首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tiso M  Tejero J  Kenney C  Frizzell S  Gladwin MT 《Biochemistry》2012,51(26):5285-5292
Plant nonsymbiotic hemoglobins possess hexacoordinate heme geometry similar to that of the heme protein neuroglobin. We recently discovered that deoxygenated neuroglobin converts nitrite to nitric oxide (NO), an important signaling molecule involved in many processes in plants. We sought to determine whether Arabidopsis thaliana nonsymbiotic hemoglobins classes 1 and 2 (AHb1 and AHb2, respectively) might function as nitrite reductases. We found that the reaction of nitrite with deoxygenated AHb1 and AHb2 generates NO gas and iron-nitrosyl-hemoglobin species. The bimolecular rate constants for reduction of nitrite to NO are 19.8 ± 3.2 and 4.9 ± 0.2 M(-1) s(-1), respectively, at pH 7.4 and 25 °C. We determined the pH dependence of these bimolecular rate constants and found a linear correlation with the concentration of protons, indicating the requirement for one proton in the reaction. The release of free NO gas during the reaction under anoxic and hypoxic (2% oxygen) conditions was confirmed by chemiluminescence detection. These results demonstrate that deoxygenated AHb1 and AHb2 reduce nitrite to form NO via a mechanism analogous to that observed for hemoglobin, myoglobin, and neuroglobin. Our findings suggest that during severe hypoxia and in the anaerobic plant roots, especially in species submerged in water, nonsymbiotic hemoglobins provide a viable pathway for NO generation via nitrite reduction.  相似文献   

2.
Hemoglobin is essential for normal growth of Arabidopsis organs   总被引:1,自引:0,他引:1  
In Arabidopsis thaliana , the class I hemoglobin AHb1 is transiently expressed in the hydathodes of leaves and in floral buds from young inflorescences. Nitric oxide (NO) accumulates to high levels in these organs when AHb1 is silenced, indicating an important role in metabolizing NO. AHb1 -silenced lines are viable but show a mutant phenotype affecting the regions where AHb1 is expressed. Arabidopsis lines with an insertional knockout or overexpression of AHb2, a class II 3-on-3 hemoglobin, were generated. Seedlings overexpressing AHb2 show enhanced survival of hypoxic stress. The AHb2 knockout lines develop normally. However, when AHb2 knockout is combined with AHb1 silencing, seedlings die at an early vegetative stage suggesting that the two 3-on-3 hemoglobins, AHb1 and AHb2, together play an essential role for normal development of Arabidopsis seedlings. In conclusion, these results suggests that 3-on-3 hemoglobins apart from a role in hypoxic stress play a general role under non-stressed conditions where they are essential for normal development by controlling the level of NO which tends to accumulate in floral buds and leaf hydathodes of plants.  相似文献   

3.
This study reports a comparative analysis of the topological properties of inner cavities and the intrinsic dynamics of non-symbiotic hemoglobins AHb1 and AHb2 from Arabidopsis thaliana. The two proteins belong to the 3/3 globin fold and have a sequence identity of about 60%. However, it is widely assumed that they have distinct physiological roles. In order to investigate the structure–function relationships in these proteins, we have examined the bis-histidyl and ligand-bound hexacoordinated states by atomistic simulations using in silico structural models. The results allow us to identify two main pathways to the distal cavity in the bis-histidyl hexacoordinated proteins. Nevertheless, a larger accessibility to small gaseous molecules is found in AHb2. This effect can be attributed to three factors: the mutation Leu35(AHb1) → Phe32(AHb2), the enhanced flexibility of helix B, and the more favorable energetic profile for ligand migration to the distal cavity. The net effect of these factors would be to facilitate the access of ligands, thus compensating the preference for the fully hexacoordination of AHb2, in contrast to the equilibrium between hexa- and pentacoordinated species in AHb1. On the other hand, binding of the exogenous ligand introduces distinct structural changes in the two proteins. A well-defined tunnel is formed in AHb1, which might be relevant to accomplish the proposed NO detoxification reaction. In contrast, no similar tunnel is found in AHb2, which can be ascribed to the reduced flexibility of helix E imposed by the larger number of salt bridges compared to AHb1. This feature would thus support the storage and transport functions proposed for AHb2. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

