首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 805 毫秒
1.
优质蛋白玉米黄粒系产量配合力及其杂种优势模式的分析   总被引:6,自引:0,他引:6  
番兴明  谭静  黄必华  刘峰 《遗传》2001,23(6):547-552
研究玉米种质的遗传关系及其杂种优势模式对玉米育种者有着极为重要的指导意义.本研究对从国际玉米小麦改良中心(CIMMYT)引入的及国内自育成的10个优质蛋白玉米(QPM)黄粒优良系进行了配合力分析及杂优模式的初步研究.这10个QPM优良系中有5个来自CIMMYT的热带、亚热带系;5个为国内自育成的骨干系.通过部分双列杂交获得45个杂交组合,将这些组合种植在云南省及广西自治区的三种不同生态条件下进行观察鉴定.产量的方差分析结果表明,品种之间、环境之间的差异达到极显著水平,而重复之间不显著;产量的一般配合力差异达极显著水平,而特殊配合力的差异不显著.杂交组合CML166×齐205具有最高产量(10880kg/hm2),杂交组合长631/02×中系096/02具有最低产量(5496kg/hm2).自交系CML161产量的一般配合力效应值最高(1010.53),自交系CML166产量的一般配合力效应值其次(947.11);而自交系中系096/02产量的一般配合力效应值最低(-1119.98).自交系CML194与忻9101/02具有最高的产量特殊配合力效应值(1813.50),自交系CML166与齐205产量的特殊配合力效应值也较高(1272.00);而自交系忻9101/02与齐205产量的特殊配合力效应值最低(-1670.96).根据杂交组合产量性状的配合力分析,可初步将这10个优质蛋白玉米自交系划分为4个杂种优势群和4种杂种优势模式.  相似文献   

2.
正In times of climate change, population growth and resource depletion, the future well-being of mankind will greatly depend on the ability to breed/engineer crop plants for high yield, low input and high quality.Based on the evaluation of historical yield increases, it seems that yield of major grain crops, such as rice or  相似文献   

3.
<正>Rice grain size is an important trait that affects rice yield and quality, and thus the identification of genes related to grain size is of great significance for improving rice yield and quality. Many genes related to grain size, such as DEP1(Huang et al., 2009),GW5(Liu et al., 2017), and GW7/GL7(Wang et al., 2015 a, b), have  相似文献   

4.
Yield-related QTLs and Their Applications in Rice Genetic Improvement   总被引:1,自引:0,他引:1  
Grain yield is one of the most important indexes in rice breeding,which is governed by quantitative trait loci (QTLs).Different map-ping populations have been used to explore the QTLs controlling yield related traits.Primary populations such as F 2 and recombi-nant inbred line populations have been widely used to discover QTLs in rice genome-wide,with hundreds of yield-related QTLs detected.Advanced populations such as near isogenic lines (NILs) are efficient to further fine-map and clone target QTLs.NILs for primarily identified QTLs have been proposed and confirmed to be the ideal population for map-based cloning.To date,20 QTLs directly affecting rice grain yield and its components have been cloned with NIL-F 2 populations,and 14 new grain yield QTLs have been validated in the NILs.The molecular mechanisms of a continuously increasing number of genes are being unveiled,which aids in the understanding of the formation of grain yield.Favorable alleles for rice breeding have been ’mined’ from natural cultivars and wild rice by association analysis of known functional genes with target trait performance.Reasonable combination of favorable alleles has the potential to increase grain yield via use of functional marker assisted selection.  相似文献   

5.
正Rice is one of the most important staple food for over half of the world's population,and a substantial increase in productivity and quality of rice grain will be required to feed a growing human population.Grain size and shape are the two important components contributing to grain yield and quality,because they impact both yield potential and end-use quality.Over the past 50 years,the  相似文献   

6.
正Over the past 50 years,the Green Revolution and exploitation of heterosis have allowed cereal grain yield to keep pace with worldwide population growth.Unfortunately,plant growth and crop productivity are heavily dependent on the application of synthetic fertilizers.In the next 50 years,global population is projected to be 50%larger than at present and global food demand is projected to double(Tilman et al.,2002).Further increases in fertilizer supplies are unlikely to be effective in improving grain yield because  相似文献   

7.
A reductionist approach to dissecting grain weight and yield in wheat   总被引:1,自引:0,他引:1  
Grain yield is a highly polygenic trait that is influenced by the environment and integrates events throughout the life cycle of a plant. In wheat, the major grain yield components often present compensatory effects among them, which alongside the polyploid nature of wheat,makes their genetic and physiological study challenging. We propose a reductionist and systematic approach as an initial step to understand the gene networks regulating each individual yield component. Here, we focus on grain weight and discuss the importance of examining individual subcomponents, not only to help in their genetic dissection, but also to inform our mechanistic understanding of how they interrelate. This knowledge should allow the development of novel combinations, across homoeologs and between complementary modes of action, thereby advancing towards a more integrated strategy for yield improvement. We argue that this will break barriers in terms of phenotypic variation,enhance our understanding of the physiology of yield, and potentially deliver improved on-farm yield.  相似文献   

