首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
大肠杆菌NZN111是敲除了乳酸脱氢酶的编码基因(ldhA)和丙酮酸-甲酸裂解酶的编码基因(pflB)的发酵生产丁二酸的潜力菌株。厌氧条件下NADH不能及时再生为NAD+,引起胞内辅酶NAD(H)的不平衡,最终导致厌氧条件下菌株不能利用葡萄糖生长代谢。nadD为催化NAD(H)合成途径中烟酸单核苷酸(NaMN)生成烟酸腺嘌呤二核苷酸(NaAD)的烟酸单核苷酸腺苷酰转移酶(Nicotinic acid mononucleotide adenylyltransferase,NAMNAT)的编码基因,通过过量表达nadD基因能够提高NAD(H)总量与维持合适的NADH/NAD+比例。文中构建了重组菌E.coli NZN111/pTrc99a-nadD,在厌氧摇瓶发酵过程中通过添加终浓度为1.0 mmol/L的IPTG诱导表达,重组菌E.coli NZN111/pTrc99a-nadD中NAD+和NADH的浓度分别比宿主菌E.coli NZN111提高了3.21倍和1.67倍,NAD(H)总量提高了2.63倍,NADH/NAD+从0.64降低为0.41,使重组菌株恢复了厌氧条件下生长和代谢葡萄糖的能力。重组菌与对照菌相比,72 h内可以消耗14.0 g/L的葡萄糖产6.23 g/L的丁二酸,丁二酸产量增加了19倍。  相似文献   

2.
The enzyme nicotinic acid mononucleotide adenylyltransferase (NaMN AT; EC 2.7.7.18) is essential for the synthesis of nicotinamide adenine dinucleotide and is a potential target for antibiotics. It catalyzes the transfer of an AMP moiety from ATP to nicotinic acid mononucleotide to form nicotinic acid adenine dinucleotide. In order to provide missing structural information on the substrate complexes of NaMN AT and to assist structure-based design of specific inhibitors for antibacterial discovery, we have determined the crystal structure of NaMN AT from Pseudomonas aeruginosa in three distinct states, i.e. the NaMN-bound form at 1.7A resolution and ATP-bound form at 2.0A as well as its apo-form at 2.0A. They represent crucial structural information necessary for better understanding of the substrate recognition and the catalytic mechanism. The substrate-unbound and substrate-complexed structures are all in the fully open conformation and there is little conformational change upon binding each of the substrates. Our structures indicate that a conformational change is necessary to bring the two substrates closer together for initiating the catalysis. We suggest that such a conformational change likely occurs only after both substrates are simultaneously bound in the active site.  相似文献   

3.
R. Wagner  K. G. Wagner 《Planta》1985,165(4):532-537
The enzyme activities of the pyridine-nucleotide cycle, which transform nicotinic acid mononucleotide (NaMN) into NAD, have been characterized. The investigations were based on the extraction of protein, its purification on disposable gel-filtration columns, and determination of the enzymatic activities by high-performance liquid chromatography techniques. The latter technique avoided the synthesis and use of radioactive precursors. The NaMN-adenylyltransferase which converts NaMN into NaAD (nicotinic acid adenine dinucleotide) and NAD-synthetase which converts NaAD into NAD were characterized by their kinetic parameters and their specific activities in different tobacco tissues. This is the first report on NAD-synthetase from tissue of a higher plant. It was found that NAD-synthetase accepted both glutamine and asparagine for the amide transfer. Adenylyltransfer also occured with nicotinamide mononucleotide (NMN) which was transformed to NAD, whereas the glutamine-dependent amidation was only observed with NaAD. Thus, an additional route for the synthesis of NAD (NaMNNMNNAD) obviously does not exist. A comparison of the enzyme activities in tobacco tissues with different capacities for the synthesis of nicotine showed that, in contrast to quinolinic acid phosphoribosyltransferase whose activity was strictly correlated with the nicotine content, only NaMN-adenylyltransferase showed a smooth correlation, whereas NAD-synthetase was not affected at all.Abbreviations HPLC high-performance liquid chromatography - QA quinolinic acid - NaMN nicotinic acid mononucleotide - NaAD nicotinic acid adenine dinucleotide - NMN nicotinamide mononucleotide  相似文献   

