首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formation of lanthionine, a dehydroalanine crosslink, is associated with aging of the human lens and cataractogenesis. In this study we investigated whether modification of lens proteins by glutathione could proceed through an alternative pathway: that is, by the formation of a nonreducible thioether bond between protein and glutathione. Direct ELISA of the reduced water-soluble and water-insoluble lens proteins from human cataractous, aged and bovine lenses showed a concentration-dependent immunoreactivity toward human nonreducible glutathionyl-lens proteins only. The reduced water-insoluble cataractous lens proteins showed the highest immunoreactivity, while bovine lens protein exhibited no reaction. These data were confirmed by dot-blot analysis. The level of this modification ranged from 0.7 to 1.6 nmol/mg protein in water-insoluble proteins from aged and cataractous lenses. N-terminal amino acid determination in the reduced and alkylated lens proteins, performed by derivatization of these preparations with dansyl chloride followed by an exhaustive dialysis, acid hydrolysis and fluorescence detection of dansylated amino acids by RP-HPLC, showed that N-terminal glutamic acid was present in concentration of approximately 0.2 nmol/mg of lens protein. This evidence points out that at least some of the N-terminal amino groups of nonreducible glutathione in the reduced human lens proteins are not involved in a covalent bond formation. Since disulfides were not detected in the reduced and alkylated human lens proteins, GSH is most likely attached to lens proteins through thioether bonds. These results provide, for the first time, evidence that glutathiolation of human lens proteins can occur through the formation of nonreducible thioether bonds.  相似文献   

2.
A number of proteins have been isolated from the human lens at different stages of development, from before birth to old age. These proteins have been characterized and compared with each other and with corresponding proteins from bovine lens. Many similarities were found between human and bovine crystallins, but alpha-crystallin isolated from old human lenses using DEAE-cellulose, unlike bovine alpha-crystallin similarly isolated, is not found as large soluble aggregates. The amide contents of various lens protein fractions were determined. No extensive changes were found during adult life, but there was evidence that significant deamidation of alpha-crystallin had occurred before birth and possibly during infancy. The results are related to the unique development and aging of the lens.  相似文献   

3.
Although individual gamma-crystallins from the human eye lens have not been successfully purified and sequenced, most of the genes coding for these lens-specific structural proteins have been cloned and characterized. To investigate the relationship between these genes and the gamma-crystallins of the human lens, we made use of mouse cell lines which contain stably integrated copies of the coding sequences for three of the human gamma-crystallin genes coupled to the human metallothionein IIA promoter. The proteins produced by these hybrid genes in cell culture were detected immunologically and compared by physical characteristics with the gamma-crystallins from the human lens. The protein encoded by the G3 gene showed properties identical to those of the 21,000-molecular-weight gamma-crystallin from 11-month-old lens. The protein isolated from the cells expressing the G4 gene was similar to a 19,000-molecular-weight lens gamma-crystallin, while gene G5 encodes a highly basic gamma-crystallin which may be synthesized in only limited amounts in the human lens. These correlations provide a basis for future investigations on the relationship between putative mutations in human gamma-crystallin genes and altered proteins in hereditary lens cataracts.  相似文献   

4.
It is known that human lenses increase in color and fluorescence with age, but the molecular basis for this is not well understood. We demonstrate here that proteins isolated from human lenses contain significant levels of the UV filter kynurenine covalently bound to histidine and lysine residues. Identification was confirmed by synthesis of the kynurenine amino acid adducts and comparison of the chromatographic retention times and mass spectra of these authentic standards with those of corresponding adducts isolated from human lenses following acid hydrolysis. Using calf lens proteins as a model, covalent binding of kynurenine to lens proteins has been shown to proceed via side chain deamination in a manner analogous to that observed for the related UV filter, 3-hydroxykynurenine O-beta-D-glucoside. Levels of histidylkynurenine and lysylkynurenine were low in human lenses in subjects younger than 30, but thereafter increased in concentration with the age of the individual. Post-translational modification of lens proteins by tryptophan metabolites therefore appears to be responsible, at least in part, for the age-dependent increase in coloration and fluorescence of the human lens, and this process may also be important in other tissues in which up-regulation of tryptophan catabolism occurs.  相似文献   