8.
Most research on micronutrients in maize has focused on maize grown as a monocrop. The aim of this study was to determine the effects of intercropping on the concentrations of micronutrients in maize grain and their acquisition via the shoot. We conducted field experiments to investigate the effects of intercropping with turnip (Brassica campestris L.), faba bean (Vicia faba L.), chickpea (Cicer arietinum L.), and soybean (Glycine max L.) on the iron (Fe), manganese (Mn), copper (Cu) and zinc (Zn) concentrations in the grain and their acquisition via the above-ground shoots of maize (Zea mays L.). Compared with monocropped maize grain, the grain of maize intercropped with legumes showed lower concentrations of Fe, Mn, Cu, and Zn and lower values of their corresponding harvest indexes. The micronutrient concentrations and harvest indexes in grain of maize intercropped with turnip were the same as those in monocropped maize grain. Intercropping stimulated the above-ground maize shoot acquisition of Fe, Mn, Cu and Zn, when averaged over different phosphorus (P) application rates. To our knowledge, this is the first report on the effects of intercropping on micronutrient concentrations in maize grain and on micronutrients acquisition via maize shoots (straw+grain). The maize grain Fe and Cu concentrations, but not Mn and Zn concentrations, were negatively correlated with maize grain yields. The concentrations of Fe, Mn, Cu, and Zn in maize grain were positively correlated with their corresponding harvest indexes. The decreased Fe, Mn, Cu, and Zn concentrations in grain of maize intercropped with legumes were attributed to reduced translocation of Fe, Mn, Cu, and Zn from vegetative tissues to grains. This may also be related to the delayed senescence of maize plants intercropped with legumes. We conclude that turnip/maize intercropping is beneficial to obtain high maize grain yield without decreased concentrations of Fe, Mn, Cu, and Zn in the grain. Further research is required to clarify the mechanisms underlying the changes in micronutrient concentrations in grain of intercropped maize.  相似文献   

9.
During grain filling,starch and other nutrients accumulate in the endosperm;this directly determines grain yield and grain quality in crops such as rice(Oryza sativa),maize(Zea mays),and wheat(Triticum aestivum).Grain filling is a complex trait affected by both intrinsic and environmental factors,making it difficult to explore the underlying genetics,molecular regulation,and the application of these genes for breeding.With the development of powerful genetic and molecular techniques,much has bee...  相似文献   

10.
杨学举  张树华  荣广哲 《遗传》1999,21(4):34-36
利用5个小麦亲本,按Griffing方法4组配一套完全双列杂交,研究小麦籽粒蛋白质组分的配合力和遗传力。结果表明,同一性状不同亲本的一般配合力效应和不同组合间的特殊配合力效应差异都较大。球蛋白、醇溶蛋白和谷蛋白含量的遗传主要受加性基因控制,清蛋白含量的遗传不存在加性基因作用,以显性基因作用为主。 Abstract: A set of diallel crosses involving 5 wheat parents, according to the random model of Griffing Method 4, was made to study the combining ability and heritability of grain protein components in wheat. The results indicated that GCA effects of different parents for the same trait varied significantly. And SCA effects of different combination studied varied obviously. The inheritance of globulin, gliadin and glutenin contents were mainly controlled by additive genes. Dominant genes functioned mainly on albumin content without additive gene.  相似文献   

11.
12.
13.
14.
15.
In experiments on Black Sea skates (Raja clavata), the potential of the receptor epithelium of the ampullae of Lorenzini and spike activity of single nerve fibers connected to them were investigated during electrical and temperature stimulation. Usually the potential within the canal was between 0 and –2 mV, and the input resistance of the ampulla 250–400 k. Heating of the region of the receptor epithelium was accompanied by a negative wave of potential, an increase in input resistance, and inhibition of spike activity. With worsening of the animal's condition the transepithelial potential became positive (up to +10 mV) but the input resistance of the ampulla during stimulation with a positive current was nonlinear in some cases: a regenerative spike of positive polarity appeared in the channel. During heating, the spike response was sometimes reversed in sign. It is suggested that fluctuations of the transepithelial potential and spike responses to temperature stimulation reflect changes in the potential difference on the basal membrane of the receptor cells, which is described by a relationship of the Nernst's or Goldman's equation type.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. I. M. Sechenov, Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Pacific Institute of Oceanology, Far Eastern Scientific Center, Academy of Sciences of the USSR, Vladivostok. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 67–74, January–February, 1980.  相似文献   

16.
17.
18.
19.
20.
Evolution of living organisms is closely connected with evolution of structure of the system of regulations and its mechanisms. The functional ground of regulations is chemical signalization. As early as in unicellular organisms there is a set of signal mechanisms providing their life activity and orientation in space and time. Subsequent evolution of ways of chemical signalization followed the way of development of delivery pathways of chemical signal and development of mechanisms of its regulation. The mechanism of chemical regulation of the signal interaction is discussed by the example of the specialized system of transduction of signal from neuron to neuron, of effect of hormone on the epithelial cell and modulation of this effect. These mechanisms are considered as the most important ways of the fine and precise adaptation of chemical signalization underlying functioning of physiological systems and organs of the living organism  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号