首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
24-Keto-1,25-dihydroxyvitamin D3 has been identified as an intestinal metabolite of 1,25-dihydroxyvitamin D3 by ultraviolet absorbance, mass spectroscopy, and chemical reactivity. The metabolite was produced from 1,25-dihydroxyvitamin D3 and 1,24R,25-trihydroxyvitamin D3 in rat intestinal mucosa homogenates. 24-Keto-1,25-dihydroxyvitamin D3 is present in vivo in the plasma and small intestinal mucosa of rats fed a stock diet, receiving no exogenous 1,25-dihydroxyvitamin D3, and in the plasma and small intestinal mucosa of rats dosed chronically with 1,25-dihydroxyvitamin D3. 24-Keto-1,25-dihydroxyvitamin D3 has affinity equivalent to 1,24R,25-trihydroxyvitamin D3 for the 3.7 S cytosolic receptor specific for 1,25-dihydroxyvitamin D3 in the intestine and thymus. In cytosolic preparations contaminated with the 5 S vitamin D-binding protein, both metabolites are about 7-fold less potent than 1,25-dihydroxyvitamin D3. In contrast, in cytosolic preparations largely free of the 5 S binding protein, both metabolites are equipotent with the parent compound. No evidence was obtained supporting a substantial presence of 23-keto-1,25-dihydroxyvitamin D3 in vivo; nor was the latter compound generated in detectable amounts from 1,25-dihydroxyvitamin D3 by intestinal homogenates. Thus, C-24 oxidation is a significant pathway of intestinal 1,25-dihydroxyvitamin D3 metabolism that produces metabolites with high affinity for the cytosolic receptor which mediates vitamin D action.  相似文献   

2.
Two new vitamin D metabolites were isolated in pure form from separate incubations of homogenates of chick small intestinal mucosa or rat kidney employing either 1 alpha,25-dihydroxyvitamin D3 (28 microM) or 1 alpha,24R,25-trihydroxyvitamin D3 as substrate (0.17-1.3 microM). The newly characterized compounds and the amounts isolated in pure form from separate isolations are, respectively: 1 alpha,25-dihydroxy-24-oxo-vitamin D3 (1,25(OH)2-24-oxo-D3), 147 micrograms from kidney and 4.2 and 40 micrograms from intestine; 1 alpha,23,25-trihydroxy-24-oxo-vitamin D3 (1,23,25(OH)3-24-oxo-D3), 155 micrograms from kidney and 5.9 and 34 micrograms from intestine. Their structures were identified after extensive high pressure liquid chromatography by means of ultraviolet absorption spectrometry, mass spectrometry of the free compounds and their trimethylsilylated derivatives, proton nuclear magnetic resonance spectrometry, specific chemical reduction of the 24-oxo functionality with sodium borohydride, as well as direct comparison with synthetic 1,25(OH)2-24-oxo-D3. These structural assignments for both compounds correct previous determinations which had been proposed (Ohnuma, N., Kruse, J. R., Popjak, G., and Norman, A. W. (1982) J. Biol. Chem. 257, 5097-5102). The activity of the C-24 oxidation pathway used for the production of the 1,25(OH)2-24-oxo-D3 and 1,23,25(OH)3-24-oxo-D3 can be enhanced 10-fold by prior priming of the chicks or rats with a single intravenous dose of 1,25(OH)2D3 (1-12 nmol/100 g body weight); the induction of the enzyme activity is maximal by 3-6 h and returns to basal levels within 12 h. Further, 1,25(OH)2D3, 1,24,25(OH)3D3, and 1,25(OH)2-24-oxo-D3 all were found to be capable of serving as a precursor with chick intestine and rat kidney homogenates of 1,23,25(OH)3-24-oxo-D3. Collectively these results suggest the existence of a C-24 oxidation pathway for metabolism of 1,25(OH)2D3 by the target intestinal mucosa and kidney to 1,23,25(OH)3-24-oxo-D3. The pathway may play an important role in controlling the tissue levels of this hormonally active form of vitamin D3.  相似文献   