5.
We previously reported chromatographic evidence supporting the similarity of yellow chromophores isolated from aged human lens proteins, early brunescent cataract lens proteins and calf lens proteins ascorbylated in vitro [Cheng, R. et al. Biochimica et Biophysica Acta 1537, 14-26, 2001]. In this paper, new evidence supporting the chemical identity of the modified amino acids in these protein populations were collected by using a newly developed two-dimensional LC-MS mapping technique supported by tandem mass analysis of the major species. The pooled water-insoluble proteins from aged normal human lenses, early stage brunescent cataract lenses and calf lens proteins reacted with or without 20 mM ascorbic acid in air for 4 weeks were digested with a battery of proteolytic enzymes under argon to release the modified amino acids. Aliquots equivalent to 2.0 g of digested protein were subjected to size-exclusion chromatography on a Bio-Gel P-2 column and four major A330nm-absorbing peaks were collected. Peaks 1, 2 and 3, which contained most of the modified amino acids were concentrated and subjected to RP-HPLC/ESI-MS, and the mass elution maps were determined. The samples were again analyzed and those peaks with a 10(4) - 10(6) response factor were subjected to MS/MS analysis to identify the daughter ions of each modification. Mass spectrometric maps of peaks 1, 2 and 3 from cataract lenses showed 58, 40 and 55 mass values, respectively, ranging from 150 to 600 Da. Similar analyses of the peaks from digests of the ascorbylated calf lens proteins gave 81, 70 and 67 mass values, respectively, of which 100 were identical to the peaks in the cataract lens proteins. A total of 40 of the major species from each digest were analyzed by LC-MS/MS and 36 were shown to be identical. Calf lens proteins incubated without ascorbic acid showed several similar mass values, but the response factors were 100 to 1000-fold less for every modification. Based upon these data, we conclude that the majority of the major modified amino acids present in early stage brunescent Indian cataract lens proteins appear to arise as a result of ascorbic acid modification, and are presumably advanced glycation end-products.  相似文献   

6.
The similarity of the yellow chromophores isolated from human cataracts with those from ascorbic acid modified calf lens proteins was recently published [Biochim. Biophys. Acta 1537 (2001) 14]. The data presented here additionally quantify age-dependent increases in individual yellow chromophores and fluorophores in the water-insoluble fraction of normal human lens. The water-insoluble fraction of individual normal human lens was isolated, solubilized by sonication and digested with a battery of proteolytic enzymes under argon to prevent oxidation. The level of A(330)-absorbing yellow chromophores, 350/450 nm fluorophores and total water-insoluble (WI) protein were quantified in each lens. The total yellow chromophores and fluorophores accumulated in parallel with the increase in the water-insoluble protein fraction during aging. The digest from each single human lens was then subjected to Bio-Gel P-2 size-exclusion chromatography. The fractions obtained were further separated by a semi-preparative prodigy C-18 high-performance liquid chromatography (RP-HPLC). Bio-Gel P-2 chromatography showed four major fractions, each of which increased with age. RP-HPLC of the amino acid peak resolved five major A(330)-absorbing peaks and eight fluorescent peaks, and each peak increased coordinately with age. A late-eluting peak, which contained hydrophobic amino acids increased significantly after age 60.Aliquots from an in vitro glycation of calf lens proteins by ascorbic acid were removed and subjected to the same enzymatic digestion. Ascorbic acid-modified calf lens protein digests showed an almost identical profile of chromophores, which also increased in a time-dependent manner. The late-eluting peak, however, did not increase with the time of glycation and may not be an advanced glycation endproduct (AGE) product. The data indicate that the total water-insoluble proteins, individual yellow chromophores and fluorophores increased equally both with aging in normal human lens and during ascorbate glycation in vitro. The major protein modifications, which accumulate during aging, therefore, appear to be AGEs. Whereas the late-eluting peak, which showed poor correlation to ascorbylation, may represent UV filter compounds bound to lens proteins.  相似文献   

7.
Proteins in basement membrane (BM) are long‐lived and accumulate chemical modifications during aging; advanced glycation endproduct (AGE) formation is one such modification. The human lens capsule is a BM secreted by lens epithelial cells. In this study, we have investigated the effect of aging and cataracts on the AGE levels in the human lens capsule and determined their role in the epithelial‐to‐mesenchymal transition (EMT) of lens epithelial cells. EMT occurs during posterior capsule opacification (PCO), also known as secondary cataract formation. We found age‐dependent increases in several AGEs and significantly higher levels in cataractous lens capsules than in normal lens capsules measured by LC‐MS/MS. The TGFβ2‐mediated upregulation of the mRNA levels (by qPCR) of EMT‐associated proteins was significantly enhanced in cells cultured on AGE‐modified BM and human lens capsule compared with those on unmodified proteins. Such responses were also observed for TGFβ1. In the human capsular bag model of PCO, the AGE content of the capsule proteins was correlated with the synthesis of TGFβ2‐mediated α‐smooth muscle actin (αSMA). Taken together, our data imply that AGEs in the lens capsule promote the TGFβ2‐mediated fibrosis of lens epithelial cells during PCO and suggest that AGEs in BMs could have a broader role in aging and diabetes‐associated fibrosis.  相似文献   

