首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
REM sleep is essential for maintenance of body physiology and its deprivation is fatal. We observed that the levels of ALT and AST enzymes and pro-inflammatory cytokines like IL-1β, IL-6 and IL-12 circulating in the blood of REM sleep deprived rats increased in proportion to the extent of sleep loss. But in contrast the levels of IFN-γ and a ∼200 kDa protein, identified by N-terminal sequencing to be alpha-1-inhibitor-3(A1I3), decreased significantly. Quantitative PCR analysis confirmed that REM sleep deprivation down regulates AII3 gene and up regulates IL1 β, IL6 and their respective receptors gene expression in the liver initiating its inflammation.  相似文献   

2.
目的:研究RSD对大鼠线索性恐惧消退再现的影响。方法:1d大鼠适应环境;2d进行恐惧条件化;3d恐惧消退训练并进行RSD;4d进行恐惧消退再现检测。结果:在恐惧条件化及消退训练阶段,0-6hRSD组、6—12hRSD组与各自对照组大鼠的僵直水平组间差异都无显著性;在恐惧消退再现检测阶段,0-6hRSD组大鼠的僵直水平显著高于对照组,6-12hRSD组与对照组大鼠的僵直水平组间差异无显著性。结论:RSD损害消退记忆的再现,并且依赖于睡眠剥夺的时段。  相似文献   

3.
Simultaneous recordings of the diaphragmatic electromyogram (EMG) were made from two separate regions of the costal diaphragm in six normal cats. The diaphragmatic activities were always synchronous and the amplitudes and rates of rise were similar during slow-wave sleep. In contrast, during natural rapid-eye-movement (REM) sleep, different activity was often present in the two leads. These differences were in the time of onset and offset, as well as in the amplitude and spike patterns, and occurred in approximately 5-20% of the diaphragmatic bursts averaged over the entire REM sleep period. With respect to eye movement density, the rate of differential activation was higher during periods of high density (26%) than in the absence of eye movements (1%) in the four animals for which these data were available. Differential activation of portions of the costal diaphragm is apparently a normal event of REM sleep. This could result from descending state-specific phasic neuronal activity that bypasses the medullary respiratory generator. Differential activation of portions of the diaphragm could contribute to disordered ventilation during REM sleep.  相似文献   

4.
One of the hallmarks of rapid eye movement (REM) sleep is muscle atonia. Here we report extended epochs of muscle atonia in non-REM sleep (MAN). Their extent and time course was studied in a protocol that included a baseline night, a daytime sleep episode with or without selective REM sleep deprivation, and a recovery night. The distribution of the latency to the first occurrence of MAN was bimodal with a first mode shortly after sleep onset and a second mode 40 min later. Within a non-REM sleep episode, MAN showed a U-shaped distribution with the highest values before and after REM sleep. Whereas MAN was at a constant level over consecutive 2-h intervals of nighttime sleep, MAN showed high initial values when sleep began in the morning. Selective daytime REM sleep deprivation caused an initial enhancement of MAN during recovery sleep. It is concluded that episodes of MAN may represent an REM sleep equivalent and that it may be a marker of homeostatic and circadian REM sleep regulating processes. MAN episodes may contribute to the compensation of an REM sleep deficit.  相似文献   

5.
The levels of urinary epinephrine during daytime REM sleep deprivation.   总被引:1,自引:0,他引:1  
Urinary excretion of epinephrine during REM sleep deprivation in the daytime was examined in an attempt to determine whether epinephrine excretion during sleep is related to the structure of disturbed sleep. Six healthy males were subjected to two experimental conditions: 1) day sleep without interruption, as a control condition, and 2) day sleep with REM sleep deprivation. Under both conditions, epinephrine excretion levels of five of the subjects were found to be distributed along a basal regression line, expressing the relationship of epinephrine excretion and percent of waking time, as calculated in a previous study. The epinephrine levels of the one remaining subject exceeded the values predicted by the regression line. His sleep structure was not only distorted under REM deprivation conditions but also under control conditions as well. These results suggest that the basal regression line is useful for observing the existence of sleep disturbance; indeed, a subject with epinephrine excretion levels much higher than those predicted by the regression line was found to have spontaneously disturbed sleep. More study is needed to clarify the relationship between high epinephrine levels and disturbed sleep.  相似文献   

