首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Excision repair was measured in normal human and xeroderma pigmentosum group C fibroblasts treated with ultraviolet radiation and the carcinogens acridine mustard (ICR-170) or 4-nitroquinoline 1-oxide (4NQO) by the techniques of unscheduled synthesis, photolysis of bromodeoxyuridine incorporated into parental DNA during repair, and assays of sites sensitive to ultraviolet (UV)-endonuclease. Doses of ICR-170 and 4NQO, low enough not to inhibit unscheduled DNA synthesis (UDS), caused damage to DNA that was repaired by a long patch type mechanism and the rates of UDS decreased rapidly in the first 12 h after treatment. Repair after a combined action of UV plus ICR-170 or UV plus 4NQO was additive in normal cells and no inhibition of loss of endonuclease sensitive sites was detected. In xeroderma pigmentosum (XP) C cells there was less repair after UV plus ICR-170 than after each treatment separately; whereas there was an additive effect after UV plus 4NQO and no inhibition of loss of endonuclease sensitive sites. The results indicate that in normal human fibroblasts there are different rate limiting steps for removal of chemical and physical damages from DNA and that XP cells have a different repair system for ICR-170, not just a lower level, than normal cells. Possibly the same long patch repair system works on 4NQO damage in both normal and XP cells.  相似文献   

2.
Complementation analysis was performed 24 h after fusion of UV-sensitive CHO cells (CHO 12 RO) with XP cells of complementation groups A, B, C, D, F and G. The parental cells are characterized by low levels of unscheduled DNA synthesis (UDS). In all combinations, the UDS levels observed in heterokaryons were higher than those in parental mutant cells, clearly indicating cooperation of human and Chinese hamster repair functions. In heterokaryons of CHO 12 RO with XP-A and XP-C cells, the UDS values reached about the normal human level, whereas in heterokaryons with XP-B, XP-D and XP-F, UDS was restored at a level approaching that in wild-type CHO cells. The results obtained after fusion of CHO cells with two representative cell strains from the XP-G group, XP 2 BI and XP 3 BR, were inconsistent. Fusion with XP 3 BR cells yielded UDS levels ranging from wild-type Chinese hamster to normal human, whereas fusion with XP 2 BI cells resulted in a slight increase in UDS which even after 48 h remained below the level found in wild-type CHO cells. The occurrence of complementation in these interspecies heterokaryons indicates that the genetic defect in the CHO 12 RO cells is different from the defects in the XP complementation groups tested.  相似文献   

3.
7 strains of human primary fibroblasts were chosen from the complementation groups A through G of xeroderma pigmentosum; these strains are UV-sensitive and deficient in excision repair of UV damage on the criterion of unscheduled DNA synthesis (UDS). They were compared with normal human fibroblasts and one xeroderma pigmentosum variant with regard to their capacity to remove pyrimidine dimers, induced in their DNA by UV at 253.7 nm. The XP variant showed a normal level of dimer removal, whereas 6 of the other XP strains had a greatly reduced capacity to remove this DNA damage, in agreement with their individual levels of UDS. Strain XP230S (complementation group F), however, only showed a 20% reduction in the removal of dimers, which is much less than expected from the low level of UDS in this strain.  相似文献   

4.
Fusion of chick erythrocytes with human primary fibroblasts results in the formation of heterokaryons in which the inactive chick nuclei become reactivated. The expression of chick DNA repair functions was investigated by the analysis of the DNA repair capacity after exposure to ultraviolet (UV) irradiation of such heterokaryons obtained after fusion of chick erythrocytes with normal human or xeroderma pigmentosum (XP) cells of complementation groups A, B, C and D. Unscheduled DNA synthesis (UDS) in normal human nuclei in these heterokaryons is suppressed during the first 2–4 days after fusion. The extent and duration of this suppression is positively correlated with the number of chick nuclei in the heterokaryons. Suppression is absent in heterokaryons obtained after fusion of chicken embryonic fibroblasts with XP cells (complementation group A and C).Restoration of DNA repair synthesis is found after fusion in XP nuclei of all complementation groups studied. It occurs rapidly in XP group A nuclei, starting one day after fusion and reaching near normal human levels after 5–8 days. In nuclei of the B, C and D group increased levels of UDS are found 5 days after fusion. At 8 days after fusion the UDS level is about 50% of that found in normal human nuclei. The pattern of UDS observed in the chick nuclei parallels that of the human counterpart in the fusion. A fast complementation pattern is also observed in chick fibroblast-XP group A heterokaryons resulting within 24 h in a UDS level comparable with that in chick fibroblast-normal human heterokaryons. In heterokaryons obtained after fusion of chick fibroblasts with XP group C cells UDS remains at the level of chick cells. These data suggest that reactivation of chick erythrocyte nuclei results in expression of repair functions which are able to complement the defects in the XP complementation groups A, B, C and D.  相似文献   