3.
G S Reddy  K Y Tserng 《Biochemistry》1989,28(4):1763-1769
About a decade ago calcitroic acid was isolated as a major side chain cleaved water-soluble metabolite of 1,25-dihydroxyvitamin D3 [Esvelt, R. P., Schnoes, H. K., & Decula, H. F. (1979) Biochemistry 18, 3977]. Presently, calcitroic acid is being considered as the major excretory form of 1,25-dihydroxyvitamin D3. However, the exact site or sites of calcitroic acid production and the possible side chain modified intermediary metabolites that may be formed during the conversion of 1,25-dihydroxyvitamin D3 into calcitroic acid are not fully understood. In the mean time there have been many advances in our understanding of the side-chain metabolism of 1,25-dihydroxyvitamin D3. It is now well established that both the kidney and the intestine metabolize 1,25-dihydroxyvitamin D3 through the C-24 oxidation pathway according to the following steps: 1,25-dihydroxyvitamin D3----1,24,25-trihydroxyvitamin D3----1,25-dihydroxy-24-oxovitamin D3-----1,23,25-trihydroxy-24-oxovitamin D3. Recently, we identified 1,23-dihydroxy-24,25,26,27-tetranorvitamin D3 (C-23 alcohol) as a major side chain cleaved lipid-soluble metabolite of 1,25-dihydroxyvitamin D3 and further extended the aforementioned C-24 oxidation pathway in the kidney by demonstrating 1,23,25-trihydroxy-24-oxovitamin D3 as the precursor of C-23 alcohol [Reddy, G. S., Tserng, K. Y., Thomas, B. R., Dayal, R., & Norman, A. W. (1987) Biochemistry 26, 324]. In this present study, we investigated the metabolic fate of 1,25-dihydroxyvitamin D3 (3 X 10(-10) M) in the perfused rat kidney and identified calcitroic acid as the major water-soluble metabolite of 1,25-dihydroxyvitamin D3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A new metabolite of vitamin D3 was produced in vitro by perfusing rat kidneys with 1,25-dihydroxyvitamin D3 (4 X 10(-6) M). It was isolated and purified from the lipid extract of the kidney perfusate by high-performance liquid chromatography. By means of ultraviolet absorption spectrophotometry, mass spectrometry, chemical derivatization, and chemical synthesis, the new metabolite was identified as 1,23-dihydroxy-24,25,26,27-tetranorvitamin D3. Along with the new metabolite, three other previously identified metabolites, namely, 1,24,25-trihydroxyvitamin D3, 1,25-dihydroxy-24-oxovitamin D3, and 1,23,25-trihydroxy-24-oxovitamin D3, were also isolated. The new metabolite was also formed when 1,23,25-trihydroxy-24-oxovitamin D3 was used as the substrate. Thus, the new metabolite fits into the following metabolic pathway: 1,25-dihydroxyvitamin D3----1,24(R),25-trihydroxyvitamin D3----1,25-dihydroxy-24-oxovitamin D3----1,23,25-trihydroxy-24-oxovitamin D3----1,23-dihydroxy-24,25,26,27-tetranorvitamin D3. Further, we used 1 alpha,25-dihydroxy[1 beta-3H]vitamin D3 in the kidney perfusion system and demonstrated 1,23-dihydroxy-24,25,26,27-tetranorvitamin D3 as the major further metabolite of 1,25-dihydroxyvitamin D3, circulating in the final perfusate when kidneys were perfused with 1,25-dihydroxyvitamin D3 (6 X 10(-10) M) for 4 h. The biological activity of 1,23-dihydroxy-24,25,26,27-tetranorvitamin D3 (C-3 alcohol) and its metabolic relationship to 1-hydroxy-23-carboxy-24,25,26,27-tetranorvitamin D3 (calcitroic acid or C-23 acid), the other previously identified side-chain cleavage metabolite of 1,25-dihydroxyvitamin D3, are unknown and are presently undergoing investigation.  相似文献   