6.
7.
Although repeated selective rapid eye movement (REM) sleep deprivation by awakenings during nighttime has shown that the number of sleep interruptions required to prevent REM sleep increases within and across consecutive nights, the underlying regulatory processes remained unspecified. To assess the role of circadian and homeostatic factors in REM sleep regulation, REM sleep was selectively deprived in healthy young adult males during a daytime sleep episode (7-15 h) after a night without sleep. Circadian REM sleep propensity is known to be high in the early morning. The number of interventions required to prevent REM sleep increased from the first to the third 2-h interval by a factor of two and then leveled off. Only a minor REM sleep rebound (11.6%) occurred in the following undisturbed recovery night. It is concluded that the limited rise of interventions during selective daytime REM sleep deprivation may be due to the declining circadian REM sleep propensity, which may partly offset the homeostatic drive and the sleep-dependent disinhibition of REM sleep.  相似文献   

8.
This study was designed to determine the effects of sleep deprivation on respiratory events during sleep in healthy infants. Ten unsedated full-term infants (1-6 mo) were monitored polygraphically during "afternoon naps" on a control day and on the day after sleep deprivation. Respiratory events, i.e., central apnea, obstructive apnea and hypopnea, and periodic breathing were tabulated. Results for respiratory events were expressed as 1) indexes of the total number of respiratory events and of specific respiratory events per hour of total sleep (TST), "quiet" sleep (QS) and "active" sleep (AS) times; 2) total duration of total and specific respiratory events, expressed as a percentage of TST, QS, and AS times. After sleep deprivation, significant increases were observed for 1) respiratory event (P less than 0.001), central apnea (P less than 0.05), and obstructive respiratory event (P less than 0.01) indexes; 2) respiratory event time as a percentage of TST (P less than 0.002) and as a percentage of AS time (P less than 0.001); 3) obstructive respiratory event time as a percentage of TST (P less than 0.01), QS (P less than 0.05), and AS times (P less than 0.002). The present study shows that short-term sleep deprivation in healthy infants increases the number and timing of respiratory events, especially obstructive events in AS.  相似文献   

9.
10.
Morita K  Kuwada A  Fujihara H  Morita Y  Sei H 《Life sciences》2003,72(17):1973-1982
Selective REM sleep deprivation was carried out under the conditions designed to minimize the adverse influence of environmental conditions and restricted movement, and the influence of REM sleep deprivation on adrenocortical steroid metabolism was investigated by measuring the steady-state levels of mRNAs encoding steroid metabolism-related genes, steroidogenic acute regulatory protein (StAR), cholesterol side-chain cleavage enzyme cytochrome P450 (P450scc) and steroid 5alpha-reductase (5alpha-R), in rat adrenal glands. Selective REM sleep deprivation caused a significant decrease in StAR mRNA and an increase in 5alpha-R mRNA levels without any notable change in P450scc mRNA levels in the adrenal gland. In contrast, non-selective sleep disturbance, resulting in the partial reductions of non-REM and REM sleep, tended to increase both StAR and P450scc mRNA levels without any statistical significance. These results indicate that REM sleep deprivation by itself may affect the expression of steroid metabolism-related genes in the adrenal gland, suggesting a possible relation between REM sleep and adrenocortical steroid metabolism.  相似文献   

11.
To assess the effects of selective sleep loss on ventilation during recovery sleep, we deprived 10 healthy young adult humans of rapid-eye-movement (REM) sleep for 48 h and compared ventilation measured during the recovery night with that measured during the baseline night. At a later date we repeated the study using awakenings during non-rapid-eye-movement (NREM) sleep at the same frequency as in REM sleep deprivation. Neither intervention produced significant changes in average minute ventilation during presleep wakefulness, NREM sleep, or the first REM sleep period. By contrast, both interventions resulted in an increased frequency of breaths, in which ventilation was reduced below the range for tonic REM sleep, and in an increased number of longer episodes, in which ventilation was reduced during the first REM sleep period on the recovery night. The changes after REM sleep deprivation were largely due to an increase in the duration of the REM sleep period with an increase in the total phasic activity and, to a lesser extent, to changes in the relationship between ventilatory components and phasic eye movements. The changes in ventilation after partial NREM sleep deprivation were associated with more pronounced changes in the relationship between specific ventilatory components and eye movement density, whereas no change was observed in the composition of the first REM sleep period. These findings demonstrate that sleep deprivation leads to changes in ventilation during subsequent REM sleep.  相似文献   