5.
Cells derived from individuals with mutations in the xeroderma pigmentosum complementation group A gene (XP-A gene) are hypersensitive to UV light and have a severe defect in nucleotide excision repair of damaged DNA. UV-resistant revertant cell lines can arise from XP-A cells in culture. Cells of one such revertant, XP129, were previously shown to remove (6-4) photoproducts from irradiated DNA, but to have poor repair of cyclobutane pyrimidine dimers. To analyze the biochemical nature of the reversion, whole cell extracts were prepared from the SV40-immortalized fibroblast cell lines XP12RO (an XP-A cell line), the revertant XP129 (derived from XP12RO), and 1BR.3N (from a normal individual). The ability of extracts to carry out repair synthesis in UV-irradiated DNA was examined, and immunoblots were performed using antiserum that recognizes XP-A protein. XP12RO extracts exhibited a very low level of repair and no detectable XP-A protein, but repair activity could be conferred by adding purified XP-A protein to the reaction mixture. XP129 extracts have essentially normal repair synthesis consistent with the observation that most repair of UV-irradiated DNA by extracts appears to occur at (6-4) photoproducts. An XP-A polypeptide of normal size was present in XP129, but in reduced amounts. The results indicate that in XP129 a mutational event has converted the inactive XP12RO XP-A gene into a form which expresses an active XP-A protein.  相似文献   

6.
DNA repair synthesis in 8 explant-outgrowth cultures of epidermal cells isolated from variant and complementation groups A and E of xeroderma pigmentosum (XP) was examined by measuring unscheduled DNA synthesis (UDS) on autoradiographs. The extents of UDS in XP epidermal cells were compared with those in normal epidermal cells obtained from 26 subjects. In both normal and XP epidermal cells, UDS was induced dose-dependently by radiation at doses of 5-20 J/m2. XP epidermal cells showed various extents of defect in DNA repair depending on the type of XP. In XP-A, the extent of UDS in epidermal cells was very low, being seen in only 3-10% of the normal epidermal cells. But epidermal cells isolated from XP-E and XP-variants exhibited relatively high levels of residual DNA repair; i.e., 69-84% of the control in XP-E and 67-85% in XP-variant. The extents of UDS in XP epidermal cells were almost the same as those in fibroblastic cells isolated from the same specimens.  相似文献   

7.
《Mutation Research Letters》1991,262(3):151-157
The extent of DNA-excision repair was determined in human fibroblast strains from clinically normal and xeroderma pigmentosum complementation group A (XP-A) donors after irradiation with 254-nm ultraviolet (UV) light. Repair was monitored by the use of 1-β-d-arabinofuranosylcytosine (araC), a potent inhibitor of DNA synthesis, and alkaline sucrose velocity sedimentation to quantitate DNA single-strand breaks. In this approach, the number of araC-accumulated breaks in post-UV incubated cultures becomes a measure of the efficiency of a particular strain to perform long-patch excision repair. The maximal rate of removal of araC-detectable DNA lesions equalled ∼ 1.8 sites/108 dalton/h in the normal strains (GM38, GM43), while it was more than 10-fold lower in both XP-A strains (XP4LO, XP12BE) examined. In normal fibroblasts the number of lesions removed during the first 4 h after irradiation saturated at ∼ 10 J/m2. In contrast, the residual amount of repair in the excision-deficient cells increased as a linear function of UV fluence over a range 5–120 J/m2. Thus we conclude that the repair of araC-detectable UV photoproducts in XP group A fibroblasts is limited by availability of damaged regions in the genome to repair complexes.  相似文献   