4.
Nonsymbiotic hemoglobins AHb1 and AHb2 discovered in Arabidopsis thaliana are likely to carry out distinct physiological roles, in consideration of their differences in sequence, structure, expression pattern, and tissue localization. Despite a relatively fast autoxidation in the presence of O(2) , we were able to collect O(2) -binding curves for AHb2 in the presence of a reduction enzymatic system. AHb2 binds O(2) noncooperatively with a p50 of 0.021 ± 0.003 Torr, a value consistent with a recently proposed role in O(2) transport. The analysis of the internal cavities derived from the structures sampled in molecular dynamics simulations confirms strong differences with AHb1, proposed to work as a NO deoxygenase in vivo. Overall, our results are consistent with a role for AHb2 as an oxygen carrier, as recently proposed on the basis of experiments on AHb2-overexpressing mutants of A. thaliana.  相似文献   

5.
Genome of the model dicot flowering plant, Arabidopsis thaliana, a popular tool for understanding molecular biology of plant physiology, encodes all three classes of plant hemoglobins that differ in their sequence, ligand binding and spectral properties. As such these globins are of considerable attention. Crystal structures of few members of plant class I nonsymbiotic hemoglobin have been described earlier. Here we report the crystal structure of Arabidopsis class I hemoglobin (AHb1) to 2.2 ? and compare its key features with the structures of similar nonsymbiotic hemoglobin from other species. Crystal structure of AHb1 is homologous to the related members with similar globin fold and heme pocket architecture. The structure is homodimeric in the asymmetric unit with both distal and proximal histidines coordinating to the heme iron atom. Residues lining the dimeric interface are also conserved in AHb1 with the exception of additional electrostatic interaction between H112 and E113 of each subunit and that involving Y119 through two water molecules. In addition, differences in heme pocket non-covalent interactions, a novel Ser residue at F7 position, Xe binding site variability, internal cavity topology differences, CD loop conformation and stability and other such properties might explain kinetic variability in AHb1. Detailed cavity analysis of AHb1 showed the presence of a novel long tunnel connecting the distal pockets of both the monomers. Presence of such tunnel, along with conformational heterogeneity observed in the two chains, might suggest cooperative ligand binding and support its role in NO scavenging. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

6.
Nonsymbiotic hemoglobins are ubiquitously expressed in plants and divided into two different classes based on gene expression pattern and oxygen-binding properties. Most of the published research has been on the function of class 1 hemoglobins. To investigate the role of class 2 hemoglobins, transgenic Arabidopsis (Arabidopsis thaliana) plants were generated overexpressing Arabidopsis hemoglobin-2 (AHb2) under the control of a seed-specific promoter. Overexpression of AHb2 led to a 40% increase in the total fatty acid content of developing and mature seeds in three subsequent generations. This was mainly due to an increase in the polyunsaturated C18:2 (ω-6) linoleic and C18:3 (ω-3) α-linolenic acids. Moreover, AHb2 overexpression led to an increase in the C18:2/C18:1 and C18:3/C18:2 ratios as well as in the C18:3 content in mol % of total fatty acids and in the unsaturation/saturation index of total seed lipids. The increase in fatty acid content was mainly due to a stimulation of the rate of triacylglycerol synthesis, which was attributable to a 3-fold higher energy state and a 2-fold higher sucrose content of the seeds. Under low external oxygen, AHb2 overexpression maintained an up to 5-fold higher energy state and prevented fermentation. This is consistent with AHb2 overexpression results in improved oxygen availability within developing seeds. In contrast to this, overexpression of class 1 hemoglobin did not lead to any significant increase in the metabolic performance of the seeds. These results provide evidence for a specific function of class 2 hemoglobin in seed oil production and in promoting the accumulation of polyunsaturated fatty acids by facilitating oxygen supply in developing seeds.  相似文献   