8.
This study intends to clarify the ability of different carbonyl-containing lens metabolites to form advanced glycation end products, which possess photosensitizer activity and to investigate whether these modified proteins could be implicated in lens photodamage. Calf lens protein was experimentally glycated with either methylglyoxal, glyoxal, ascorbic acid, or fructose to obtain models of aged and diabetic cataractous lenses. Being exposed to 200 J/cm 2 UVA radiation the model glycated proteins produced 2-3-fold more singlet oxygen compared to the unmodified protein and the superoxide radical formation was 30-80% higher than by the native protein. Ascorbylated proteins demonstrated the highest photosensitizer activity. Biological responses of glycation-related photosensitizers were studied on cultured lens epithelial cells irradiated with 40 J/cm 2 UVA. Tissue culture studies revealed a significant increase in thiobarbituric acid reactive substances in the culture medium of lens epithelial cells after irradiation and treatment with glycated proteins. Lens proteins had a protective effect against UVA induced cytotoxicity, however, this protective effect decreased with the increasing photosensitizer activity of experimentally glycated proteins. The documented glycation-related photosensitization could explain the accelerated pathogenic changes in human lens at advanced age and under diabetic conditions.  相似文献   

9.
This study intends to clarify the ability of different carbonyl-containing lens metabolites to form advanced glycation end products, which possess photosensitizer activity and to investigate whether these modified proteins could be implicated in lens photodamage. Calf lens protein was experimentally glycated with either methylglyoxal, glyoxal, ascorbic acid, or fructose to obtain models of aged and diabetic cataractous lenses. Being exposed to 200 J/cm 2 UVA radiation the model glycated proteins produced 2-3-fold more singlet oxygen compared to the unmodified protein and the superoxide radical formation was 30-80% higher than by the native protein. Ascorbylated proteins demonstrated the highest photosensitizer activity. Biological responses of glycation-related photosensitizers were studied on cultured lens epithelial cells irradiated with 40 J/cm 2 UVA. Tissue culture studies revealed a significant increase in thiobarbituric acid reactive substances in the culture medium of lens epithelial cells after irradiation and treatment with glycated proteins. Lens proteins had a protective effect against UVA induced cytotoxicity, however, this protective effect decreased with the increasing photosensitizer activity of experimentally glycated proteins. The documented glycation-related photosensitization could explain the accelerated pathogenic changes in human lens at advanced age and under diabetic conditions.  相似文献   

10.
Heat shock proteins of adult and embryonic human ocular lenses.   总被引:11,自引:0,他引:11  
We investigated the presence and distribution of heat shock proteins, HSP-70 [Horwitz, J. 1992. Proc Natl Acad Sci 89:10449-10453], HSP-40, HSc-70, HSP-27, and alphabeta-crystallin in different regions of adult and fetal human lenses and in aging human lens epithelial cells. This study was undertaken because heat shock proteins may play an important role in the maintenance of the supramolecular organization of the lens proteins. Human adult and fetal lenses were dissected to separate the epithelium, superficial cortex, intermediate cortex, and nucleus. The water soluble and insoluble protein fractions were separated by SDS-PAGE, and transferred to nitrocellulose paper. Specific antibodies were used to identify the presence of heat shock proteins in distinct regions of the lens. HSP-70 [Horwitz, 1992], HSP-40, and HSc-70 immunoreactivity was mainly detected in the epithelium and superficial cortical fiber cells of the adult human lens. The small heat shock proteins, HSP-27 and alphabeta-crystallin were found in all regions of the lens. Fetal human lenses showed immunoreactivity to all heat shock proteins. An aging study revealed a decrease in heat shock protein levels, except for HSP-27. The presence of HSP-70 [Horwitz, 1992], HSP-40, and HSc-70 in the epithelium and superficial cortical fiber cells imply a regional cell specific function, whereas the decrease of heat shock protein with age could be responsible for the loss of optimal protein organization, and the eventual appearance of age-related cataract.  相似文献   