5.
Two new metabolites of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], namely 1,25(OH)2-24-oxo-vitamin D3 and 1,23,25(OH)3-24-oxo-vitamin D3, have been prepared in vitro using chick intestinal mucosal homogenates. To investigate the binding of 1,25(OH)2-[23-3H]-24-oxo-D3 and 1,23,25(OH)3-[23-3H]-24-oxo-D3 to the chick intestinal receptor we have isolated both metabolites in radioactive form using an incubation system containing 1,25(OH)2-[23,24-3H))-D3 with a specific radioactivity of 5.6 Ci/mmol. Both metabolites were highly purified by using Sephadex LH-20 chromatography followed by high-pressure liquid chromatography (HPLC). Sucrose density gradient sedimentation analysis showed specific binding of both tritium-labeled metabolites to the chick intestinal cytosol receptor. Experiments were carried out to determine the relative effectiveness of binding to the chick intestinal mucosa receptor for 1,25(OH)2D3. The results are expressed as relative competitive index (RCI), where the RCI is defined as 100 for 1,25(OH)2D3. Whereas the RCI obtained for 1,25(OH)2-24-oxo-D3 was 98 +/- 2 (SE), the RCI for 1,23,25(OH)3-24-oxo-D3 was only 28 +/- 6 (SE). Also, the biological activity of both new metabolites was assessed in vivo in the chick. In our assay for intestinal calcium absorption, 1,25(OH)2-24-oxo-D3 was active at a dose level of 1.63 and 4.88 nmol/bird (at 14 h), whereas 1,23,25(OH)3-24-oxo-D3 showed only weak biological activity in this system. In our assay for bone calcium mobilization, administration of both new metabolites showed modest activity at the 4.88-nmol dose level, which was reduced at the 1.63-nmol dose level. The results indicate that biological activity declines as 1,25(OH)2D3 is metabolized to 1,24R,25(OH)3D3, 1,25(OH)2-24-oxo-D3, and then 1,23,25(OH)3-24-oxo-D3.  相似文献   

6.
A new metabolite of vitamin D3 has been isolated from the plasma of vitamin D3 treated cows and has been generated from 25(S),26-dihydroxyvitamin D3 with homogenates of vitamin D deficient chick kidney. This metabolite has been identified as 1,25,26-trihydroxyvitamin D3 by comigration with synthetic 1,25(S),26-trihydroxyvitamin D3 in four chromatographic systems, ultraviolet spectroscopy, mass spectrometry, and high-pressure liquid chromatography and mass spectrometry of derivatives. 1,25(S),26-Trihydroxyvitamin D3 is one-tenth as effective as 1,25-dihydroxyvitamin D3 in binding to the chick intestinal cytosol 1,25-dihydroxyvitamin D receptor. Either 25(S),26-dihydroxyvitamin D3 or 1,25-dihydroxyvitamin D3 can serve as precursor for in vitro production of 1,25,26-trihydroxyvitamin D3 by chick kidney tissue.  相似文献   