4.
Nicotinamide/Nicotinate mononucleotide (NMN/NaMN) adenylyltransferase is an indispensable enzyme in both de novo biosynthesis and salvage of NAD+ and NADP+. In prokaryotes, it is absolutely required for cell survival, thus representing an attractive target for the development of new broad-spectrum antibacteria inhibitors. The crystal structures of E. coli NaMN adenylyltransferase (NMNAT) and its complex with deamido-NAD (NaAD) revealed that ligand binding causes large conformational changes in several loop regions around the active site. The enzyme specifically recognizes the deamidated pyridine nucleotide through interactions between nicotinate carboxylate with several protein main chain amides and a positive helix dipole. Comparison of E. coli NMNAT with those from archaeal organisms revealed extensive differences in the active site architecture, enzyme-ligand interaction mode, and bound dinucleotide conformations. The bacterial NaMN adenylyltransferase structures described here provide a foundation for structure-based design of specific inhibitors that may have therapeutic potential.  相似文献   

5.
The nadD gene, encoding the enzyme nicotinic acid mononucleotide (NaMN) adenylyltransferase (AT), is essential for the synthesis of NAD and subsequent viability of the cell. The nadD gene in Bacillus subtilis (yqeJ) was identified by sequence homology with other bacterial nadD genes and by biochemical characterization of the gene product. NaMN AT catalyzes the reversible adenylation of both NaMN and the nicotinamide mononucleotide (NMN) but shows specificity for the nicotinate. In contrast to other known NMN ATs, biophysical characterizations reveal it to be a dimer. The NaMN AT crystal structure was determined for both the apo enzyme and product-bound form, to 2.1 and 3.2 A, respectively. The structures reveal a "functional" dimer conserved in both crystal forms and a monomer fold common to members of the nucleotidyl-transferase alpha/beta phosphodiesterase superfamily. A structural comparison with family members suggests a new conserved motif (SXXXX(R/K)) at the N terminus of an alpha-helix, which is not part of the shared fold. Interactions of the nicotinic acid with backbone atoms indicate the structural basis for specificity.  相似文献   

6.
Biosynthesis of NAD(P) in bacteria occurs either de novo or through one of the salvage pathways that converge at the point where the reaction of nicotinate mononucleotide (NaMN) with ATP is coupled to the formation of nicotinate adenine dinucleotide (NaAD) and inorganic pyrophosphate. This reaction is catalyzed by nicotinate mononucleotide adenylyltransferase (NMAT), which is essential for bacterial growth, making it an attractive drug target for the development of new antibiotics. Steady-state kinetic and direct binding studies on NMAT from Bacillus anthracis suggest a random sequential Bi-Bi kinetic mechanism. Interestingly, the interactions of NaMN and ATP with NMAT were observed to exhibit negative cooperativity, i.e. Hill coefficients < 1.0. Negative cooperativity in binding is supported by the results of X-ray crystallographic studies. X-ray structures of the B. anthracis NMAT apoenzyme, and the NaMN- and NaAD-bound complexes were determined to resolutions of 2.50 Å, 2.60 Å and 1.75 Å, respectively. The X-ray structure of the NMAT-NaMN complex revealed only one NaMN molecule bound in the biological dimer, supporting negative cooperativity in substrate binding. The kinetic, direct-binding, and X-ray structural studies support a model in which the binding affinity of substrates to the first monomer of NMAT is stronger than that to the second, and analysis of the three X-ray structures reveals significant conformational changes of NMAT along the enzymatic reaction coordinate. The negative cooperativity observed in B. anthracis NMAT substrate binding is a unique property that has not been observed in other prokaryotic NMAT enzymes. We propose that regulation of the NAD(P) biosynthetic pathway may occur, in part, at the reaction catalyzed by NMAT.  相似文献   