8.
The extent of DNA-excision repair was determined in human fibroblast strains from clinically normal and xeroderma pigmentosum complementation group A (XP-A) donors after irradiation with 254-nm ultraviolet (UV) light. Repair was monitored by the use of 1-beta-D-arabinofuranosylcytosine (araC), a potent inhibitor of DNA synthesis, and alkaline sucrose velocity sedimentation to quantitate DNA single-strand breaks. In this approach, the number of araC-accumulated breaks in post-UV incubated cultures becomes a measure of the efficiency of a particular strain to perform long-patch excision repair. The maximal rate of removal of araC-detectable DNA lesions equalled approximately 1.8 sites/10(8) dalton/h in the normal strains (GM38, GM43), while it was more than 10-fold lower in both XP-A strains (XP4LO, XP12BE) examined. In normal fibroblasts the number of lesions removed during the first 4 h after irradiation saturated at approximately 10 J/m2. In contrast, the residual amount of repair in the excision-deficient cells increased as a linear function of UV fluence over a range 5-120 J/m2. Thus we conclude that the repair of araC-detectable UV photoproducts in XP group A fibroblasts is limited by availability of damaged regions in the genome to repair complexes.  相似文献   

9.
The rate of removal of pyrimidine dimers from DNA of UV (254 nm)-irradiated (1 J/m2) normal and xeroderma pigmentosum (XP) cells maintained in culture as nondividing populations was determined. Several normal and XP strains from complementation groups A, C and D were studied. The excision rates and survival ability of nondividing cells were examined to determine if an abnormal sensitivity was associated with a decreased rate of dimer excision. The results show that all normal strains studied excise pyrimidine dimers at the same rate, with the rate curve characterized by two components. All 'excision-deficient' XP strains excise dimers at a slower-than-normal rate, with the rate curves also characterized by two components. The rate constants for the first components of all of the XP strains (group A, C and D) are the same, one tenth of the normal rate constant, except for XP8LO (group A). XP8LO has a first-component rate constant similar to that of normal strains and a second component rate constant similar to that of other group A strains (XP12BE, XP25RO). Thus, the slower rate of dimer excision in XP8LO is due to a defect in the mechanism responsible for the second component of the excision-rate curve. In general, an abnormal sensitivity of nondividing cells to UV is associated with a reduced dimer-excision rate. A notable exception to this is the group C strain XP1BE which has an initial repair rate similar to that of group A XP12BE but is considerably more resistant when survival is measured.  相似文献   

10.
The cybridization technique was used to study the role of cytoplasmic and nuclear factors in complementation of the repair defects in xeroderma pigmentosum (XP) cells. Cybrids were prepared by fusion of UV-exposed XP cells with cytoplasts derived from normal human or complementing XP cells. Phenotypic correction of the DNA repair defect measured by unscheduled DNA synthesis (UDS) occurred in these cybrids. The results show that the correcting factors are present in the cytoplasts and can move into the nucleus of the UV-exposed XP cell almost immediately after fusion. The defective repair in the nuclei of XP complementation group A cell strains is corrected with fast kinetics reaching normal UDS levels within 2 h after fusion. In the A-group cybrids the correcting activity decreased with a half-time of about 12 h. Correction of the XP group C defect occurred at a much slower rate, indicating that different factors are involved in the correction of the XP-A and XP-C defects.  相似文献   

11.
Introduction of the denV gene of phage T4, encoding the pyrimidine dimer-specific endonuclease V, into xeroderma pigmentosum cells XP12RO(M1) was reported to result in partial restoration of colony-forming ability and excision repair synthesis. We have further characterized 3 denV-transformed XP clones in terms of rates of excision of pyrimidine dimers and size of the resulting resynthesized regions following exposure to 100 J/m2 from an FS-40 sunlamp. In the denV-transformed XP cells we observed 50% dimer removal within 3-6 h after UV exposure as compared to no measurable removal in the XP12RO(M1) line and 50% dimer excision after 18 h in the GM637A human, control cells. Dimer removal was assayed with Micrococcus luteus UV-endonuclease in conjunction with sedimentation of treated DNA in alkaline sucrose gradients. The size of the resulting repaired regions was determined by the bromouracil photolysis technique. Based on the photolytic sensitivity of DNA repaired in the presence of bromodeoxyuridine, we calculated that the excision of a dimer in the GM637A cells appears to be accompanied by the resynthesis of a region approximately 95 nucleotides in length. Conversely, the resynthesized regions in the denV-transformed clones were considerably smaller and were estimated to be between 13 and 18 nucleotides in length. These results may indicate that either the endonuclease that initiated dimer repair dictated the size of the resynthesized region or that the long-patch repair observed in the normal cells resulted from the repair of non-dimer DNA lesions.  相似文献   