7.
G S Reddy  K Y Tserng 《Biochemistry》1990,29(4):943-949
Understanding of the inactivation pathways of 25-hydroxyvitamin D2 and 24-hydroxyvitamin D2, the two physiologically significant monohydroxylated metabolites of vitamin D2, is of importance, especially during hypervitaminosis D2. In a recent study, it has been demonstrated that the inactivation of 24-hydroxyvitamin D2 occurs through its conversion into 24,26-dihydroxyvitamin D2 [Koszewski, N.J., Reinhardt, T.A., Napoli, J.L., Beitz, C.D., & Horst, R.L. (1988) Biochemistry 27, 5785]. At present, little information is available regarding the inactivation pathway of 25-hydroxyvitamin D2 except its further metabolism into 24,25-dihydroxyvitamin D2 [Jones, G., Rosenthal, A., Segev, D., Mazur, Y., Frolow, F., Halfon, Y., Rabinovich, D., & Shakked, Z. (1979) Biochemistry 18, 1094]. In our present study, we investigated the metabolic fate of 25-hydroxyvitamin D2 in the isolated perfused rat kidney and demonstrated its conversion not only into 24,25-dihydroxyvitamin D2 but also into two other new metabolites, namely, 24,25,28-trihydroxyvitamin D2 and 24,25,26-trihydroxyvitamin D2. The structure identification of the new metabolites was established by the techniques of ultraviolet absorption spectrophotometry and mass spectrometry and by the characteristic nature of each new metabolite's susceptibility to sodium metaperiodate oxidation. In order to demonstrate the physiological significance of the two new trihydroxy metabolites of vitamin D2, we induced hypervitaminosis D2 in a rat using [3 alpha-3H]vitamin D2 and analyzed its plasma for the various [3 alpha-3H]vitamin D2 metabolites on two different high-pressure liquid chromatography systems.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
R P Link  H F DeLuca 《Steroids》1988,51(5-6):583-598
The binding activity of four vitamin D metabolites and/or analogs for the intestinal 1,25-dihydroxyvitamin D3 receptor was evaluated after incubation at 25 degrees C for 1 h or at 0-4 degrees C for 18 h. The incubation conditions, which had no effect on the binding of 1,25-dihydroxyvitamin D3, had a dramatic effect on the binding of 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3 and a small but reproducible effect on 24,25-dihydroxyvitamin D3 binding to receptor. Affinities 10- to 20-fold higher were obtained for 25-hydroxyvitamin D3 and 1 alpha-hydroxyvitamin D3, and affinities 3-fold higher were obtained for 24,25-dihydroxyvitamin D3 at the 0-4 degrees C/18-h incubation. A comparison of intestinal receptor from chick and pig with nine vitamin D compounds showed no major differences between the two species. The relative affinity of the vitamin D analogs to compete with tritiated 1,25-dihydroxyvitamin D3 for the receptor in pig nuclear extract, expressed as ratios of the molar concentration required for 50% binding of the tritiated 1,25-dihydroxyvitamin D3 compared to nonradioactive 1,25-dihydroxyvitamin D3, are as follows: 1,25-dihydroxyvitamin D3 (1) = 1,25-dihydroxyvitamin D2 = 24-homo-1,25-dihydroxyvitamin D3 greater than 1,24,25-trihydroxyvitamin D3 (4) greater than 25-hydroxyvitamin D3 (21) = 10-oxo-19-nor-25-hydroxyvitamin D3 = 1 alpha-hydroxyvitamin D3 (37) greater than 24,25-dihydroxyvitamin D2 (257) much much greater than vitamin D3 (greater than 10(6)).  相似文献   

9.
A high level of functional recombinant rat cytochrome P450C24 enzyme (CYP24A1) was obtained (40-50mg/L) using an Escherichia coli expression system. Purified enzyme was stable with retention of spectral and catalytic activity. The rate of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] side-chain oxidation and cleavage to the end-product calcitroic acid was directly related to the rate of electron transfer from the ferredoxin redox partner. It was determined from substrate-induced spectral shifts that the 1 alpha- and 25-hydroxyl groups on vitamin D(3) metabolites and analogs were the major determinants for high-affinity binding to CYP24A1. Lowest K(d) values were obtained for 1 alpha-vitamin D(3) (0.06 microM) and 1,25-dihydroxyvitamin D(3) (0.05 microM) whereas unmodified parental vitamin D(3) and the non-secosteroid 25-hydroxycholesterol had lower affinities with K(d) values of 1.3 and 1.9 microM, respectively. The lowest binding affinity for natural vitamin D metabolites was observed for 24,25-dihydroxyvitamin D(3) [24,25(OH)(2)D(3)] (0.43 microM). Kinetic analyses of the two natural substrates 25-hydroxyvitamin D(3) [25(OH)D(3)] and 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] revealed similar K(m) values (0.35 and 0.38 microM, respectively), however, the turnover number was higher for 25(OH)D(3) compared to 1,25(OH)(2)D(3) (4.2 and 1 min(-1), respectively). Mutagenesis of F249 within the F-helix of CYP24A1 altered substrate binding and metabolism. Most notable, the hydrophobic to polar mutant F249T had a strong impact on lowering substrate-binding affinity and catalysis of the final C(23) oxidation sequence from 24,25,26,27-tetranor-1,23-dihydroxyvitamin D(3) to calcitroic acid. Two other hydrophobic 249 mutants (F249A and F249Y) also lowered substrate binding and expressed metabolic abnormalities that included the C(23)-oxidation defect observed with mutant F249T plus a similar defect involving an earlier pathway action for the C(24) oxidation of 1,24,25-trihydroxyvitamin D(3). Therefore, Phe-249 within the F-helix was demonstrated to have an important role in properly binding and aligning substrate in the CYP24A1 active site for C(23) and C(24) oxidation reactions.  相似文献   