11.
Dideoxyosones (DDOs) are intermediates in the synthesis of advanced glycation endproducts (AGEs), such as pentosidine and glucosepane. Although the formation of pentosidine and glucosepane in the human lens has been firmly established, the formation of DDOs has not been demonstrated. The aim of this study was to develop a reliable method to detect DDOs in lens proteins. A specific DDO trapping agent, biotinyl-diaminobenzene (3,4-diamino-N-(3-[5-(2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoyl]aminopropyl)benzamide) (BDAB) was added during in vitro protein glycation or during protein extraction from human lenses. In vitro glycated human lens protein showed strong reaction in monomeric and polymeric crosslinked proteins by Western blot and ELISA. Glycation of BSA in the presence of BDAB resulted in covalent binding of BDAB to the protein and inhibited pentosidine formation. Mass spectrometric analysis of lysozyme glycated in the presence of BDAB showed the presence of quinoxalines at lysine residues at positions K1, K33, K96, and K116. The ELISA results indicated that cataractous lens proteins contain significantly higher levels of DDO than non-cataractous lenses (101.9±67.8 vs. 31.7±19.5AU/mg protein, p<0.0001). This study provides first direct evidence of DDO presence in human tissue proteins and establishes that AGE crosslink synthesis in the human lens occurs via DDO intermediates.  相似文献   

12.
Crystallins are the abundant, long-lived proteins of the eye lens. The major human crystallins belong to two different superfamilies: the small heat-shock proteins (α-crystallins) and the βγ-crystallins. During evolution, other proteins have sometimes been recruited as crystallins to modify the properties of the lens. In the developing human lens, the enzyme betaine-homocysteine methyltransferase serves such a role. Evolutionary modification has also resulted in loss of expression of some human crystallin genes or of specific splice forms. Crystallin organization is essential for lens transparency and mutations; even minor changes to surface residues can cause cataract and loss of vision.  相似文献   

13.
There is good evidence that the non-enzymic chemical modification of proteins plays a role in the aetiology of cataract and diabetic sequelae. This paper presents new evidence that glycosylation of two major lens structural crystallins, alpha- and gamma-crystallins, by glucose 6-phosphate (G6P) induces conformational changes in the proteins. In addition the surface charge on the molecules is altered. These changes would affect protein-protein and protein-water interactions within the lens and could lead to disruption of the short-range order of the lens proteins which is essential for lens transparency. Conformational changes to lens proteins are known to occur in human cataractous lenses but their cause in vivo is not established. Cumulative chemical modification of proteins, over a period of decades, is a strong candidate as a causal agent.  相似文献   

14.
15.
The alpha-, beta-, and gamma-crystallins are the major structural proteins of mammalian lenses. The human lens also contains tryptophan-derived UV filters, which are known to spontaneously deaminate at physiological pH and covalently attach to lens proteins. 3-Hydroxykynurenine (3OHKyn) is the third most abundant of the kynurenine UV filters in the lens, and previous studies have shown this compound to be unstable and to be oxidized under physiological conditions, producing H2O2. In this study, we show that methionine and tryptophan amino acid residues are oxidized when bovine alpha-crystallin is incubated with 3-hydroxykynurenine. We observed almost complete oxidation of methionines 1 and 138 in alphaA-crystallin and a similar extent of oxidation of methionines 1 and 68 in alphaB-crystallin after 48 h. Tryptophans 9 and 60 in alphaB-crystallin were oxidized to a lesser extent. AlphaA-crystallin was also found to have 3OHKyn bound to its single cysteine residue. Examination of normal aged human lenses revealed no evidence of oxidation of alpha-crystallin; however, oxidation was detected at methionine 1 in both alphaA- and alphaB-crystallin from human cataractous lenses. Age-related nuclear cataract is associated with coloration and insolubilization of lens proteins and extensive oxidation of cysteine and methionine residues. Our findings demonstrate that 3-hydroxykynurenine can readily catalyze the oxidation of methionine residues in both alphaB- and alphaA-crystallin, and it has been reported that alpha-crystallin modified in this way is a poorer chaperone. Thus, 3-hydroxykynurenine promotes the oxidation and modification of crystallins and may contribute to oxidative stress in the human lens.  相似文献   

16.
Kose S  Imamoto N  Yoneda Y 《FEBS letters》1999,453(3):327-330
Carbohydrates with reactive aldehyde and ketone groups can undergo Maillard reactions with proteins to form advanced glycation end products. Oxalate monoalkylamide was identified as one of the advanced glycation end products formed from the Maillard reaction of ascorbate with proteins. In these experiments, we have analyzed human lens proteins immunochemically for the presence of oxalate monoalkylamide. Oxalate monoalkylamide was absent in most of the very young lenses but was present in old and cataractous lenses. The highest levels were found in senile brunescent lenses. Incubation experiments using bovine lens proteins revealed that oxalate monoalkylamide could form from the ascorbate degradation products, 2,3-diketogulonate and L-threose. These data provide the first evidence for oxalate monoalkylamide in vivo and suggest that ascorbate degradation and its binding to proteins are enhanced during lens aging and cataract formation.  相似文献   

