首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
RNA silencing can be initiated upon dsRNA accumulation and results in homology-dependent degradation of target RNAs mediated by 21–23 nt small interfering RNAs (siRNAs). These small regulatory RNAs can direct RNA degradation via different routes such as the RdRP/Dicer- and the RNA-induced silencing complex (RISC)-catalysed pathways. The relative contribution of both pathways to degradation of target RNAs is not understood. To gain further insight in the process of target selection and degradation, we analysed production of siRNAs characteristic for Dicer-mediated RNA degradation during silencing of mRNAs and chimeric viral RNAs in protoplasts from plants of a transgenic tobacco silencing model line. We show that small RNA accumulation is limited to silencing target regions during steady-state mRNA silencing. For chimeric viral RNAs, siRNA production appears dependent on pre-established cellular silencing conditions. The observed siRNA accumulation profiles imply that silencing of viral target RNAs in pre-silenced protoplasts occurs mainly via a RISC-mediated pathway, guided by (pre-existing) siRNAs derived from cellular mRNAs. In cells that are not silenced at the time of infection, viral RNA degradation seems to involve Dicer action directly on the viral RNAs. This suggests that the silencing mechanism flexibly deploys different components of the RNA degradation machinery in function of the prevailing silencing status.  相似文献   

2.
RNA silencing is a potent means of antiviral defense in plants and animals. A hallmark of this defense response is the production of 21- to 24-nucleotide viral small RNAs via mechanisms that remain to be fully understood. Many viruses encode suppressors of RNA silencing, and some viral RNAs function directly as silencing suppressors as counterdefense. The occurrence of viroid-specific small RNAs in infected plants suggests that viroids can trigger RNA silencing in a host, raising the question of how these noncoding and unencapsidated RNAs survive cellular RNA-silencing systems. We address this question by characterizing the production of small RNAs of Potato spindle tuber viroid (srPSTVds) and investigating how PSTVd responds to RNA silencing. Our molecular and biochemical studies provide evidence that srPSTVds were derived mostly from the secondary structure of viroid RNAs. Replication of PSTVd was resistant to RNA silencing, although the srPSTVds were biologically active in guiding RNA-induced silencing complex (RISC)-mediated cleavage, as shown with a sensor system. Further analyses showed that without possessing or triggering silencing suppressor activities, the PSTVd secondary structure played a critical role in resistance to RISC-mediated cleavage. These findings support the hypothesis that some infectious RNAs may have evolved specific secondary structures as an effective means to evade RNA silencing in addition to encoding silencing suppressor activities. Our results should have important implications in further studies on RNA-based mechanisms of host-pathogen interactions and the biological constraints that shape the evolution of infectious RNA structures.  相似文献   

3.
4.
5.
The review considers the cytoplasmic silencing of viral RNAs by short RNAs and the silencing of endogenous mRNAs by specific short double-stranded microRNAs. The role of some cell factors such as Dicer, Argonaute, RNA-dependent RNA polymerase, RNA polymerase IV, and pectin methylesterase is described in detail. The role of viral proteins and nucleic acids in silencing suppression and possible biotechnological applications of this mechanism are discussed.  相似文献   

6.
Adenovirus infection has a tremendous impact on the cellular silencing machinery. Adenoviruses express high amounts of non-coding virus associated (VA) RNAs able to saturate key factors of the RNA interference (RNAi) processing pathway, such as Exportin 5 and Dicer. Furthermore, a proportion of VA RNAs is cleaved by Dicer into viral microRNAs (mivaRNAs) that can saturate Argonaute, an essential protein for miRNA function. Thus, processing and function of cellular miRNAs is blocked in adenoviral-infected cells. However, viral miRNAs actively target the expression of cellular genes involved in relevant functions such as cell proliferation, DNA repair or RNA regulation. Interestingly, the cellular silencing machinery is active at early times post-infection and can be used to control the adenovirus cell cycle. This is relevant for therapeutic purposes against adenoviral infections or when recombinant adenoviruses are used as vectors for gene therapy. Manipulation of the viral genome allows the use of adenoviral vectors to express therapeutic miRNAs or to be silenced by the RNAi machinery leading to safer vectors with a specific tropism. This article is part of a "Special Issue entitled:MicroRNAs in viral gene regulation".  相似文献   

