首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Turbidimetric experiments show that both biological polyamines, spermidine and spermine, can associate already formed actin filaments. This association takes place within 30 seconds and this result is in agreement with the rate of formation of the contractile ring actin filaments observed in vivo. This highly polymerized state of actin is also induced from monomeric actin by spermidine or spermine. ATP can disorganize this actin association induced from monomeric action or from actin filaments by the action of spermidine or spermine.  相似文献   

2.
A new method was devised to visualize actin polymerization induced by postsynaptic differentiation signals in cultured muscle cells. This entails masking myofibrillar filamentous (F)-actin with jasplakinolide, a cell-permeant F-actin-binding toxin, before synaptogenic stimulation, and then probing new actin assembly with fluorescent phalloidin. With this procedure, actin polymerization associated with newly induced acetylcholine receptor (AChR) clustering by heparin-binding growth-associated molecule-coated beads and by agrin was observed. The beads induced local F-actin assembly that colocalized with AChR clusters at bead-muscle contacts, whereas both the actin cytoskeleton and AChR clusters induced by bath agrin application were diffuse. By expressing a green fluorescent protein-coupled version of cortactin, a protein that binds to active F-actin, the dynamic nature of the actin cytoskeleton associated with new AChR clusters was revealed. In fact, the motive force generated by actin polymerization propelled the entire bead-induced AChR cluster with its attached bead to move in the plane of the membrane. In addition, actin polymerization is also necessary for the formation of both bead and agrin-induced AChR clusters as well as phosphotyrosine accumulation, as shown by their blockage by latrunculin A, a toxin that sequesters globular (G)-actin and prevents F-actin assembly. These results show that actin polymerization induced by synaptogenic signals is necessary for the movement and formation of AChR clusters and implicate a role of F-actin as a postsynaptic scaffold for the assembly of structural and signaling molecules in neuromuscular junction formation.  相似文献   

3.
The migration of IEC-6 cells is inhibited when the cells are depleted of polyamines by inhibiting ornithine decarboxylase with alpha-difluoromethylornithine (DFMO). Exogenous putrescine, spermidine, and spermine completely restore cell migration inhibited by DFMO. Because polyamines are interconverted during their synthesis and catabolism, the specific role of individual polyamines in intestinal cell migration, as well as growth, remains unclear. In this study, we used an inhibitor of S-adenosylmethionine decarboxylase, diethylglyoxal bis(guanylhydrazone)(DEGBG), to block the synthesis of spermidine and spermine from putrescine. We found that exogenous putrescine does not restore migration and growth of IEC-6 cells treated with DFMO plus DEGBG, whereas exogenous spermine does. In addition, the normal distribution of actin filaments required for migration, which is disrupted in polyamine-deficient cells, could be achieved by adding spermine but not putrescine along with DFMO and DEGBG. These results indicate that putrescine, by itself, is not essential for migration and growth, but that it is effective because it is converted into spermidine and/or spermine.  相似文献   

4.
The three major polyamines are normally found in chloroplasts of higher plants and are implicated in plant growth and stress response. We have recently shown that putrescine can increase light energy utilization through stimulation of photophosphorylation [Ioannidis et al., (2006) BBA-Bioenergetics, 1757, 821-828]. We are now to compare the role of the three major polyamines in terms of chloroplast bioenergetics. There is a different mode of action between the diamine putrescine and the higher polyamines (spermidine and spermine). Putrescine is an efficient stimulator of ATP synthesis, better than spermidine and spermine in terms of maximal % stimulation. On the other hand, spermidine and spermine are efficient stimulators of non-photochemical quenching. Spermidine and spermine at high concentrations are efficient uncouplers of photophosphorylation. In addition, the higher the polycationic character of the amine being used, the higher was the effectiveness in PSII efficiency restoration, as well as stacking of low salt thylakoids. Spermine with 50 microM increase F(V) as efficiently as 100 microM of spermidine or 1000 microM of putrescine or 1000 microM of Mg(2+). It is also demonstrated that the increase in F(V) derives mainly from the contribution of PSIIalpha centers. These results underline the importance of chloroplastic polyamines in the functionality of the photosynthetic membrane.  相似文献   

