首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
6-Aminonicotinamide-resistant mutants of Salmonella typhimurium   总被引:8,自引:4,他引:4  
Resistance to the nicotinamide analog 6-aminonicotinamide has been used to identify the following three new classes of mutants in pyridine nucleotide metabolism. (i) pncX mutants have Tn10 insertion mutations near the pncA locus which reduce but do not eliminate the pncA product, nicotinamide deamidase. (ii) nadB (6-aminonicotinamide-resistant) mutants have dominant alleles of the nadB gene, which we propose are altered in feedback inhibition of the nadB enzyme, L-aspartate oxidase. Many of these mutants also exhibit a temperature-sensitive nicotinamide requirement phenotype. (iii) nadD mutants have mutations that affect a new gene involved in pyridine nucleotide metabolism. Since a high proportion of nadD mutations are temperature-sensitive lethal mutations, this appears to be an essential gene for NAD and NADP biosynthesis. In vivo labeling experiments indicate that in all the above cases, resistance is gained by increasing the ratio of NAD to 6-aminonicotinamide adenine dinucleotide. 6-Aminonicotinamide adenine dinucleotide turns over significantly more slowly in vivo than does normal NAD.  相似文献   

2.
3.
4.
Two classes of pyridine nucleotide uptake mutants isolated previously in a strain of Salmonella typhimurium defective in both de novo NAD biosynthesis (nad) and pyridine nucleotide recycling (pncA) were analysed in terms of their genetic relationship to each other and their roles in the transport of nicotinamide mononucleotide as a precursor to NAD. The first class of uptake mutants, pnuA (99 units), failed to grow on nicotinamide mononucleotide (NMN) as a precursor for NAD. The second class, pnuB, grew on lower than normal levels of NMN and suppressed pnuA mutations. A third class of uptake mutant, pnuC, isolated in a nadB pncA pnuB background, also failed to grow on NMN. Transport studies and enzyme analyses confirmed these strains as defective in NMN uptake. A fourth locus, designated pnuD, was found to diminish NMN utilization in a nad pncA+ background. Tn10 insertions near pnuA, pnuC and pnuD were isolated and utilized in mapping studies. pnuA was found to map between thr and serB near trpR. The pnuC locus was cotransducible with nadA at 17 units while pnuD mapped at approximately 60 units. The biochemical and genetic data suggest that the pnuA and pnuC gene products cooperate in the utilization of NMN under normal conditions. A pnuB mutant, however, does not require the pnuA gene product for NMN uptake but does rely on the pnuC product. Fusion studies indicate that pnuC is regulated by internal NAD concentrations.  相似文献   

5.
6.
7.
Salmonella typhimurium mutants, either devoid or glutamate dehydrogenase activity or having a thermolabile glutamate dehydrogenase protein, were used to identify the structural gene (gdhA) for this enzyme. Transductions showed that the mutations producing these phenotypes were linked to both the pncA and nit genes, placing the gdhA locus between 23 and 30 U on the S. typhimurium chromosome. Additional transductions with several Tn10 insertions established the gene order as pncA-gdhA-nit. Since few genetic markers exist in this region of the chromosome, Hfr strains were constructed to orient the pncA-gdhA-nit cluster with outside genes. Conjugation experiments provided evidence for the gene order pyrD-pncA-gdhA-nit-trp. To further characterize gdhA, we used Mu cts d1 (Apr lac) insertions in this gene to select numerous strains containing deletions with various endpoints. Transductions of these deletions with strains containing different gdh mutations and with a mutant having a thermolabile glutamate dehydrogenase protein permitted us to construct a deletion map of the gdhA region.  相似文献   

8.
9.
Fourteen Tn5-generated mutations of the Rac prophage, called sbc because they suppress recB21 recC22, were found to fall into two distinct types: type I mutations, which were insertions of Tn5, and type II mutations, which were insertions of IS50. Both orientations of Tn5 and IS50 were represented among the mutants and were arbitrarily labeled A and B. All 14 of the Tn5 and IS50 insertions occurred in the same location (+/- 100 base pairs) approximately 5.6 kilobases from one of the hybrid attachment sites. Eleven of the mutants contained essentially the same amount of exonuclease VIII, the product of recE. The possibility that a promoter for recE was created by the insertion of Tn5 and IS50 was considered. Two IS50 mutants in which such a promoter could not have been created showed three to four times as much exonuclease VIII, and another showed one-half as much as the majority. The possibility was considered that a promoter internal to IS50 is responsible for this heterogeneity. Restriction alleviation was measured in all 14 mutants. An insertion of the transposon Tn10 which reduces expression of exonuclease VIII (recE101::Tn10) was located within the Rac prophage at a position 2.35 kilobases from the left hybrid attachment site. Location and orientation of the Rac prophage on the Escherichia coli genetic map are discussed in light of these results.  相似文献   