7.
8.
The ligand rebinding kinetics after photolysis of the CO complexes of Arabidopsis thaliana hemoglobins AHb1 and AHb2 in solution show very different amplitudes in the geminate phase, reflecting different migration pathways of the photodissociated ligand in the system of internal cavities accessible from the heme. The dependence of the geminate phase on CO concentration, temperature, encapsulation in silica gels and presence of glycerol confirms a remarkable difference in the internal structure of the two proteins and a dramatically different role of protein dynamics in regulating the reactivity with CO. This finding strongly supports the idea that they have distinct physiological functions.  相似文献   

9.
Chilling triggers rapid molecular responses that permit the maintenance of plant cell homeostasis and plant adaptation. Recent data showed that nitric oxide (NO) is involved in plant acclimation and tolerance to cold. The participation of NO in the early transduction of the cold signal in Arabidopsis thaliana was investigated. The production of NO after a short exposure to cold was assessed using the NO-sensitive fluorescent probe 4, 5-diamino fluoresceine diacetate and chemiluminescence. Pharmacological and genetic approaches were used to analyze NO sources and NO-mediated changes in cold-regulated gene expression, phosphatidic acid (PtdOH) synthesis and sphingolipid phosphorylation. NO production was detected after 1-4h of chilling. It was impaired in the nia1nia2 nitrate reductase mutant. Moreover, NO accumulation was not observed in H7 plants overexpressing the A. thaliana nonsymbiotic hemoglobin Arabidopsis haemoglobin 1 (AHb1). Cold-regulated gene expression was affected in nia1nia2 and H7 plants. The synthesis of PtdOH upon chilling was not modified by NO depletion. By contrast, the formation of phytosphingosine phosphate and ceramide phosphate, two phosphorylated sphingolipids that are transiently synthesized upon chilling, was negatively regulated by NO. Taken together, these data suggest a new function for NO as an intermediate in gene regulation and lipid-based signaling during cold transduction.  相似文献   

10.
Wainwright LM  Wang Y  Park SF  Yeh SR  Poole RK 《Biochemistry》2006,45(19):6003-6011
Campylobacter jejuni is a food-borne bacterial pathogen that possesses two distinct hemoglobins, encoded by the ctb and cgb genes. The former codes for a truncated hemoglobin (Ctb) in group III, an assemblage of uncharacterized globins in diverse clinically and technologically significant bacteria. Here, we show that Ctb purifies as a monomeric, predominantly oxygenated species. Optical spectra of ferric, ferrous, O(2)- and CO-bound forms resemble those of other hemoglobins. However, resonance Raman analysis shows Ctb to have an atypical nu(Fe)(-)(CO) stretching mode at 514 cm(-)(1), compared to those of the other truncated hemoglobins that have been characterized so far. This implies unique roles in ligand stabilization for TyrB10, HisE7, and TrpG8, residues highly conserved within group III truncated hemoglobins. Because C. jejuni is a microaerophile, and a ctb mutant exhibits O(2)-dependent growth defects, one of the hypothesized roles of Ctb is in the detoxification, sequestration, or transfer of O(2). The midpoint potential (E(h)) of Ctb was found to be -33 mV, but no evidence was obtained in vitro to support the hypothesis that Ctb is reducible by NADH or NADPH. This truncated hemoglobin may function in the facilitation of O(2) transfer to one of the terminal oxidases of C. jejuni or, instead, facilitate O(2) transfer to Cgb for NO detoxification.  相似文献   

11.
Campylobacter jejuni contains two hemoglobins, Cgb and Ctb. Cgb has been suggested to perform an NO detoxification reaction to protect the bacterium against NO attack. On the other hand, the physiological function of Ctb, a class III truncated hemoglobin, remains unclear. By using CO as a structural probe, resonance Raman data show that the distal heme pocket of Ctb exhibits a positive electrostatic potential. In addition, two ligand-related vibrational modes, nu(Fe-O(2)) and nu(O-O), were identified in the oxy derivative, with frequencies at 542 and 1132 cm(-1), respectively, suggesting the presence of an intertwined H-bonding network surrounding the heme-bound ligand, which accounts for its unusually high oxygen affinity (222 microm(-1)). Mutagenesis studies of various distal mutants suggest that the heme-bound dioxygen is stabilized by H-bonds donated from the Tyr(B10) and Trp(G8) residues, which are highly conserved in the class III truncated hemoglobins; furthermore, an additional H-bond donated from the His(E7) to the Tyr(B10) further regulates these H-bonding interactions by restricting the conformational freedom of the phenolic side chain of the Tyr(B10). Taken together, the data suggest that it is the intricate balance of the H-bonding interactions that determines the unique ligand binding properties of Ctb. The extremely high oxygen affinity of Ctb makes it unlikely to function as an oxygen transporter; on the other hand, the distal heme environment of Ctb is surprisingly similar to that of cytochrome c peroxidase, suggesting a role of Ctb in performing a peroxidase or P450-type of oxygen chemistry.  相似文献   