7.
RNA silencing plays an important role in development through the action of micro (mi) RNAs that fine tune the expression of a large portion of the genome. But, in plants and insects, it is also a very important player in innate immune responses, especially in antiviral defense. It is now well established that the RNA silencing machinery targets plant as well as insect viruses. While the genetic basis underlying this defense mechanism in these organisms starts being elucidated, much less is known about the possible antiviral role of RNA silencing in mammals. In order to identify siRNAs coming from viruses in infected human cells, small RNAs from cells infected with RNA viruses, such as hepatitis C virus, yellow fever virus or HIV-1, were cloned and sequenced, but no virus-specific siRNAs could be detected. On the contrary, viral small RNAs were found in cells infected by the DNA virus Epstein-Barr. A closer look at these revealed that they were not siRNAs, but rather resembled miRNAs. This finding indicated that, rather than being targeted by RNA silencing, human DNA viruses seem to have evolved their own miRNAs to modulate the expression of host genes. This primary observation has been extended to other members of the herpesvirus family as well as other DNA viruses such as the polyomavirus SV40. Viral miRNAs have the potential to act both in cis to regulate expression of viral genes, or in trans on host genes. There are good indications for the cis mode of action, but the identification of cellular targets of these small viral regulators is only in its infancy.  相似文献   

8.
9.
Small RNAs, including small interfering RNAs (siRNAs), microRNAs (miRNAs) and Piwi-associated interfering RNAs (piRNAs), are powerful gene expression regulators. This RNA-mediated regulation results in sequence-specific inhibition of gene expression by translational repression and/or mRNA degradation. siRNAs and miRNAs are generated by RNase III enzymes and subsequently loaded into Argonaute protein, a key component of the RNA induced silencing complex (RISC), to form the core of the RNA silencing machinery. RNA silencing acts as an ancient cell defense system against molecular parasites, such as transgenes, viruses and transposons. RNA silencing also plays an important role in the control of development. In plants, RNA silencing serves as a potent antiviral defense system. In response, many viruses have developed strategies to suppress RNA silencing. The striking sequence diversity among viral suppressors suggests that different viral suppressors could target different components of the RNA silencing machinery at different steps in different suppressing modes. Significant progresses have been made in this field for the past 5 years on the basis of structural information derived from RNase III family proteins, Dicer fragments and homologs, Argonaute homologs and viral suppressors. In this paper, we will review the current progress on the understanding of molecular mechanisms of RNA silencing; highlight the structural principles determining the protein–RNA recognition events along the RNA silencing pathways and the suppression mechanisms displayed by viral suppressors.  相似文献   

10.
近年来,转运RNA(transfer RNA,tRNA)衍生的小RNA(tRNA-derived small RNA,tsRNAs)被认为是一种新的、潜在的非编码RNAs(non-coding RNA,ncRNAs)。根据在前体或成熟tRNA上切割位置的不同,tsRNAs主要被分为两种类型,即tRNA halves(tRNA-derived stress-induced RNA,tiRNAs)和tRNA衍生片段(tRNA-derived fragment,tRFs)。越来越多的证据表明,tsRNAs参与翻译起始抑制、基因沉默和调节核糖体发生等多种细胞代谢过程,并在癌症、神经退行性疾病、代谢性疾病和病毒感染等相关疾病的发生、发展中都起着重要的作用。综述tsRNAs生物学功能和作用机制及其在相关疾病中的潜在应用,总结tsRNAs研究目前存在的问题和未来的研究方向。  相似文献   

11.
12.
13.
RNA沉默在植物生物逆境反应中的作用   总被引:1,自引:0,他引:1  
谢兆辉 《遗传》2010,32(6):561-570
RNA沉默是真核生物共有的基因表达调节机制和防御机制。在植物RNA沉默中, 一些小RNAs, 如微小 RNAs和小干扰RNAs, 在植物防御病毒、细菌或食草动物的反应中具有重要作用。为了抑制宿主的RNA沉默系统, 植物病毒或细菌进化出了在RNA沉默不同阶段起作用的病毒沉默抑制子或细菌沉默抑制子, 来克服寄主的RNA沉默反应。文章就植物RNA沉默、病毒沉默抑制子、细菌沉默抑制子及其相关防御反应的一些新进展做一概述。  相似文献   

