lung surfactant were strongly dependent on the mode of extrapulmonary gas exchange (the type of oxygenator). Membrane oxygenation is more physiological than contact-type gas exchange. The rise in ST min of bronchoalveolar wash-outs with the application of foam-film oxygenator to 25 mN/m and above is caused by disorders in phospholipid metabolism of lung surfactant. It is manifested in the decrease of phosphatidylcholine content, the increase in sphingomyelin, the appearance of lysophosphatidylcholine fraction and the decrease in phosphatidylcholine/sphingomyelin ratio.  相似文献   

9.
Implications of hypoxia on mucosal barrier function.   总被引:4,自引:0,他引:4  
Epithelial cells which line mucosal surfaces (e.g. lung, intestine) critically function as a semi-permeable barrier to the outside world. Mucosal organs are highly vascular with extensive metabolic demands, and for this reason, are particularly susceptible to diminished blood flow and resultant tissue hypoxia. Recent work from a number of groups have defined the critical molecular and cellular determinants of barrier function in hypoxic/ischemic tissues. Here, we will briefly highlight some of these studies from both a basic and clinical viewpoint and provide a perspective on future work related to tigh tjunction function in mucosal hypoxia.  相似文献   

10.
During pulmonary edema, the alveolar space is exposed to a hypoxic environment. The integrity of the alveolar epithelial barrier is required for the reabsorption of alveolar fluid. Tight junctions (TJ) maintain the integrity of this barrier. We set out to determine whether hypoxia creates a dysfunctional alveolar epithelial barrier, evidenced by an increase in transepithelial electrical conductance (G(t)), due to a decrease in the abundance of TJ proteins at the plasma membrane. Alveolar epithelial cells (AEC) exposed to mild hypoxia (Po(2) = 50 mmHg) for 30 and 60 min decreased occludin abundance at the plasma membrane and significantly increased G(t). Other cell adhesion molecules such as E-cadherin and claudins were not affected by hypoxia. AEC exposed to hypoxia increased superoxide, but not hydrogen peroxide (H(2)O(2)). Overexpression of superoxide dismutase 1 (SOD1) but not SOD2 prevented the hypoxia-induced G(t) increase and occludin reduction in AEC. Also, overexpression of catalase had a similar effect as SOD1, despite not detecting any increase in H(2)O(2) during hypoxia. Blocking PKC-ζ and protein phosphatase 2A (PP2A) prevented the hypoxia-induced occludin reduction at the plasma membrane and increase in G(t). In summary, we show that superoxide, PKC-ζ, and PP2A are involved in the hypoxia-induced increase in G(t) and occludin reduction at the plasma membrane in AEC.  相似文献   

11.
The reflex tracheomotor responses of in situ isolated segments of the extrathoracic trachea of anesthetized, paralyzed, and ventilated dogs were monitored. Reflex tracheal constriction was evoked by passive lung deflation. The purpose of this study was to determine whether the prevailing state of oxygenation altered the magnitude of this reflex. Compared with the magnitude of the response during normoxia [arterial O2 tension (PaO2) = 78 Torr], that during hypoxia (PaO2 = 44 Torr) was nearly threefold larger while that during hyperoxia (PaO2 greater than 250 Torr) was about 50% smaller. The isocapnic changes in oxygenation by themselves usually had no effect on tracheomotor tone. The deflation-induced reflex tracheal constriction was eliminated by complete denervation of the tracheal segment but usually only diminished by partial denervation. Bilateral vagotomies or bilateral carotid body denervation also usually decreased the magnitude of the reflex. It appears that the magnitude of this reflex is dependent on the prevailing state of oxygenation and that a pulmonary stretch receptor-carotid body chemoreceptor interaction accounts for the exaggerated reflex tracheal constriction during hypoxia and the attenuated response during hyperoxia.  相似文献   

12.
The lipid structure and Ca2+ permeability of red blood cell, hepatocyte and cardiomyocyte membranes were determined while investigating the effect of hypoxia caused by iron deficiency anemia upon the structural and functional state of biological membranes. The lipid composition and barrier characteristics of membranes change under conditions of hypoxia caused by experimental iron deficiency anemia. Quantitative changes in the cell membrane lipids may be considered as an important molecular mechanism of Ca2+ transport disorder in membranes, increase of Ca2+ permeability producing its surplus in the cells and subsequent metabolic homeostatic disturbances.  相似文献   