7.
Li YF  Bao WG 《FEMS yeast research》2007,7(5):657-664
NAD holds a key position in metabolism and cellular regulatory events as a major redox carrier and a signalling molecule. NAD biosynthesis pathways have been reconstructed and compared in seven yeast species with completely sequenced genomes, including Saccharomyces cerevisiae, Kluyveromyces lactis, Candida glabrata, Debaryomyces hansenii, Candida albicans, Yarrowia lipolytica and Schizosaccharomyces pombe. Both amino acid and nucleotide sequence similarity analysis in silico indicated that de novo NAD biosynthesis might not exist in K. lactis, C. glabrata and Schiz. pombe, while other species have the kynurenine pathway. It also showed that the NAD salvage pathway via nicotinic acid and nicotinic acid mononucleotide is conserved in all of these yeasts. Deletion of KlNPT1 (the gene for nicotinate phosphoribosyl-transferase) is lethal, which demonstrates that this salvage pathway, utilizing exogenous nicotinic acid, is the unique route to synthesize NAD in K. lactis. The results suggested that the basis of the variation of niacin requirements in yeasts lies in their different combinations of NAD biosynthesis pathways. The de novo pathway is absent but the salvage pathway is conserved in niacin-negative yeasts, while both pathways coexist in niacin-positive yeasts.  相似文献   

8.
There are three NAD biosynthetic pathways: the nicotinic acid-NAD, nicotinamide-NAD, and quinolinic acid (derived from tryptophan)-NAD pathways. To discover the main pathways of NAD biosyntheses in various tissues of the rat, the tissue distribution of nicotinamidase, quinolinate phosphoribosyltransferase, nicotinate phosphoribosyltransferase, nicotinamide phosphoribosyl-transferase, nicotinamide mononucleotide adenylyltransferase, and NAD+ synthetase were investigated. All of the tissues could synthesize NAD from nicotinamide, judging from that the activities of nicotinamide phosphoribosyltransferase and NMN adenylyltransferase detected in all of the tissues. From nicotinic acid, only liver, kidneys, and heart could. Liver and kidney can also synthesize NAD de novo from quinolinic acid.  相似文献   

9.
While mammals and fungi possess nicotinate/nicotinamide mononucleotide adenyltransferase (NMNAT) isoforms, Arabidopsis thaliana only contains a single NMNAT gene, AtNMNAT (At5g55810). We analyzed the enzymatic activity of the AtNMNAT-encoded protein to determine the role of AtNMNAT in plant development. AtNMNAT catalyzed the synthesis of nicotinate adenine dinucleotide (NaAD) from nicotinate mononucleotide (NaMN) in the Preiss-Handler-dependent pathway, and of nicotinamide adenine dinucleotide (NAD) from nicotiamide mononucleotide (NMN) in the Preiss-Handler-independent pathway. Prominent AtNMNAT expression was detected in the male gametophyte. Moreover, AtNMNAT expression was spatio-temporally regulated during microspore development and pollen tube growth. Disruption of the AtNMNAT gene (atnmnat mutant) was characterized by a decrease in NAD content in pollen. Cytological examinations revealed that the atnmnat mutant was gametophytically impaired in in vivo and in vitro pollen tube growth. Our results suggest that metabolic fulfillment via the NAD pathway is indispensable for normal pollen growth and subsequent normal seed production.  相似文献   

10.
1. The pathway of NAD synthesis in mammary gland was examined by measuring the activities of some of the key enzymes in each of the tryptophan, nicotinic acid and nicotinamide pathways. 2. In the tryptophan pathway, 3-hydroxyanthranilate oxidase and quinolinate transphosphoribosylase activities were investigated. Neither of these enzymes was found in mammary gland. 3. In the nicotinic acid pathway, nicotinate mononucleotide pyrophosphorylase, NAD synthetase, nicotinamide deamidase and NMN deamidase were investigated. Both NAD synthetase and nicotinate mononucleotide pyrophosphorylase were present but were very inactive. Nicotinamide deamidase, if present, had a very low activity and NMN deamidase was absent. 4. In the nicotinamide pathway both enzymes, NMN pyrophosphorylase and NMN adenylyltransferase, were present and showed very high activity. The activity of the pyrophosphorylase in mammary gland is by far the highest yet found in any tissue. 5. The apparent K(m) values for the substrates of these enzymes in mammary gland were determined. 6. On the basis of these investigations it is proposed that the main, and probably only, pathway of synthesis of NAD in mammary tissue is from nicotinamide via NMN.  相似文献   