10.
Three new in vivo metabolites of 1 alpha,25-dihydroxyvitamin D3 were isolated from the serum of dogs given large doses (two doses of 1.5 mg/dog) of 1 alpha,25-dihydroxyvitamin D3. The metabolites were isolated and purified by methanol-chloroform extraction and a series of chromatographic procedures. By cochromatography on a high-performance liquid chromatograph, ultraviolet absorption spectrophotometry, mass spectrometry, Fourier-transform infrared spectrophotometry, and specific chemical reactions, the metabolites were identified as 1 alpha,25-dihydroxy-24- oxovitamin D3, 1 alpha,25-dihydroxyvitamin D3 26,23-lactone, and 1 alpha,24(S),25-trihydroxyvitamin D3. According to these procedures, the total amounts of the isolated metabolites were as follows: 1 alpha,25-dihydroxyvitamin D3, 23.6 micrograms; 1 alpha,25-dihydroxy-24- oxovitamin D3, 1.8 micrograms; 1 alpha,25-dihydroxyvitamin D3 26,23-lactone, 9.2 micrograms; 1 alpha,24(R),25-trihydroxyvitamin D3, 15.4 micrograms; 1 alpha,24(S),25-trihydroxyvitamin D3, 1.0 microgram. With recovery corrections, the serum levels of each metabolite were approximately 49 ng/mL for 1 alpha,25-dihydroxyvitamin D3, 3.7 ng/mL for 1 alpha,25-dihydroxy-24- oxovitamin D3, 19 ng/mL for 1 alpha,25-dihydroxyvitamin D3 26,23-lactone, 32 ng/mL for 1 alpha,24(R),25-trihydroxyvitamin D3, and 2.1 ng/mL for 1 alpha,24(S),25-trihydroxyvitamin D3.  相似文献   

11.
C24-Hydroxylation was evaluated as a possible activation pathway for vitamin D2 and vitamin D3. Routine assays showed that 24-hydroxyvitamin D2 and 1,24-dihydroxyvitamin D2 could be detected in rats receiving physiological doses (100 IU/day) of vitamin D2; however, 24-hydroxyvitamin D3 could not be detected in rats receiving similar doses of vitamin D3. In rats, 24-hydroxyvitamin D2 was very similar to 25-hydroxyvitamin D2 at stimulating intestinal calcium transport and bone calcium resorption. The biological activity of 24-hydroxyvitamin D2 was eliminated by nephrectomy, suggesting that 24-hydroxyvitamin D2 must undergo 1 alpha-hydroxylation to be active at physiological doses. In vivo experiments suggested that when given individually to vitamin D deficient rats, 24-hydroxyvitamin D2, 25-hydroxyvitamin D2, and 25-hydroxyvitamin D3 were 1 alpha-hydroxylated with the same efficiency. However, when presented simultaneously, 24-hydroxyvitamin D2 was less efficiently 1 alpha-hydroxylated than either 25-hydroxyvitamin D3 or 25-hydroxyvitamin D2. 1,24-Dihydroxyvitamin D2 was also approximately 2-fold less competitive than either 1,25-dihydroxyvitamin D2 or 1,25-dihydroxyvitamin D3 for binding sites on the bovine thymus 1,25-dihydroxyvitamin D receptor. These results demonstrate that 24-hydroxylation followed by 1 alpha-hydroxylation of vitamin D2 represents a minor activation pathway for vitamin D2 but not vitamin D3.  相似文献   