17.
Experiments were performed to characterize a prominent nuclear matrix (NM) protein isolated from tissue cultured mouse lens epithelial cells. This NM protein was separated by SDS-PAGE and the stained gel band was analyzed by mass spectroscopy. Blast analysis of the amino acid sequence derived by mass spectroscopy revealed the presence of Lamin C in the NM of the mouse lens epithelial cells. We also examined nuclear proteins of adult and fetal human lenses. Data collected from these experiments showed the presence of Lamin C in both adult and fetal lens cells. However fetal lens cells only show Lamin C dimers, whereas adult human lens contained dimers, monomers and degraded Lamin C. Early and late passaged tissue cultured mouse lens epithelial cells also contained Lamin C in the nucleus with a preponderance of the dimer in the early passaged cells. The biological significance of the presence of dimers in human fetal lens cells and early passaged mouse lens cells is not known. However, it could suggest an enhanced docking capability of Lamin C dimers for other physiologically important nuclear proteins.  相似文献   

18.
The ocular lens capsule is a smooth, transparent basement membrane that encapsulates the lens and is composed of a rigid network of interacting structural proteins and glycosaminoglycans. During cataract surgery, the anterior lens capsule is routinely removed in the form of a circular disk. We considered that the excised capsule could be easily prepared for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging (MALDI-MSI) analysis. MALDI-MSI is a powerful tool to elucidate the spatial distribution of small molecules, peptides, and proteins within tissues. Here, we apply this molecular imaging technique to analyze the freshly excised human lens capsule en face. We demonstrate that novel information about the distribution of proteins by MALDI-MSI can be obtained from this highly compact connective tissue, having no evident histo-morphological characteristics. Trypsin digestion carried out on-tissue is shown to improve MALDI-MSI analysis of human lens capsules and affords high repeatability. Most importantly, MALDI-MSI analysis reveals a concentric distribution pattern of proteins such as apolipoprotein E (ApoE) and collagen IV alpha-1 on the anterior surface of surgically removed lens capsule, which may indicate direct or indirect effects of environmental and mechanical stresses on the human ocular lens.  相似文献   

19.
Reaction of tyrosine oxidation products with proteins of the lens   总被引:2,自引:1,他引:1       下载免费PDF全文
Oxidation of tyrosine in the presence of bovine lens proteins leads to the formation of brown or black melanoproteins. Both tyrosinase and the oxidizing system of ferrous sulphate-ascorbic acid-EDTA are effective. The fluorescence of the lens proteins is both altered and enhanced by the tyrosine-oxidizing systems. Their fluorescence spectra resemble those of urea-insoluble proteins of human cataractous lens and of 1,2-naphthaquinone-proteins of naphthalene cataract. The lens proteins lose their thiol groups and, in acid hydrolysates of treated beta-and gamma-crystallins, a substance has been detected chromatographically that behaves similarly to a compound formed when 3,4-dihydroxyphenylalanine (dopa) is oxidized by tyrosinase in the presence of cysteine. Analysis and behaviour of this substance from hydrolysates of lens proteins suggest that it is a compound of cysteine and dopa.  相似文献   

20.
Presbyopia, the inability to focus up close, affects everyone by age 50 and is the most common eye condition. It is thought to result from changes to the lens over time making it less flexible. We present evidence that presbyopia may be the result of age-related changes to the proteins of the lens fibre cells. Specifically, we show that there is a progressive decrease in the concentration of the chaperone, α-crystallin, in human lens nuclei with age, as it becomes incorporated into high molecular weight aggregates and insoluble protein. This is accompanied by a large increase in lens stiffness. Stiffness increases even more dramatically after middle age following the disappearance of free soluble α-crystallin from the centre of the lens. These alterations in α-crystallin and aggregated protein in human lenses can be reproduced simply by exposing intact pig lenses to elevated temperatures, for example, 50 °C. In this model system, the same protein changes are also associated with a progressive increase in lens stiffness. These data suggest a functional role for α-crystallin in the human lens acting as a small heat shock protein and helping to maintain lens flexibility. Presbyopia may be the result of a loss of α-crystallin coupled with progressive heat-induced denaturation of structural proteins in the lens during the first five decades of life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号