5.
In order to investigate the structural basis for functional differences among actin isoforms, we have compared the polymerization properties and conformations of scallop adductor muscle beta-like actin and rabbit skeletal muscle alpha-actin. Polymerization of scallop Ca(2+)-actin was slower than that of skeletal muscle Ca(2+)-actin. Cleavage of the actin polypeptide chain between Gly-42 and Val-43 with Escherichia coli protease ECP 32 impaired the polymerization of scallop Mg(2+)-actin to a greater extent than skeletal muscle Mg(2+)-actin. When monomeric scallop and skeletal muscle Ca(2+)-actins were subjected to limited proteolysis with trypsin, subtilisin, or ECP 32, no differences in the conformation of actin subdomain 2 were detected. At the same time, local differences in the conformations of scallop and skeletal muscle actin subdomains 1 were revealed as intrinsic fluorescence differences. Replacement of tightly bound Ca(2+) with Mg(2+) resulted in more extensive proteolysis of segment 61-69 of scallop actin than in the case of skeletal muscle actin. Furthermore, segment 61-69 was more accessible to proteolysis with subtilisin in polymerized scallop Ca(2+)-actin than in polymerized skeletal muscle Ca(2+)-actin, indicating that, in the polymeric form, the nucleotide-containing cleft is in a more open conformation in beta-like scallop actin than in skeletal muscle alpha-actin. We suggest that this difference between scallop and skeletal muscle actins is due to a less efficient shift of scallop actin subdomain 2 to the position it has in the polymer. The possible consequences of amino acid substitutions in actin subdomain 1 in the allosteric regulation of the actin cleft, and hence in the different stabilities of polymers formed by different actins, are discussed.  相似文献   

6.
The dynamic regulation of actin polymerization plays crucial roles in cell morphology and endocytosis. The mechanistic details of these processes and the proteins involved are not fully understood, especially in neurons. PICK1 is a PDZ-BAR-domain protein involved in regulated AMPA receptor (AMPAR) endocytosis in neurons. Here, we demonstrate that PICK1 binds filamentous (F)-actin and the actin-nucleating Arp2/3 complex, and potently inhibits Arp2/3-mediated actin polymerization. RNA interference (RNAi) knockdown of PICK1 in neurons induces a reorganization of the actin cytoskeleton resulting in aberrant cell morphology. Wild-type PICK1 rescues this phenotype, but a mutant PICK1, PICK1(W413A), that does not bind or inhibit Arp2/3 has no effect. Furthermore, this mutant also blocks NMDA-induced AMPAR internalization. This study identifies PICK1 as a negative regulator of Arp2/3-mediated actin polymerization that is critical for a specific form of vesicle trafficking, and also for the development of neuronal architecture.  相似文献   

7.
Putrescine, spermidine and spermine were transported into the rat lens against a concentration gradient. This process appeared to be energy-dependent and involved a carrier system different from those for amino acids. Competition experiments suggested that the three polyamines were transported by the same system or very similar systems. Incorporated spermine was converted to spermidine and putrescine, and spermidine was converted to putrescine. In contrast, the conversion of putrescine to spermidine and spermine, or the conversion of spermidine to spermine was not observed. Furthermore, ornithine was not utilized for the synthesis of putrescine. These metabolic characteristics of the polyamines in the rat lens were correlated with the extremely low activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase. Other enzymes of polyamine metabolisms, however, were relatively active. In conclusion, the lens has a very low ability for the de novo synthesis of polyamines. The polyamines in the lens are considered to be supplied form the surrounding intraocular fluid by an active transport system specific for polyamines.  相似文献   

