首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
R E Bellas  N Hopkins    Y Li 《Journal of virology》1993,67(5):2908-2913
We demonstrate here that the nuclear factor-kappa B (NF-kappa B) binding site in the simian immunodeficiency virus (SIVmac) long terminal repeat is essential for efficient virus replication in primary alveolar macrophages but dispensable for efficient replication in primary T cells. Mutation of the NF-kappa B site does not seriously impair replication of a T-cell-tropic SIVmac239 or a macrophagetropic SIVmacEm* in peripheral blood lymphocytes or established CD4+ cell lines; however, mutation of the NF-kappa B site prevents efficient SIVmacEm* replication in primary alveolar macrophages. These data suggest that efficient replication in primary macrophages requires both envelope and long terminal repeat determinants.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Monoclonal antibody SF8/5E11, which recognizes the transmembrane protein (TMP) of simian immunodeficiency virus of macaque monkeys (SIVmac), displayed strict strain specificity. It reacted with cloned and uncloned SIVmac251 but not with cloned SIVmac142 and SIVmac239 on immunoblots. This monoclonal antibody neutralized infection by cloned, cell-free SIVmac251 and inhibited formation of syncytia by cloned SIVmac251-infected cells; these activities were specific to cloned SIVmac251 and did not occur with the other viruses. Site-specific mutagenesis was used to show that TMP amino acids 106 to 110 (Asp-Trp-Asn-Asn-Asp) determined the strain specificity of the monoclonal antibody. This strain-specific neutralizing determinant is located within a variable region of SIVmac and human immunodeficiency virus type 2 (HIV-2) which includes conserved, clustered sites for N-linked glycosylation. The determinant corresponds exactly to a variable, weak neutralizing epitope in HIV-1 TMP which also includes conserved, clustered sites for N-linked glycosylation. Thus, the location of at least one neutralizing epitope appears to be common to both SIVmac and HIV-1. Our results suggest a role for this determinant in the viral entry process. Genetic variation was observed in this neutralizing determinant following infection of a rhesus monkey with molecularly cloned SIVmac239; variant forms of the strain-specific, neutralizing determinant accumulated during persistent infection in vivo. Selective pressure from the host immune response in vivo may result in sequence variation in this neutralizing determinant.  相似文献   

10.
11.
12.
13.
We examined how asparagine-linked glycans within and adjacent to the V3 loop (C2 and C3 regions) and within the immunologically silent face (V4, C4, and V5 regions) of the human immunodeficiency virus (HIV) SF612 envelope affect the viral phenotype. Five of seven potential glycosylation sites are utilized when the virus is grown in human peripheral blood mononuclear cells, with the nonutilized sites lying within the V4 loop. Elimination of glycans within and adjacent to the V3 loop renders SF162 more susceptible to neutralization by polyclonal HIV(+)-positive and simian/human immunodeficiency virus-positive sera and by monoclonal antibodies (MAbs) recognizing the V3 loop, the CD4- and CCR5-binding sites, and the extracellular region of gp41. Importantly, our studies also indicate that glycans located within the immunologically silent face of gp120, specifically the C4 and V5 regions, also conferred on SF162 resistance to neutralization by anti-V3 loop, anti-CD4 binding site, and anti-gp41 MAbs but not by antibodies targeting the coreceptor binding site. We also observed that the amino acid composition of the V4 region contributes to the neutralization phenotype of SF162 by anti-V3 loop and anti-CD4 binding site MAbs. Collectively, our data support the proposal that the glycosylation and structure of the immunologically silent face of the HIV envelope plays an important role in defining the neutralization phenotype of HIV type 1.  相似文献   

14.
15.
16.
A region upstream of the murine major histocompatibility complex gene, E alpha d, has been shown previously to be required for B-cell expression. Binding of the B-cell-specific factor, NF-kappa B, to a site within this region is indistinguishable from that observed with the kappa enhancer binding site. NF-kappa B may be responsible for E alpha d B-cell expression.  相似文献   

17.
18.
Most rhesus macaques infected with simian immunodeficiency virus SIVmac239 with nef deleted (either Delta nef or Delta nef Delta vpr Delta US [Delta 3]) control viral replication and do not progress to AIDS. Some monkeys, however, develop moderate viral load set points and progress to AIDS. When simian immunodeficiency viruses (SIVs) recovered from two such animals (one Delta nef and the other Delta 3) were serially passaged in rhesus monkeys, the SIVs derived from both lineages were found to consistently induce moderate viral loads and disease progression. Analysis of viral sequences in the serially passaged derivatives revealed interesting changes in three regions: (i) an unusually high number of predicted amino acid changes (12 to 14) in the cytoplasmic domain of gp41, most of which were in regions that are usually conserved; these changes were observed in both lineages; (ii) an extreme shortening of nef sequences in the region of overlap with U3; these changes were observed in both lineages; and (iii) duplication of the NF-kappa B binding site in one lineage only. Neither the polymorphic gp41 changes alone nor the U3 deletion alone appeared to be responsible for increased replicative capacity because recombinant SIVmac239 Delta nef, engineered to contain either of these changes, induced moderate viral loads in only one of six monkeys. However, five of six monkeys infected with recombinant SIVmac239 Delta nef containing both TM and U3 changes did develop persisting moderate viral loads. These genetic changes did not increase lymphoid cell-activating properties in the monkey interleukin-2-dependent T-cell line 221, but the gp41 changes did increase the fusogenic activity of the SIV envelope two- to threefold. These results delineate sequence changes in SIV that can compensate for the loss of the nef gene to partially restore replicative and pathogenic potential in rhesus monkeys.  相似文献   

19.
T Luo  J V Garcia 《Journal of virology》1996,70(9):6493-6496
The nef genes of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) encode a 27- to 34-kDa myristoylated protein which induces downregulation of CD4 surface levels and enhances virus infectivity. In adult macaques, Nef has been implicated in pathogenesis and disease progression. Both HIV-1 SF2 Nef and SIVmac239 Nef have been shown to associate with a cellular serine/threonine kinase. We tested five functional Nef isolates to examine whether this kinase association is a property conserved among different isolates. HIV-1 SF2 and 248 and SIVmac239 Nef proteins were found associated with the kinase. HIV-1 NL4-3 and 233 Nef proteins were found weakly associated or not associated with the kinase. All five Nef isolates efficiently downregulated CD4 cell surface expression, suggesting that the association with this cellular kinase is not required for Nef to downregulate CD4. Comparison of the SF2 and NL4-3 isolates shows a differential ability of Nef to enhance infectivity that suggests a possible correlation between kinase association and enhancement of infectivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号