12.
Macrophage-generated oxygen- and nitrogen-reactive species control the development of Mycobacterium tuberculosis infection in the host. Mycobacterium tuberculosis 'truncated hemoglobin' N (trHbN) has been related to nitric oxide (NO) detoxification, in response to macrophage nitrosative stress, during the bacterium latent infection stage. The three-dimensional structure of oxygenated trHbN, solved at 1.9 A resolution, displays the two-over-two alpha-helical sandwich fold recently characterized in two homologous truncated hemoglobins, featuring an extra N-terminal alpha-helix and homodimeric assembly. In the absence of a polar distal E7 residue, the O2 heme ligand is stabilized by two hydrogen bonds to TyrB10(33). Strikingly, ligand diffusion to the heme in trHbN may occur via an apolar tunnel/cavity system extending for approximately 28 A through the protein matrix, connecting the heme distal cavity to two distinct protein surface sites. This unique structural feature appears to be conserved in several homologous truncated hemoglobins. It is proposed that in trHbN, heme Fe/O2 stereochemistry and the protein matrix tunnel may promote O2/NO chemistry in vivo, as a M.tuberculosis defense mechanism against macrophage nitrosative stress.  相似文献   

13.
14.
The Co-NO stretching vibration has been assigned in the resonance Raman spectra of various cobalt-substituted monomeric hemoglobins by employing isotope-labeling of nitrosyl (14N16O, 15N16O, 14N18O). Monomeric hemoglobins with a distal histidine (sperm whale myoglobin and leghemoglobin) exhibit this vibration at 573-575 cm-1, whereas hemoglobins without distal histidine (elephant myoglobin and insect hemoglobin from Chironomus thummi thummi, CTT III) show this vibration in the range of 553-558 cm-1. The Fe-NO stretching vibration which occurs in the range of 554-556 cm-1 does not reflect the distal histidine-ligand interaction. Therefore, the Co-NO moiety which is isoelectronic with the Fe-O2 moiety is a good monitor for distal effects on the exogenous ligand of hemoglobins, especially due to the fact that in hemoglobins with distal histidine the Fe-O2 stretching vibration (567-572 cm-1) is similar to the Co-NO stretching vibration.  相似文献   

15.
Escherichia coli MG1655 cells expressing novel bacterial hemoglobin and flavohemoglobin genes from a medium-copy-number plasmid were grown in shake flask cultures under nitrosative and oxidative stress. E. coli cells expressing these proteins display enhanced resistance against the NO(.) releaser sodium nitroprusside (SNP) relative to that of the control strain bearing the parental plasmid. Expression of bacterial hemoglobins originating from Campylobacter jejuni (CHb) and Vitreoscilla sp. (VHb) conferred resistance on SNP-challenged cells. In addition, it has been shown that NO(.) detoxification is also a common feature of flavohemoglobins originating from different taxonomic groups and can be transferred to a heterologous host. These observations have been confirmed in a specific in vitro NO(.) consumption assay. Protein extracts isolated from E. coli strains overexpressing flavohemoglobins consumed authentic NO(.) more readily than protein extracts from the wild-type strain. Oxidative challenge to the cells evoked nonuniform responses from the various cell cultures. Improved oxidative-stress-sustaining properties had also been observed when the flavohemoglobins from E. coli, Klebsiella pneumoniae, Deinococcus radiodurans, and Pseudomonas aeruginosa were expressed in E. coli.  相似文献   