8.
A transport system for polyamines was studied with both intact cells and membrane vesicles of an Escherichia coli polyamine-deficient mutant. Polyamine uptake by intact cells and membrane vesicles was inhibited by various protonophores, and polyamines accumulated in membrane vesicles when D-lactate was added as an energy source or when a membrane potential was imposed artificially by the addition of valinomycin to K+-loaded vesicles. These results show that the uptake was dependent on proton motive force. Transported [14C]putrescine and [14C]spermidine were not excreted by intact cells upon the addition either of carbonyl cyanide m-chlorophenylhydrazone, A23187, and Ca2+ or of an excess amount of nonlabeled polyamine. However, they were excreted by membrane vesicles, although the degree of spermidine efflux was much lower than that of putrescine efflux. These results suggest that the apparent unidirectionality in intact cells has arisen from polyamine binding to nucleic acids, thus giving rise to a negligible free intracellular concentration of polyamines. Polyamine uptake, especially putrescine uptake, was inhibited strongly by monovalent cations. The Mg2+ ion inhibited spermidine and spermine uptake but not putrescine uptake.  相似文献   

9.
Spermidine synthase genes are essential for survival of Arabidopsis   总被引:14,自引:0,他引:14       下载免费PDF全文
The cellular polyamines putrescine, spermidine, and spermine are ubiquitous in nature and have been implicated in a wide range of growth and developmental processes. There is little information, however, on mutant plants or animals defective in the synthesis of polyamines. The Arabidopsis genome has two genes encoding spermidine synthase, SPDS1 and SPDS2. In this paper, we describe T-DNA insertion mutants of both of these genes. While each mutant allele shows normal growth, spds1-1 spds2-1 double-mutant seeds are abnormally shrunken and they have embryos that are arrested morphologically at the heart-torpedo transition stage. These seeds contain significantly reduced levels of spermidine and high levels of its precursor, putrescine. The embryo lethal phenotype of spds1-1 spds2-1 is complemented by the wild-type SPDS1 gene. In addition, we observed a nearly identical seed phenotype among an F2 seed population from the cross between the spds2-1 allele and SPDS1 RNA interference transgenic lines. These data provide the first genetic evidence indicating a critical role of the spermidine synthase in plant embryo development.  相似文献   

10.
The first step in the polymerisation of actin   总被引:7,自引:0,他引:7  
In the presence of certain cations (e.g. K+ or Mg2+) actin polymerizes. Below a certain concentration (the critical concentration) the monomer G-actin does not polymerize on the addition of K+ or Mg2+. However, the proteolysis experiments of Rich and Estes [J. Mol. Biol. 104, 777--792 (1976)] strongly suggest that cations induce a change in conformation of G-actin leading to a novel form of actin, G*-actin. This conformational change may be the first step in the polymerization of actin. We have studied G*-actin induced by K+, by difference spectroscopy. We show that G*-actin is a monomer and we confirm that the bound ATP is not cleaved. We also studied the G-actin in equilibrium with G*-actin equilibrium at 4 degrees C as a function of K+ or Mg2+ concentration. With KCl, the transformation can be accounted for as a screening effect. The effect of Mg2+ is more specific and the change in conformation of the G-actin could result from the binding of two or three Mg2+ ions/molecule. We suggest that the G-actin in equilibrium with G*-actin transformation results from the neutralization of a polyanionic region on the actin surface and that this region could be the highly negatively charged N terminus.  相似文献   

11.
Mitochondria from Vigna sinensis (L.) Savi cv. Pitiuba contain the polyamines spermine, spermidine, and putrescine. The membrane-bound F1-ATPase from mitochondria of Vigna sinensis is activated by these polyamines at physiological concentrations. The effect of polyamines on the membrane-bound of F1-ATPase is dependent on the concentrations of Na+, K+, MgATP, and Mg2+. Excess Na+ or K+ prevents the activation of the membrane-bound F1-ATPase by spermine and spermidine, but not by putrescine. The most pronounced effects were observed at low MgATP concentrations in the absence of Na+ and K+. At [MgATP] = 0.08 mM, spermine activation of the membrane-bound F1-ATPase was 130%. The membrane-bound F1-ATPase is slightly activated by Mg2+ at lower concentrations and strongly inhibited by Mg2+ at higher concentrations. Activation as well as inhibition is dependent on the substrate MgATP concentration. Although there is competition between Mg2+ and MgATP, the binding sites for these two ligands are different (pseudocompetitive inhibition). The inhibition of the membrane-bound F1-ATPase can be reversed by polyamines. There is evidence that the binding sites for Mg2+ and polyamines are identical. The F1-ATPase detached from the membrane is neither activated by polyamines nor inhibited by Mg2+. Therefore, the binding sites for Mg2+ and polyamines seem to be localized on the membrane.  相似文献   