13.
Nitric oxide (NO), synthesized by NO synthases (NOS), plays a pivotal role in regulation of pulmonary vascular tone. To examine the role of endothelial NOS (NOS3) in hypoxic pulmonary vasoconstriction (HPV), we measured left lung pulmonary vascular resistance (LPVR), intrapulmonary shunting, and arterial PO2 (PaO2) before and during left mainstem bronchus occlusion (LMBO) in mice with and without a deletion of the gene encoding NOS3. The increase of LPVR induced by LMBO was greater in NOS3-deficient mice than in wild-type mice (151 +/- 39% vs. 109 +/- 36%, mean +/- SD; P < 0.05). NOS3-deficient mice had a lower intrapulmonary shunt fraction than wild-type mice (17.1 +/- 3.6% vs. 21.7 +/- 2.4%, P < 0.05) during LMBO. Both real-time PaO2 monitoring with an intra-arterial probe and arterial blood-gas analysis during LMBO showed higher PaO2 in NOS3-deficient mice than in wild-type mice (P < 0.05). Inhibition of all three NOS isoforms with Nomega-nitro-L-arginine methyl ester (L-NAME) augmented the increase of LPVR induced by LMBO in wild-type mice (183 +/- 67% in L-NAME treated vs. 109 +/- 36% in saline treated, P < 0.01) but not in NOS3-deficient mice. Similarly, systemic oxygenation during one-lung ventilation was augmented by L-NAME in wild-type mice but not in NOS3-deficient mice. These findings indicate that NO derived from NOS3 modulates HPV in vivo and that inhibition of NOS3 improves systemic oxygenation during acute unilateral lung hypoxia.  相似文献   

14.
The aim of the present study was to compare the effect of reduced oxygenation on the contractions of pulmonary vascular and airway smooth muscle induced by leukotriene D4 (LTD4) with those induced by histamine (an agonist with similar mechanisms of smooth muscle contraction) and KCl (a voltage-dependent stimulus). During hypoxia (PO2: 40 +/- 4 Torr) the responses of isolated porcine pulmonary artery and vein spiral strips to LTD4 increased approximately three- and two-fold, respectively, and the vein also exhibited an augmented response to histamine. The augmentation was blunted (LTD4) or reversed (histamine) during anoxia (PO2: 0 +/- 2 Torr). Responses to KCl were not systematically altered by reduced oxygenation. In contrast, the contractions of the guinea pig parenchymal lung strip by all three agonists were generally suppressed by reduced oxygenation. After reoxygenation, the contractile responses of each of the three smooth muscle preparations were generally increased compared with previous and concurrent base-line observations, particularly the LTD4-induced pulmonary vein contraction that increased approximately sevenfold after reoxygenation after anoxia. The contribution (if any) of leukotrienes to hypoxic pulmonary vasoconstriction may reflect increased vascular responsiveness to leukotrienes during hypoxia as well as (or instead of) increased leukotriene release.  相似文献   

15.
Hypoxia plays an important role in the development of solid tumors and is associated with their therapeutic resistance. There exist three major forms of hypoxia: acute, chronic, and intermittent hypoxia. Previous studies have shown that cancer cells could behave in the form of adaptation to hypoxia in tumor growth, which could result in their biological changes and determine their responses to the therapies. To investigate the tumor cells' adaptation to hypoxia, we recreated two models using two lung cancer cell lines in the presence of intermittent hypoxia, which is characterized by changes in oxygen pressure within the disorganized vascular network. We investigated biological behaviors such as cell cycle, proliferation, radiation sensitivity, apoptosis and migration, hypoxia signal pathway in the lung cancer cells treated with chronic intermittent hypoxia, as well as the role of hypoxia inducible factor 1 there, hypoxia‐inducible genes analyzed by real‐time RT‐PCR chip in H446 cells treated with the model. The results indicated the changes of some hypoxia target gene expressions of those induced by hypoxia, some of which were confirmed by real‐time RT‐PCR. The cells mediated by irradiation induced resistance to radiation and apoptosis and increased metastasis in lung cancer cells. It was found that such changes were related to hypoxia inducible factor 1, alpha subunit (HIF‐1α). J. Cell. Biochem. 111: 554–563, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
We investigated whether free radical scavengers and antioxidants inhibit the accumulation of platinum (Pt) in the cerebral cortex. Pt was detected in the cerebral cortex of mice afters administration of cisplatin and exposure to short-term hypoxia. When mice were treated with either allopurinol (20 mg/kg) or catalase (100 mg/kg) before cisplatin administration and low oxygen exposure, Pt was not detected in the cerebral cortex. However, Pt was detected in the cerebral cortex of mice pretreated with either a low dosage of allopurinol or heat-denatured catalase. Furthermore, Pt was detected in the cerebral cortex of mice preadministered vitamin C, vitamin E, or deferoxamine. Lipid peroxide levels in the cerebral cortex increased 10 min after the treatment of hypoxia, and peaked 30 min after the treatment. These results suggested that short-term hypoxia produces free radicals, which allows Pt to pass through the blood-brain barrier and accumulate in the cerebral cortex, and that the production of free radicals is reduced by the administration of either allopurinol or catalase, which prevents Pt from passing through the barrier.  相似文献   