12.
G S Reddy  K Y Tserng 《Biochemistry》1986,25(18):5328-5336
Three new metabolites of vitamin D2 were produced in vitro by perfusing isolated rat kidneys with 1,25-dihydroxyvitamin D2. They were isolated and purified from the kidney perfusate by the techniques of methanol-methylene chloride lipid extraction and high-performance liquid chromatography. By means of ultraviolet absorption spectrophotometry, mass spectrometry, and specific chemical reactions, the metabolites were identified as 1,24,25-trihydroxyvitamin D2, 1,24,25,28-tetrahydroxyvitamin D2, and 1,24,25,26-tetrahydroxyvitamin D2. Both 1,24,25,28-tetrahydroxyvitamin D2 and 1,24,25,26-tetrahydroxyvitamin D2 were also produced when a kidney was perfused with 1,24,25-trihydroxyvitamin D2. Thus, it becomes clear that 1,25-dihydroxyvitamin D2 is first hydroxylated at C-24 to form 1,24,25-trihydroxyvitamin D2, which is then further hydroxylated at C-28 and C-26 to form 1,24,25,28-tetrahydroxyvitamin D2 and 1,24,25,26-tetrahydroxyvitamin D2, respectively. From several recent studies, it has been well established that 1,25-dihydroxyvitamin D3 is converted into various further metabolites in the kidney as a result of chemical reactions such as C-23, C-24, and C-26 hydroxylations, C-24 ketonization, and C-23:C-26 lactonization. From our study it is obvious that 1,25-dihydroxyvitamin D2 does not undergo all of the aforementioned chemical reactions except C-24 and C-26 hydroxylations. Also, our study indicates that C-28 hydroxylation plays a significant role in the further metabolism of 1,25-dihydroxyvitamin D2. Thus, for the first time, we describe a novel further metabolic pathway for 1,25-dihydroxyvitamin D2 in a mammalian kidney.  相似文献   

13.
Four new in vivo metabolites of vitamin D3 were isolated from the blood plasma of chicks given large doses of vitamin D3. The metabolites were isolated by methanol-chloroform extraction and a series of chromatographic procedures. By use of mass spectrometry, ultraviolet absorption spectrophotometry, and specific chemical reactions, the metabolites were identified as 23,24,25-trihydroxyvitamin D3, 24,25,26-trihydroxyvitamin D3, 24-keto-25-hydroxyvitamin D3 and 23-dehydro-25-hydroxyvitamin D3.  相似文献   

14.
To understand better dietary regulation of intestinal calcium absorption, a quantitative assessment of the metabolites in plasma and duodenum of rats given daily doses of radioactive vitamin D3 and diets differing in calcium and phosphorus content was made. All known vitamin D metabolites were ultimately identified by high-pressure liquid chromatography. In addition to the known metabolites (25-hydroxyvitamin D3, 24,25-dihydroxyvitamin D3, 1,25-dihydroxyvitamin D3, 25,26-dihydroxyvitamin D3, and 1,24,25-trihydroxyvitamin D3), several new and unidentified metabolites were found. In addition to 1,25-dihydroxyvitamin D3 and 1,24,25-trihydroxyvitamin D3, the levels of some of the unknown metabolites could be correlated with intestinal calcium transport. However, whether or not any of these metabolites plays a role in the stimulation of intestinal calcium absorption by low dietary calcium or low dietary phosphorus remains unknown.  相似文献   

15.
Synthesis of a C-24-epimeric mixture of 25-hydroxy-[26,27-3H]vitamin D2 and a C-24-epimeric mixture of 1,25-dihydroxy-[26,27-3H]vitamin D2 by the Grignard reaction of the corresponding 25-keto-27-nor-vitamin D2 and 1 alpha-acetoxy-25-keto-27-nor-vitamin D3 with tritiated methyl magnesium bromide is described. Separation of epimers by high-performance liquid chromatography afforded pure radiolabeled vitamins of high specific activity (80 Ci/mmol). The identities and radiochemical purities of 25-hydroxy-[26,27-3H[vitamin D2 and 1,25-dihydroxy-[26,27-3H]vitamin D2 D2 were established by cochromatography with synthetic 25-hydroxyvitamin D2 or 1,25-dihydroxyvitamin D2. Biological activity of 25-hydroxy-[26,27-3H]vitamin D2 was demonstrated by its binding to the rat plasma binding protein for vitamin D compounds, and by its in vitro conversion to 1,25-dihydroxy-[26,27-3H]vitamin D2 by kidney homogenate prepared from vitamin D-deficient chickens. The biological activity of 1,25-dihydroxy-[26,27-3H]vitamin D2 was demonstrated by its binding to the chick intestinal receptor for 1,25-dihydroxyvitamin D3.  相似文献   