10.
Genes aroA and serC of Salmonella typhimurium constitute an operon.   总被引:9,自引:2,他引:7       下载免费PDF全文
Genetic analysis of aroA554::Tn10 derivatives of two mouse-virulent Salmonella typhimurium strains, "FIRN" and "WRAY," and of a nonreverting derivative of each constructed for use as a live vaccine, showed the site of the insertion among mapped aroA point mutants. The WRAY live-vaccine strain gave no aro+ recombinants in crosses with aroA point mutations to one side of the insertion, indicating a deletion from Tn10 through the sites of these point mutations. The FIRN live-vaccine strain gave wild-type recombinants with all tested point mutants; it probably has a deletion or inversion extending from Tn10 into aroA but not as far as the nearest point mutation. Some tetracycline-sensitive mutants of aroA554::Tn10 strains required serine and pyridoxine, indicating loss of serC function, and some that were found to be SerC- did not produce gas from glucose, indicating a loss of pfl function. These results show the gene order pfl-serC-aroA, as in Escherichia coli. Ampicillin enrichment applied to pools of tetracycline-sensitive mutants of strains with Tn10 insertions near aroA (i.e., zbj::Tn10 strains) yielded Aro- SerC- Pfl-, Aro- SerC+ Pfl+, and Aro- SerC- Pfl+ mutants but none which were Aro+ SerC-. All of the mutants are explicable by deletions or inversions extending clockwise from zbj::Tn10 into or through an operon comprising serC (promoter-proximal) and aroA. Such an operon was also shown by the identification of two Tn10 insertions causing phenotype Aro- SerC-, each able to revert to Aro+ SerC+ by precise excision. serC corresponds to the open reading frame promoter-proximal to aroA that was identified elsewhere by base sequencing of a cloned aroA segment of S. typhimurium (Comai et al., Science 221:370-371, 1983). Both serine and chorismate are precursors of enterochelin; this may be why serC and aroA are in a single operon.  相似文献   

11.
We isolated a collection of 67 independent, spontaneous Salmonella typhimurium his operon promoter mutants with decreased his expression. The mutants were isolated by selecting for resistance to the toxic lactose analog o-nitrophenyl-beta-D-thiogalactoside in a his-lac fusion strain. The collection included base pair substitutions. small insertions, a deletion, and one large insertion identified as IS30 (IS121), which is resident on the Mu d1 cts(Apr lac) phage used to construct the his-lac fusion. Of the 37 mutations that were sequenced, 14 were unique. Six of the 14 were isolated more than once, with the IS30 insertion occurring 16 times. The mutations were located throughout the his promoter region, with two in the conserved - 35 hexamer sequence, four in the conserved - 10 hexamer sequence (Pribnow box), seven in the spacer between the - 10 and -35 hexamer sequences, and the IS30 insertions just upstream of the -35 hexamer sequence. Four of the five substitution mutations changed a consensus base pair recognized by E sigma 70 RNA polymerase in the -10 or -35 hexamer. Decreased his expression caused by the 14 different his promoter mutations was measured in vivo. Relative to the wild-type promoter, the mutations resulted in as little as a 4-fold decrease to as much as a 357-fold decrease in his expression, with the largest decreases resulting from changes in the most highly conserved features of E sigma 70 promoters.  相似文献   

12.
13.
14.
15.
E A Morgan 《Cell》1980,21(1):257-265
  相似文献   

16.
17.
18.
Deletions in the tet genes derived from Tn10 were formed from different tet::Tn5 insertion mutations by removing DNA sequences located between a HindIII site in Tn5 and a HindIII site adjacent to the tet genes. Tetracycline-sensitive point mutations were mapped in recombination tests with the deletions and were thus aligned with the genetic and physical map of the tet region. Plasmids carrying point mutations were tested for complementation with derivatives of pDU938, a plasmid carrying cloned tet genes derived from Tn10 which had been inactivated by Tn5 insertions. Complementation occurred between promoter-proximal tet point mutations and distal tet::Tn5 insertions, suggesting the existence of two structural genes, tetA and tetB. These results, together with the analysis of polypeptides in minicells harboring pDU938tet::Tn5 mutants, suggested that tetA and tetB are expressed coordinately in an operon. The tetB gene encodes the previously characterized 36,000-dalton cytoplasmic membrane TET protein, but the product of tetA was not identified. Point mutations in either tetA or tetB led to the defective expression of the resistance mechanism involving tetracycline efflux. It is suggested that the tetA and tetB products interact cooperatively in the membrane to express resistance.  相似文献   

19.
20.
Polarity of Tn5 insertion mutations in Escherichia coli.   总被引:41,自引:59,他引:41       下载免费PDF全文
We assessed the effect of insertions of the kanamycin resistance transposon Tn5 in the lac operon of Escherichia coli on the expression of distal genes lacY and lacA (melibiose fermentation at 41 degrees C and thiogalactoside transacetylase synthesis, respectively). Every insertion mutation tested (41 in lacZ and 23 in lacY) was strongly polar. However, approximately one-third of the insertion mutants expressed distal genes at low levels due to a promoter associated with Tn5. To localize this promoter, we (i) reversed the orientation of Tn5 at several sites and (ii) replaced wild-type Tn5 with several substitution derivatives which lack Tn5's central region. Neither alteration changed the expression of distal genes. Thus, in contrast to transposons IS2 and TnA. Tn5's ability to turn on distal gene expression is not due to a promoter in its central region and therefore is not dependent on the overall orientation of Tn5 in the operon. Our results suggest that the promoter is within 186 base pairs of the ends of Tn5. It is possible that the promoter is detected in only a fraction of insertions because it overlaps Tn5-target sequence boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号