17.
目的:检测小鼠组织中受体相互作用丝氨酸/苏氨酸蛋白激酶家族(RIPs)表达谱,并检测RIP3在大鼠心肌细胞缺氧损伤后的表达。方法:①采用荧光实时定量PCR分别检测RIPs家族基因在小鼠组织(心、肝、肺、肾、脑、小肠、骨骼肌、脾和主动脉)中的mRNA表达谱,并采用Western blot进一步检测RIP3在小鼠组织的蛋白表达谱。②将培养的大鼠心肌细胞分为缺氧组和对照组,缺氧组置于缺氧环境中培养48 h,采用western blot检测其中RIP3的表达变化。结果:①mRNA水平:RIP1 mRNA在脑组织中表达最高,心脏、肺、肾、骨骼肌较低;RIP2在心脏和肺表达量较其他组织高;RIP3在肠中表达较其他组织高出4倍以上,脑组织中未检测到RIP3表达;RIP4的表达以肺最高,而骨骼肌、脑和血管中表达量低。②蛋白水平:在小鼠组织中,RIP3表达以脑、骨骼肌中最高,心脏、肝、肺中表达较低。③培养的大鼠心肌细胞中,缺氧组心肌细胞的RIP3表达量显著高于对照组(P0.05)。结论:RIPs在小鼠组织中呈现差异表达,而在培养的大鼠心肌细胞缺氧损伤后RIP3表达升高。  相似文献   

18.
Increasing the total surface area of the pulmonary blood-gas interface by capillary recruitment is an important factor in maintaining adequate oxygenation when metabolic demands increase. Capillaries are known to be recruited during conditions that raise pulmonary blood flow and pressure. To determine whether pulmonary arterioles and venules are part of the recruitment process, we made in vivo microscopic observations of the subpleural microcirculation (all vessels less than 100 microns) in the upper lung where blood flow is low (zone 2). To evoke recruitment, pulmonary arterial pressure was elevated either by an intravascular fluid load or by airway hypoxia. Of 209 arteriolar segments compared during low and high pulmonary arterial pressures, none recruited or derecruited. Elevated arterial pressure, however, did increase the number of perfused capillary segments by 96% with hypoxia and 165% with fluid load. Recruitment was essentially absent in venules (4 cases of recruitment in 289 segments as pressure was raised). These data support the concept that recruitment in the pulmonary circulation is exclusively a capillary event.  相似文献   

19.
To research the impact of autophagy on alveolar epithelial cell inflammation and its possible mechanism in the early stages of hypoxia, we established a cell hypoxia–reoxygenation model and orthotopic left lung ischemia–reperfusion model. Rat alveolar epithelial cells stably expressing GFP-LC3 were treated with an autophagy inhibitor (3-MA) or an autophagy promoter (rapamycin), followed by hypoxia–reoxygenation treatment for 2, 4, and 6 hr in vitro. In vivo, 20 male Sprague Dawley rats were randomly divided into four groups (model group: No blocking of the hilum in the left lung; control group: Blocking of the hilum in the left lung for 1 hr with dimethyl sulfoxide lavage; 3-MA group: Blocking of the hilum in the left lung for 1 hr with 100 ml/kg of 3-MA (5 μmol/L) solution lavage; and rapamycin group: Blocking of the hilum in the left lung for 1 hr with 100 ml/kg of rapamycin (250 nmol/L) solution lavage) to establish an orthotopic left lung ischemia model. This study demonstrated that rapamycin significantly suppressed the nuclear factor kappa B signaling pathway and limited the expression of proinflammatory factors. A contrary result was found after the 3-MA pretreatment. These findings indicate that autophagy reduces ischemia–reperfusion injury by repressing inflammatory signaling pathways in the early stages of hypoxia in vitro and in vivo. Autophagy could be a new protective method for application in lung ischemia–reperfusion injury.  相似文献   

20.
Calcitonin gene-related peptide (CGRP) is believed to play an important role in maintaining low pulmonary vascular resistance (PVR) and may be involved in modulating the pulmonary vascular response to chronic hypoxia. In the present study, an adenoviral vector encoding CGRP (AdRSVCGRP) was used to examine the effects of in vivo gene transfer of CGRP to the lung on increases in PVR, right ventricular mass, and pulmonary vascular remodeling that occurs in chronic hypoxia in the mouse. Following intratracheal administration of AdRSVCGRP or reporter gene mice were exposed to 16 days of chronic hypoxia (FIO(2) 0.10). The increase in pulmonary arterial pressure (PAP), PVR, right ventricular mass, and pulmonary vascular remodeling in response to chronic hypoxia was attenuated in animals overexpressing CGRP, whereas systemic arterial pressure was not altered. Following exposure to hypoxia, a subgroup of mice were treated with capsaicin, which did not significantly alter CGRP expression in the mouse lung. These data show that in vivo transfer of the CGRP gene to the lung attenuates the increase in PVR, right ventricular mass, and pulmonary vascular remodeling in chronically hypoxic mice with little effect on the systemic circulation. Moreover, these data suggest that adenoviral gene transfer of CGRP to the lung results in expression of the gene product in non-neural tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号