16.
1,25-dihydroxyvitamin D3 is converted to calcitroic acid before being excreted in the bile. Biosynthesis of calcitroic acid has been demonstrated in two target cells of vitamin D, in the kidney and the osteoblastic cell line UMR-106. Calcitroic acid was identified by combinations of h.p.l.c., u.v. spectroscopy and mass spectrometry. Evidence is presented that calcitroate is derived from the 24-oxidation pathway, possibly through the intermediate 24,25,26,27-tetranor-1,23-dihydroxyvitamin D3. The 24-oxidation pathway to calcitroic acid in bone cells is stimulated by 1,25-dihydroxyvitamin D3. The pathway in both bone cells and perfused kidney operates at physiological concentrations of substrate and appears to be capable of rapid clearance of the hormone.  相似文献   

17.
1,25-Dihydroxy[3H]cholecalciferol was converted into several more-polar metabolites by a cultured pig kidney cell line (LLC PK1). The production of metabolites was stimulated by pretreating the cells with unlabelled 1,25-dihydroxycholecalciferol. A similar profile of metabolites was observed on high-pressure-liquid-chromatographic analysis of an extract from the kidneys of rats dosed intravenously with 1,25-dihydroxy[3H]cholecalciferol. Among the metabolites detected were 1,24,25-trihydroxycholecalciferol, 1,25-dihydroxy-24-oxocholecalciferol, 1,23,25-trihydroxy-24-oxocholecalciferol and 1,25-dihydroxycholecalciferol-26,23-lactone. The results are in accord with data reported for intestinal 1,25-dihydroxycholecalciferol metabolism [Napoli, Pramanik, Royal, Reinhardt & Horst (1983) J. Biol. Chem. 258, 9100-9107]. These data indicate that C-23- and C-24-oxidation of 1,25-dihydroxycholecalciferol are phenomena common to calciferol target tissues, and that regulation of 1,25-dihydroxycholecalciferol homoeostasis is dependent on the rate of its metabolism in addition to the rate of its synthesis.  相似文献   

18.
A polar metabolite of vitamin D3 has been produced in vitro from either 1,25-dihydroxyvitamin D3 incubated with kidney homogenate from vitamin D-supplemented chickens or from 25,26-dihydroxyvitamin D3 incubated with vitamin D-deficient chicken kidney homogenate. This compound was isolated in pure form and identified as 1,25,26-trihydroxyvitamin D3 by ultraviolet absorption spectrophotometry and mass spectrometry. Furthermore, its periodate cleavage product comigrates with synthetic 1α-hydroxy-25-keto-27-norvitamin D3 on high-performance liquid chromatography. The 1,25,26-trihydroxyvitamin D3 is 0.1-0.01 as active as 1,25-dihydroxyvitamin D3 in the stimulation of intestinal calcium transport and bone calcium mobilization.  相似文献   

19.
A new metabolite of 23,25-dihydroxyvitamin D3 has been generated with kidney homogenates prepared from vitamin D treated chicks. The metabolite was purified with three high-performance liquid chromatographic steps and was identified as 23-keto-25-hydroxyvitamin D3 by ultraviolet absorption spectroscopy, mass spectrometry, and chemical reactivity. The R stereoisomer of 23,25-dihydroxyvitamin D3 was 10-fold more effective as an in vitro precursor to 23-keto-25-hydroxyvitamin D3 than was the naturally occurring S stereoisomer. Approximately 500 ng of 23-keto-25-hydroxyvitamin D3 was necessary to produce the same degree of intestinal-calcium transport as 25 ng of vitamin D3--a difference of about 20-fold. 23-Keto-25-hydroxyvitamin D3 was not active at stimulating bone calcium resorption at the doses and times tested. This new vitamin D3 metabolite, however, had greater affinity than 25-hydroxyvitamin D3 to both the rat plasma vitamin D binding protein and the 1,25-dihydroxyvitamin D specific cytosol receptor. Heretofore, only 1 alpha-hydroxylated metabolites of 25-hydroxyvitamin D3 or analogues possessing a pseudo 1 alpha-hydroxy group were known to bind to the 1,25-dihydroxyvitamin D receptor with higher affinity than 25-hydroxyvitamin D3. Ketone formation at the 23 position, therefore, is the first side-chain modification of 25-hydroxyvitamin D3 that results in enhanced binding to the 1,25-dihydroxyvitamin D receptor binding protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号