14.
Endogenous small RNAs and antibacterial immunity in plants   总被引:2,自引:0,他引:2  
Jin H 《FEBS letters》2008,582(18):2679-2684
  相似文献   

15.
The unspliced human immunodeficiency virus type 1 (HIV-1) RNAs are translated as Gag and Gag-Pol polyproteins or packaged as genomes into viral particles. Efficient translation is necessary before the transition to produce infective virions. The viral protein Rev exports all intron-containing viral RNAs; however, it also appears to enhance translation. Cellular microRNAs target cellular and viral mRNAs to silence their translation and enrich them at discrete cytoplasmic loci that overlap with the putative interim site of Gag and the genome. Here, we analyzed how Rev-mediated transport and the splicing status of the mRNA influenced the silencing status imposed by microRNA. Through identification and mutational analysis of the silencing sites in the HIV-1 genome, we elucidated the effect of silencing on virus production. Renilla luciferase mRNA, which contains a let-7 targeting site in its 3′ untranslated region, was mediated when it was transported by Rev and not spliced, but it was either not mediated when it was spliced even in a partial way or it was Rev-independent. The silencing sites in the pol and env-nef regions of the HIV-1 genome, which were repressed in T cells and other cell lines, were Drosha-dependent and could also be modulated by Rev in an unspliced state. Mutant viruses that contained genomic mutations that reflect alterations to show more derepressive effects in the 3′ untranslated region of the Renilla luciferase gene replicated more slowly than wild-type virus. These findings yield insights into the HIV-1 silencing sites that might allow the genome to avoid translational machinery and that might be utilized in coordinating virus production during initial virus replication. However, the function of Rev to modulate the silencing sites of unspliced RNAs would be advantageous for the efficient translation that is required to support protein production prior to viral packaging and particle production.  相似文献   

16.
RNA silencing is a broadly conserved machinery and is involved in many biological events. Small RNAs are key molecules in RNA silencing pathway that guide sequence-specific gene regulations and chromatin modifications. The silencing machinery works as an anti-viral defense in virus-infected plants. It is generally accepted that virus-specific small interfering (si) RNAs bind to the viral genome and trigger its cleavage. Previously, we have cloned and obtained sequences of small RNAs from Arabidopsis thaliana infected or uninfected with crucifer Tobacco mosaic virus. MicroRNAs (miRNAs) accumulated to a higher percentage of total small RNAs in the virus-infected plants. This was partly because the viral replication protein binds to the miRNA/miRNA* duplexes. In the present study, we mapped the sequences of small RNAs other than virus-derived siRNAs to the Arabidopsis genome and assigned each small RNA. It was demonstrated that only miRNAs increased as a result of viral infection. Furthermore, some newly identified miRNAs and miRNA candidates were found from the virus-infected plants despite a limited number of examined sequences. We propose that it is advantageous to use virus-infected plants as a source for cloning and identifying new miRNAs.  相似文献   

17.
RNAi plays important roles in many biological processes, including cellular defense against viral infection. Components of the RNAi machinery are widely conserved in plants and animals. In mammals, microRNAs (miRNAs) represent an abundant class of cell encoded small noncoding RNAs that participate in RNAi-mediated gene silencing. Here, findings that HIV-1 replication in cells can be regulated by miRNAs and that HIV-1 infection of cells can alter cellular miRNA expression are reviewed. Lessons learned from and questions outstanding about the complex interactions between HIV-1 and cellular miRNAs are discussed.  相似文献   

18.
19.
Cell-to-cell trafficking of RNA and RNA silencing through plasmodesmata   总被引:1,自引:0,他引:1  
Hyun TK  Uddin MN  Rim Y  Kim JY 《Protoplasma》2011,248(1):101-116
  相似文献   

20.
Nasopharyngeal carcinoma is a human malignancy consistently associated with the Epstein-Barr virus. Exposure to non-viral carcinogens and genetic predisposition are other crucial etiologic factors. Tumor development appears to require the expression of a small subset of transforming viral RNAs and proteins with concomitant silencing of most other viral genes. Impairment of the interactions of viral proteins with cellular partners or disruption of viral latency might prove to be useful for novel therapeutic strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号