12.
Trichothiodystrophy is a genetic disease which in the majority of cases studied is associated with a deficiency in the ability to repair UV damage in cellular DNA. Three categories of UV response have been identified. In type 1 the response is completely normal, whereas type 2 cells are deficient in excision-repair, with properties indistinguishable from those of XP complementation group D. Type 3 cells have normal survival following UV-irradiation and normal rates of removal of cyclobutane pyrimidine dimer sites. Nevertheless repair synthesis is reduced by 50% in these cell strains and this is associated with a marked reduction in the repair of 6-4 photoproducts from cellular DNA. The present results show that 50% or more of repair synthesis at early times after irradiation of normal primary human fibroblasts is attributable to repair of 6-4 products. They also suggest that repair of cyclobutane dimers is crucial for cell survival.  相似文献   

13.
Summary We studied the response to UV irradiation in cells from four patients, from three apparently unrelated families, affected by trichothiodystrophy (TTD). They showed all the symptoms of this rare autosomal recessive disorder (brittle hair with reduced sulfur content, mental and physical retardation, ichthyosis, peculiar face) together with photosensitivity. We found a decreased rate of duplicative DNA synthesis in stimulated lymphocytes, reduced survival in fibroblasts, and very low levels of unscheduled DNA synthesis (UDS) in Go lymphocytes and fibroblasts after UV irradiation. Complementation studies showed that normal values of UDS are restored in heterokaryons obtained by fusion of TTD cells with normal and xeroderma pigmentosum (XP)-complementation group A-cells. In contrast the defect is not complemented by fusion with XP-complementation group D-fibroblasts.  相似文献   

14.
Cultured fibroblasts of patients with the DNA repair syndrome xeroderma pigmentosum (XP) were injected with crude cell extracts from various human cells. Injected fibroblasts were then assayed for unscheduled DNA synthesis (UDS) to see whether the injected extract could complement their deficiency in the removal of u.v.-induced thymidine dimers from their DNA. Microinjection of extracts from repair-proficient cells (such as HeLa, placenta) and from cells belonging to XP complementation group C resulted in a temporary correction of the DNA repair defect in XP-A cells but not in cells from complementation groups C, D or F. Extracts prepared from XP-A cells were unable to correct the XP-A repair defect. The UDS of phenotypically corrected XP-A cells is u.v.-specific and can reach the level of normal cells. The XP-A correcting factor was found to be sensitive to the action of proteinase K, suggesting that it is a protein. It is present in normal cells in high amounts, it is stable on storage and can still be detected in the injected cells 8 h after injection. The microinjection assay described in this paper provides a useful tool for the purification of the XP-A (and possibly other) factor(s) involved in DNA repair.  相似文献   

15.
Two siblings have been reported whose clinical manifestations (cutaneous photosensitivity and central nervous system dysfunction) are strongly reminiscent of the DeSanctis-Cacchione syndrome (DCS) variant of xeroderma pigmentosum (XP), a severe form of XP. Fibroblasts from the siblings showed UV sensitivity, a failure of recovery of RNA synthesis (RRS) after UV irradiation, and a normal level of unscheduled DNA synthesis (UDS), which were, unexpectedly, the biochemical characteristics usually associated with Cockayne syndrome (CS). However, no complementation group assignment in these cells has yet been performed. We here report that these patients can be assigned to CS complementation group B (CSB) by cell fusion complementation analysis. To our knowledge, these are the first patients with defects in the CSB gene to be associated with an XP phenotype. The results imply that the gene product from the CSB gene must interact with the gene products involved in excision repair and associated with XP.  相似文献   

16.
A reduction in the amount of UV-induced unscheduled DNA synthesis (UDS), and reduced cell survival and host-cell reactivation against UV exposure in Hutchinson-Gilford progeria syndrome cell strains were shown. UV-induced UDS in 4 progeria cell strains was 33-50% of the normal level. A similar reduction in the UV-induced UDS in normal cells was caused by gamma-ray irradiation to the cells before UV irradiation. The dose of gamma-rays required to cause a reduction in UDS of normal cells to the level of progeria cells was 40 Gy and the reduction was reversible after 2 days. In progeria cells, gamma-ray irradiation further reduced UDS with a lower gamma-ray dose required than in normal cells, and the reduction was also reversible but with less relative recovery than in normal cells. The presence of a 'built-in' defect in progeria cells responsible for the reduced DNA-repair capacity was suggested, and such defect may share a common mechanism with the reduction of UV-induced UDS in normal cells caused by gamma-ray irradiation.  相似文献   