12.
Abstract— The clearance of the polyamines spermidine and spermine from cerebrospinal fluid was investigated in the rabbit by ventriculocisternal perfusion. Clearance involved both saturable and nonsaturable uptake processes. The saturable component was a high affinity system with an affinity constant of 21 μ m for spermidine and 24 μ m for spermine. The clearance of spermidine was reduced by the presence of spermine and vice-versa. Other polyamine congeners also reduced spermidine and spermine clearance and it is suggested that the two polyamines share the same carrier. Evidence for concentrative uptake of polyamines into choroid plexus is presented and it is suggested that an active system may also transport polyamines into brain tissue. At high perfusion concentrations simple diffusion may also take place.  相似文献   

13.
Platelet activation, crucial for hemostasis, requires actin polymerization, yet the molecular mechanisms by which localized actin polymerization is mediated are not clear. Here we report the characterization of a novel actin-binding protein, 2E4, originally isolated from human blood platelets and likely to be involved in the actin rearrangements occurring during activation. 2E4 binds to filamentous (F)-actin by F-actin affinity chromatography and is eluted from F-actin affinity columns and extracted from cells with ATP. Its presence at the leading edge of platelets spread on glass and in the lamellipodia of motile fibroblasts suggests a role in actin dynamics. Using localization to obtain clues about function, we stained the sensory epithelium of the embryonic inner ear to determine whether 2E4 is at the barbed end of actin filaments during their elongation. Indeed, 2E4 was present at the tips of the elongating stereocilium. 2E4 is novel by DNA sequence and has no identifiable structural motifs. Its unusual amino acid sequence, its ATP-sensitive actin association and its location at sites of actin polymerization in cells suggest 2E4 plays a unique role in the actin rearrangements that accompany platelet activation and stereocilia formation.  相似文献   

14.
The rate of actin polymerization gradually decreased without changing the final level of polymerization, when incubated in the presence of 0.2 mM ATP at pH 8.0 and 25 degrees C. This change was much faster in Mg2+-actin than Ca2+-actin, and Mg2+-actin became denatured and unpolymerizable on prolonged incubation. The drop in the polymerization rate was due both to weakened nucleation and a slowed elongation rate in the incubated actin. The change in the polymerization rate was partially reversible by storing the sample at 0 degrees C. When the rate of polymerization dropped markedly on prolonged incubation, a gel filtration profile showed that Ca2+-actin existed as monomer not as oligomer. On the other hand, Mg2+-actin formed dimers, and other oligomers, as revealed by crosslinking analysis. There were changes in fluorescence intensities due to tyrosine and/or tryptophan residues of the actin molecule, and in difference absorption spectra, suggesting that conformational changes intermediate between native and denatured states occurred during incubation.  相似文献   

15.
《FEBS letters》1986,198(2):221-224
Scallop adductor muscle β-like isoactin differs from rabbit skeletal muscle α-actin in the rate, extent and critical concentration of polymerization. The difference is temperature- and [KCl]-dependent. In the presence of DNase I scallop actin was shown to be depolymerized more rapidly than rabbit actin. It was suggested that the polymers formed by β-actin are less stable than those formed by α-actin.  相似文献   