11.
An indispensable gene for NAD biosynthesis in Salmonella typhimurium.   总被引:3,自引:5,他引:3  
We have located the nadD locus between lip and leuS at 14 min on the Salmonella typhimurium chromosome, and we have shown it to be the structural gene for nicotinic acid mononucleotide adenylyltransferase. This is the first indispensable gene of pyridine nucleotide metabolism that has been identified. Mutants altered at this locus, isolated by their 6-aminonicotinamide resistance phenotype, accumulate abnormally large pools of nicotinic acid mononucleotide in vivo; many exhibit a temperature-sensitive lethal phenotype. Enzyme assays reveal markedly lower transferase activity in mutant extracts than in nadD+ extracts. The partial dominance of nadD mutants when placed in a nadD+/nadD diploid suggests that nicotinic acid mononucleotide adenylyltransferase is a multimeric enzyme.  相似文献   

12.
The gene (ybeN) coding for nicotinate mononucleotide adenylyltransferase, an NAD(P) biosynthetic enzyme, has been identified and overexpressed in Escherichia coli. This enzyme catalyzes the reversible adenylation of nicotinate mononucleotide and shows product inhibition. The rate of adenylation of nicotinate mononucleotide is at least 20 times faster than the rate of adenylation of nicotinamide mononucleotide.  相似文献   

13.
Although the crystal structure of Vibrio harveyi luciferase has been elucidated, the binding sites for the flavin mononucleotide and fatty aldehyde substrates are still unknown. The determined location of the phosphate-binding site close to Arg 107 on the alpha subunit of luciferase is supported here by point mutagenesis. This information, together with previous structure-activity data for the length of the linker connecting the phosphate group to the isoalloxazine ring represent important characteristics of the luciferase-bound conformation of the flavin mononucleotide. A model of the luciferase-flavin complex is developed here using flexible docking supplemented by these structural constraints. The location of the phosphate moiety was used as the anchor in a flexible docking procedure performed by conformation search by using the Monte Carlo minimization approach. The resulting databases of energy-ranked feasible conformations of the luciferase complexes with flavin mononucleotide, omega-phosphopentylflavin, omega-phosphobutylflavin, and omega-phosphopropylflavin were filtered according to the structure-activity profile of these analogs. A unique model was sought not only on energetic criteria but also on the geometric requirement that the isoalloxazine ring of the active flavin analogs must assume a common orientation in the luciferase-binding site, an orientation that is also inaccessible to the inactive flavin analog. The resulting model of the bacterial luciferase-flavin mononucleotide complex is consistent with the experimental data available in the literature. Specifically, the isoalloxazine ring of the flavin mononucleotide interacts with the Ala 74-Ala 75 cis-peptide bond as well as with the Cys 106 side chain in the alpha subunit of luciferase. The model of the binary complex reveals a distinct cavity suitable for aldehyde binding adjacent to the isoalloxazine ring and flanked by other key residues (His 44 and Trp 250) implicated in the active site.  相似文献   

14.
To determine the biosynthetic pathway to trigonelline, the metabolism of [carboxyl-(14)C]nicotinate mononucleotide (NaMN) and [carboxyl-(14)C]nicotinate riboside (NaR) in protein extracts and tissues of embryonic axes from germinating mungbeans (Phaseolus aureus) was investigated. In crude cell-free protein extracts, in the presence of S-adenosyl-L-methionine, radioactivity from [(14)C]NaMN was incorporated into NaR, nicotinate and trigonelline. Activities of NaMN nucleotidase, NaR nucleosidase and trigonelline synthase were also observed in the extracts. Exogenously supplied [(14)C]NaR, taken up by embryonic axes segments, was readily converted to nicotinate and trigonelline. It is concluded that the NaMN-->NaR-->nicotinate-->trigonelline pathway is operative in the embryonic axes of mungbean seedlings. This result suggests that trigonelline is synthesised not only from NAD but also via the de novo biosynthetic pathway of pyridine nucleotides.  相似文献   