16.
一氧化氮(NO)作为信号分子,在抵御重金属胁迫中起重要作用,但对不同离子胁迫下的解毒机制尚缺乏研究.本研究采用营养液培养法,研究了铜(Cu)、镉(Cd)单一或复合胁迫下,番茄幼苗对Cu、Cd的吸收转运特性及对外源NO的响应机制.结果表明: 50 μmol·L-1的Cu2+、Cd2+均显著抑制番茄植株的生长,其中Cd胁迫对生长的抑制效应远高于Cu胁迫.Cu、Cd单一或复合胁迫均使番茄根系Cu、Cd含量显著升高,但根系对Cu、Cd吸收存在严格选择性.根细胞对必需元素Cu表现出“奢侈吸收”的现象,而对毒性较强的Cd则吸收相对较少,胞内Cd浓度仅为Cu的1/10左右.外源NO处理可不同程度地缓解Cu、Cd胁迫,其中缓解Cd胁迫的效能更强.番茄对被动进入细胞的Cu、Cd具有相似的解毒机制:一方面,Cu、Cd胁迫诱导细胞质中产生谷胱甘肽(GSH)、植物螯合肽(PCs)和金属硫蛋白(MTs),络合过多的Cu、Cd离子,降低其生物毒性;另一方面,过多的Cu、Cd离子或螯合物被转运至液泡区隔化.外源NO通过调控GSH-GSSG(氧化型谷胱甘肽)氧化还原状态及GSH-PCs代谢方向的改变,促进Cu、Cd离子转运至液泡区隔化来缓解胁迫抑制;NO还可诱导植株叶片或根系表达更多的金属硫蛋白、GSH和PCs,而且上述响应普遍存在叠加效应.这可能是NO介导番茄对Cu、Cd胁迫的另一主要解毒途径.  相似文献   

17.
Plant morphogenesis is regulated endogenously through phytohormones and other chemical signals, which may act either locally or distant from their place of synthesis. Nitric oxide (NO) is formed by a number of controlled processes in plant cells. It is a central signaling molecule with several effects on control of plant growth and development, such as shoot and root architecture. All plants are able to express non‐symbiotic hemoglobins at low concentration. Their function is generally not related to oxygen transport or storage; instead they effectively oxidize NO to NO3? and thereby control the local cellular NO concentration. In this review, we analyze available data on the role of NO and plant hemoglobins in morphogenetic processes in plants. The comparison of the data suggests that hemoglobin gene expression in plants modulates development and morphogenesis of organs, such as roots and shoots, through the localized control of NO, and that hemoglobin gene expression should always be considered a modulating factor in processes controlled directly or indirectly by NO in plants.  相似文献   

18.
Non-symbiotic hemoglobins are hexacoordinated heme proteins found in all plants. To gain insight into the importance of the heme hexacoordination and the coordinated distal histidine in general for the possible physiological functions of these proteins, the distal His(E7) of Arabidopsis thaliana hemoglobin (AHb1) was substituted by a leucine residue. The heme properties of the wild-type and mutant proteins have been characterized by electronic absorption, resonance Raman and electron paramagnetic resonance spectroscopic studies at room and low temperatures. Significant differences between the wild-type and mutant proteins have been detected. The most striking is the formation of an uncommon quantum mechanically mixed-spin heme species in the mutant. This is the first observation of such a spin state in a plant hemoglobin. The proportion of this species, which at room temperature coexists with a minor pentacoordinated high-spin form, increases markedly at low temperature.  相似文献   

19.
Type 1 nonsymbiotic hemoglobin from Arabidopsis thaliana (AHb1) shows a partial bis-histidyl hexacoordination but can reversibly bind diatomic ligands. The physiological function is still unclear, but the high oxygen affinity rules out a function related to O2 sensing, carrying, or storing. To gain insight into its possible functional roles, we have investigated its O2 and NO rebinding kinetics after laser flash photolysis. The rate constants of the rebinding from the primary docking site for both O2 and NO are higher than CO, with lower photolysis yields. Moreover, the amplitude of the geminate phase increases and, as for CO, the numerical analysis of the experimental curves suggests the existence of an internal pathway leading, with high rate, to an additional docking site. However, the accessibility to this site seems to be strongly ligand-dependent, being lower for O2 and higher for NO.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号