16.
Cheever TR  Li B  Ervasti JM 《PloS one》2012,7(3):e32970
The local translation of β-actin is one mechanism proposed to regulate spatially-restricted actin polymerization crucial for nearly all aspects of neuronal development and function. However, the physiological significance of localized β-actin translation in neurons has not yet been demonstrated in vivo. To investigate the role of β-actin in the mammalian central nervous system (CNS), we characterized brain structure and function in a CNS-specific β-actin knock-out mouse (CNS-ActbKO). β-actin was rapidly ablated in the embryonic mouse brain, but total actin levels were maintained through upregulation of other actin isoforms during development. CNS-ActbKO mice exhibited partial perinatal lethality while survivors presented with surprisingly restricted histological abnormalities localized to the hippocampus and cerebellum. These tissue morphology defects correlated with profound hyperactivity as well as cognitive and maternal behavior impairments. Finally, we also identified localized defects in axonal crossing of the corpus callosum in CNS-ActbKO mice. These restricted defects occurred despite the fact that primary neurons lacking β-actin in culture were morphologically normal. Altogether, we identified novel roles for β-actin in promoting complex CNS tissue architecture while also demonstrating that distinct functions for the ubiquitously expressed β-actin are surprisingly restricted in vivo.  相似文献   

17.
18.
Kany H  Wolf J  Kalbitzer HR 《FEBS letters》2002,521(1-3):121-126
Mg-F-actin occurs in two conformational states, I and M, where the N-terminal amino acids are either immobile or highly mobile. In the rigor or ADP complex of rabbit myosin S1 with Mg-F-actin the N-terminal acetyl group of actin stays in its highly mobile state. The same is true for the complexes with the myosin motor domain from Dictyostelium discoideum. This excludes a direct strong interaction of the N-terminal amino acids with myosin in the rigor state as suggested. An interaction of the N-terminus of F-actin with myosin is also not promoted by occupying its low-affinity binding site(s) with divalent ions. The N-terminal high-mobility region may be part of a structural system which has evolved for releasing inadequate stress applied to the actin filaments.  相似文献   

19.
The free actin concentration at steady state, Ac, is a variable that determines how actin regulatory proteins influence the extent of actin polymerization. We describe a novel method employing fluorescence anisotropy to directly measure Ac in any sample after the addition of a trace amount of labeled thymosin beta4 or thymosin beta4 peptide. Using this assay, we confirm earlier theoretical work on the helical polymerization of actin and confirm the effects of actin filament-stabilizing drugs and capping proteins on Ac, thereby validating the assay. We also confirm a controversial prior observation that profilin lowers the critical concentration of Mg2+-actin. A general mechanism is proposed to explain this effect, and the first quantitative dose-response curve for the effect of profilin on Ac facilitates its evaluation. This mechanism also predicts the effect of profilin on critical concentration in the presence of the limited amount of capping protein, which is the condition often found in cells, and the effect of profilin on critical concentration in cell extracts is demonstrated for the first time. Additionally, nonlinear effects of thymosin beta4 on the steady state amount of F-actin are explained by the observed changes in Ac. This assay has potential in vivo applications that complement those demonstrated in vitro.  相似文献   

20.
Poly(ethylene glycol) 6000 affected many of the properties of skeletal-muscle actin. It accelerated the rate and increased the extent of actin polymerization as measured by light-scattering and sedimentation studies respectively. Moreover, intrinsic-fluorescence measurements showed that addition of poly(ethylene glycol) 6000 decreased the rate of EDTA-induced denaturation of actin monomer and increased the temperature at which irreversible conformational changes occur in actin monomer. These effects occurred without any apparent direct binding interaction and are postulated to be a consequence of the effect of excluded volume on the thermodynamic activity of actin. A relationship based on spherical geometry was formulated which described the co-volume increment that occurs upon addition of a monomer to a long linear polymer in the presence of a space-filling macromolecule. The application of this relationship to the poly(ethylene glycol) 6000-actin system was not without assumption, but it permitted quantitative estimation of the co-volume increment which proved to be of the sign and magnitude required to explain the increased extent of actin polymerization found experimentally in the presence of various concentrations of poly(ethylene glycol) 6000. It is suggested that, in vivo, excluded volume may play a role in actin-filament formation and in the maintenance of the native G-actin structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号