15.
We have determined the crystal structure of nicotinate phosphoribosyltransferase from Themoplasma acidophilum (TaNAPRTase). The TaNAPRTase has three domains, an N-terminal domain, a central functional domain, and a unique C-terminal domain. The crystal structure revealed that the functional domain has a type II phosphoribosyltransferase fold that may be a common architecture for both nicotinic acid and quinolinic acid (QA) phosphoribosyltransferases (PRTase) despite low sequence similarity between them. Unlike QAPRTase, TaNAPRTase has a unique extra C-terminal domain containing a zinc knuckle-like motif containing 4 cysteines. The TaNAPRTase forms a trimer of dimers in the crystal. The active site pocket is formed at dimer interfaces. The complex structures with phosphoribosylpyrophosphate (PRPP) and nicotinate mononucleotide (NAMN) showed, surprisingly, that functional residues lining on the active site of TaNAPRTase are quite different from those of QAPRTase, although their substrates are quite similar to each other. The phosphate moiety of PRPP and NAMN is anchored to the phosphate-binding loops formed by backbone amides, as found in many alpha/beta barrel enzymes. The pyrophosphate moiety of PRPP is located at the entrance of the active site pocket, whereas the nicotinate moiety of NAMN is located deep inside. Interestingly, the nicotinate moiety of NAMN is intercalated between highly conserved aromatic residues Tyr(21) and Phe(138). Careful structural analyses combined with other NAPRTase sequence subfamilies reveal that TaNAPRTase represents a unique sequence subfamily of NAPRTase. The structures of TaNAPRTase also provide valuable insight for other sequence subfamilies such as pre-B cell colony-enhancing factor, known to have nicotinamide phosphoribosyltransferase activity.  相似文献   

16.
Human quinolinate phosphoribosyltransferase (EC 2.4.2.19) (hQPRTase) is a member of the type II phosphoribosyltransferase family involved in the catabolism of quinolinic acid (QA). It catalyses the formation of nicotinic acid mononucleotide from quinolinic acid, which involves a phosphoribosyl transfer reaction followed by decarboxylation. hQPRTase has been implicated in a number of neurological conditions and in order to study it further, we have carried out structural and kinetic studies on recombinant hQPRTase. The structure of the fully active enzyme overexpressed in Escherichia coli was solved using multiwavelength methods to a resolution of 2.0 A. hQPRTase has a alpha/beta barrel fold sharing a similar overall structure with the bacterial QPRTases. The active site of hQPRTase is located at an alpha/beta open sandwich structure that serves as a cup for the alpha/beta barrel of the adjacent subunit with a QA binding site consisting of three arginine residues (R102, R138 and R161) and two lysine residues (K139 and K171). Mutation of these residues affected substrate binding or abolished the enzymatic activity. The kinetics of the human enzyme are different to the bacterial enzymes studied, hQPRTase is inhibited competitively and non-competitively by one of its substrates, 5-phosphoribosylpyrophosphate (PRPP). The human enzyme adopts a hexameric arrangement, which places the active sites in close proximity to each other.  相似文献   

17.
Virulence in Staphylococcus aureus is regulated via agr-dependent quorum sensing in which an autoinducing peptide (AIP) activates AgrC, a histidine protein kinase. AIPs are usually thiolactones containing seven to nine amino acid residues in which the thiol of the central cysteine is linked to the α-carboxyl of the C-terminal amino acid residue. The staphylococcal agr locus has diverged such that the AIPs of the four different S. aureus agr groups self-activate but cross-inhibit. Consequently, although the agr system is conserved among the staphylococci, it has undergone significant evolutionary divergence whereby to retain functionality, any changes in the AIP-encoding gene (agrD) that modifies AIP structure must be accompanied by corresponding changes in the AgrC receptor. Since AIP-1 and AIP-4 only differ by a single amino acid, we compared the transmembrane topology of AgrC1 and AgrC4 to identify amino acid residues involved in AIP recognition. As only two of the three predicted extracellular loops exhibited amino acid differences, site-specific mutagenesis was used to exchange the key AgrC1 and AgrC4 amino acid residues in each loop either singly or in combination. A novel lux-based agrP3 reporter gene fusion was constructed to evaluate the response of the mutated AgrC receptors. The data obtained revealed that while differential recognition of AIP-1 and AIP-4 depends primarily on three amino acid residues in loop 2, loop 1 is essential for receptor activation by the cognate AIP. Furthermore, a single mutation in the AgrC1 loop 2 resulted in conversion of (Ala5)AIP-1 from a potent antagonist to an activator, essentially resulting in the forced evolution of a new AIP group. Taken together, our data indicate that loop 2 constitutes the predicted hydrophobic pocket that binds the AIP thiolactone ring while the exocyclic amino acid tail interacts with loop 1 to facilitate receptor activation.  相似文献   