17.
In humans, inactivation of the DNA polymerase eta gene (pol eta) results in sunlight sensitivity and causes the cancer-prone xeroderma pigmentosum variant syndrome (XP-V). Cells from XP-V individuals have a reduced capacity to replicate UV-damaged DNA and show hypermutability after UV exposure. Biochemical assays have demonstrated the ability of pol eta to bypass cis-syn-cyclobutane thymine dimers, the most common lesion generated in DNA by UV. In most cases, this bypass is error-free. To determine the actual requirement of pol eta in vivo, XP-V cells (XP30RO) were complemented by the wild type pol eta gene. We have used two pol eta-corrected clones to study the in vivo characteristics of mutations produced by DNA polymerases during DNA synthesis of UV-irradiated shuttle vectors transfected into human host cells, which had or had not been exposed previously to UV radiation. The functional complementation of XP-V cells by pol eta reduced the mutation frequencies both at CG and TA base pairs and restored UV mutagenesis to a normal level. UV irradiation of host cells prior to transfection strongly increased the mutation frequency in undamaged vectors and, in addition, especially in the pol eta-deficient XP30RO cells at 5'-TT sites in UV-irradiated plasmids. These results clearly show the protective role of pol eta against UV-induced lesions and the activation by UV of pol eta-independent mutagenic processes.  相似文献   

18.
We investigated the lethal, UV killing-potentiating and repair-inhibiting effects of trivalent arsenic trioxide (As2O3) and pentavalent sodium arsenate (Na2HAsO4) in normal human and xeroderma pigmentosum (XP) fibroblasts. The presence of As2O3 for 24 h after UV irradiation inhibited the thymine dimer excision from the DNA of normal and XP variant cells and thus the subsequent unscheduled DNA synthesis (UDS): excision inhibitions were partial, 30-40%, at a physiological dose of 1 microgram/ml and 100% at a supralethal dose of 5 micrograms/ml. Correspondingly, As2O3 also potentiated the lethal effect of UV on excision-proficient normal and XP variant cells in a concentration-dependent manner, but not on excision-defective XP group A cells. Na2HAsO4 (As5+) was approximately an order of magnitude less effective in preventing all the above repair events than As2O3 (As3+) which is highly affinic to SH-containing proteins. The above results provide the first evidence that arsenic inhibits the excision of pyrimidine dimers. Partially repair-suppressing small doses of As2O3 (0.5 microgram/ml) and Na2HAsO4 (5 micrograms/ml) enhanced co-mutagenically the UV induction of 6-thioguanine-resistant mutations of V79 Chinese hamster cells. Thus, such a repair inhibition may be one of the basic mechanisms for the co-mutagenicity and presumably co-carcinogenicity of arsenic. XP group A and variant strains showed a unique higher sensitivity to As2O3 and Na2HAsO4 killing by a yet unidentified mechanism.  相似文献   

19.
Nucleotide excision repair (NER) acts on a variety of DNA lesions, including damage induced by many chemotherapeutic drugs. Cancer therapy with such drugs might be improved by reducing the NER capacity of tumors. It is not known, however to what extent any individual NER protein is rate-limiting for any step of the repair reaction. We studied sensitivity to UV radiation and repair of DNA damage with regard to XPA, one of the core factors in the NER incision complex. About 150,000-200,000 molecules of XPA protein are present in NER proficient human cell lines, and no XPA protein in the XP-A cell line XP12RO. Transfected XP12RO cell lines expressing 50,000 or more XPA molecules/cell showed UV resistance similar to normal cells. Suppression of XPA protein to approximately 10,000 molecules/cell in a Tet-regulatable system modestly but significantly increased sensitivity to UV irradiation. No removal of cyclobutane pyrimidine dimers was detected in the SV40 immortalized cell lines tested. Repair proficient WI38-VA fibroblasts and transfected XP-A cells expressing 150,000 molecules of XPA/cell removed (6-4) photoproducts from the genome with a half-life of 1h. Cells in which XPA protein was reduced to about 10,000 molecules/cell removed (6-4) photoproducts more slowly, with a half-life of 3h. A reduced rate of repair of (6-4) photoproducts thus results in increased cellular sensitivity towards UV irradiation. These data indicate that XPA levels must be reduced to <10% of that present in a normal cell to render XPA a limiting factor for NER and consequent cellular sensitivity. To inhibit NER, it may be more effective to interfere with XPA protein function, rather than reducing XPA protein levels.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号