18.
NAD is essential for cellular metabolism and has a key role in various signaling pathways in human cells. To ensure proper control of vital reactions, NAD must be permanently resynthesized. Nicotinamide and nicotinic acid as well as nicotinamide riboside (NR) and nicotinic acid riboside (NAR) are the major precursors for NAD biosynthesis in humans. In this study, we explored whether the ribosides NR and NAR can be generated in human cells. We demonstrate that purified, recombinant human cytosolic 5′-nucleotidases (5′-NTs) CN-II and CN-III, but not CN-IA, can dephosphorylate the mononucleotides nicotinamide mononucleotide and nicotinic acid mononucleotide (NAMN) and thus catalyze NR and NAR formation in vitro. Similar to their counterpart from yeast, Sdt1, the human 5′-NTs require high (millimolar) concentrations of nicotinamide mononucleotide or NAMN for efficient catalysis. Overexpression of FLAG-tagged CN-II and CN-III in HEK293 and HepG2 cells resulted in the formation and release of NAR. However, NAR accumulation in the culture medium of these cells was only detectable under conditions that led to increased NAMN production from nicotinic acid. The amount of NAR released from cells engineered for increased NAMN production was sufficient to maintain viability of surrounding cells unable to use any other NAD precursor. Moreover, we found that untransfected HeLa cells produce and release sufficient amounts of NAR and NR under normal culture conditions. Collectively, our results indicate that cytosolic 5′-NTs participate in the conversion of NAD precursors and establish NR and NAR as integral constituents of human NAD metabolism. In addition, they point to the possibility that different cell types might facilitate each other''s NAD supply by providing alternative precursors.  相似文献   

19.
20.
BACKGROUND: Nicotinamide adenine dinucleotide (NAD(+)) is an essential cofactor involved in fundamental processes in cell metabolism. The enzyme nicotinamide mononucleotide adenylyltransferase (NMN AT) plays a key role in NAD(+) biosynthesis, catalysing the condensation of nicotinamide mononucleotide and ATP, and yielding NAD(+) and pyrophosphate. Given its vital role in cell life, the enzyme represents a possible target for the development of new antibacterial agents. RESULTS: The structure of NMN AT from Methanococcus jannaschii in complex with ATP has been solved by X-ray crystallography at 2.0 A resolution, using a combination of single isomorphous replacement and density modification techniques. The structure reveals a hexamer with 32 point group symmetry composed of alpha/beta topology subunits. The catalytic site is located in a deep cleft on the surface of each subunit, where one ATP molecule and one Mg(2+) are observed. A strictly conserved HXGH motif (in single-letter amino acid code) is involved in ATP binding and recognition. CONCLUSIONS: The structure of NMN AT closely resembles that of phosphopantetheine adenylyltransferase. Remarkably, in spite of the fact that the two enzymes share the same fold and hexameric assembly, a striking difference in their quaternary structure is observed. Moreover, on the basis of structural similarity including the HXGH motif, we identify NMN AT as a novel member of the newly proposed superfamily of nucleotidyltransferase alpha/beta phosphodiesterases. Our structural data suggest that the catalytic mechanism does not rely on the direct involvement of any protein residues and is likely to be carried out through optimal positioning of substrates and transition-state stabilisation, as is proposed for other members of the nucleotidyltransferase alpha/beta phosphodiesterase superfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号