12.
Sleep enhances memory consolidation. Bearing in mind that food intake produces many metabolic signals that can influence memory processing in humans (e.g., insulin), the present study addressed the question as to whether the enhancing effect of sleep on memory consolidation is affected by the amount of energy consumed during the preceding daytime. Compared to sleep, nocturnal wakefulness has been shown to impair memory consolidation in humans. Thus, a second question was to examine whether the impaired memory consolidation associated with sleep deprivation (SD) could be compensated by increased daytime energy consumption. To these aims, 14 healthy normal-weight men learned a finger tapping sequence (procedural memory) and a list of semantically associated word pairs (declarative memory). After the learning period, standardized meals were administered, equaling either ~50% or ~150% of the estimated daily energy expenditure. In the morning, after sleep or wakefulness, memory consolidation was tested. Plasma glucose was measured both before learning and retrieval. Polysomnographic sleep recordings were performed by electroencephalography (EEG). Independent of energy intake, subjects recalled significantly more word pairs after sleep than they did after SD. When subjects stayed awake and received an energy oversupply, the number of correctly recalled finger sequences was equal to those seen after sleep. Plasma glucose did not differ among conditions, and sleep time in the sleep conditions was not influenced by the energy intake interventions. These data indicate that the daytime energy intake level affects neither sleep's capacity to boost the consolidation of declarative and procedural memories, nor sleep's quality. However, high energy intake was followed by an improved procedural but not declarative memory consolidation under conditions of SD. This suggests that the formation of procedural memory is not only triggered by sleep but is also sensitive to the fluctuations in the energy state of the body.  相似文献   

13.
14.
We studied ventilatory responsiveness to hypoxia and hypercapnia in anesthetized cats before and after exposure to 5 atmospheres absolute O2 for 90-135 min. The acute hyperbaric oxygenation (HBO) was terminated at the onset of slow labored breathing. Tracheal airflow, inspiratory (TI) and expiratory (TE) times, inspiratory tidal volume (VT), end-tidal PO2 and PCO2, and arterial blood pressure were recorded simultaneously before and after HBO. Steady-state ventilation (VI at three arterial PO2 (PaO2) levels of approximately 99, 67, and 47 Torr at a maintained arterial PCO2 (PaCO2, 28 Torr) was measured for the hypoxic response. Ventilation at three steady-state PaCO2 levels of approximately 27, 36, and 46 Torr during hyperoxia (PaO2 450 Torr) gave a hypercapnic response. Both chemical stimuli significantly stimulated VT, breathing frequency, and VI before and after HBO. VT, TI, and TE at a given stimulus were significantly greater after HBO without a significant change in VT/TI. The breathing pattern, however, was abnormal after HBO, often showing inspiratory apneusis. Bilateral vagotomy diminished apneusis and further prolonged TI and TE and increased VT. Thus a part of the respiratory effects of HBO is due to pulmonary mechanoreflex changes.  相似文献   

15.
Ratings of subjective sleepiness are often used in laboratory and field studies of sleep loss and shifted sleep hours. Some studies suggest that such ratings might fail to reflect sleepiness as shown in physiology or performance. One reason for this may be the influence of the context of the rating. Social interaction or physical activity may mask latent sleepiness. The present study attempted to approach this question. Nine subjects participated in a partial sleep-deprivation experiment (five days of 4 h of time in bed [TIB]), preceded by two baseline days (8 h TIB) and followed by three recovery days (8 h TIB). Sleepiness was self-rated on the Karolinska Sleepiness Scale (KSS; scores of 1-9) after a period of relaxation, after a reaction-time test, and after 30 min of free activities. The results showed a strong increase in subjective sleepiness during sleep restriction and a significant difference between conditions. Free activity reduced the self-rated subjective sleepiness by 1.1 KSS units compared to the level of sleepiness self-rated at the end of the reaction-time test. Thus, the results of this study indicate that the context of a sleepiness rating affects the outcome of the rating.  相似文献   

16.
The first sections of this paper survey the history and recent developments relevant to the major neurotransmitters and neuromodulators involved in REM sleep control. The last portion of this paper proposes a structural model of cellular interaction that produces the REM sleep cycle, and constitutes a further revision of the reciprocal interaction model This paper proposes seven criteria to define a causal role in REM sleep control for putative neuro-transmitters/modulators. The principal criteria are measurements during behavioral state changes of the extracellular concentrations of the putative substances, and electrophysiological recording of their neuronal source. A cautionary note is that, while pharmacological manipulations are suggestive, they alone do not provide definitive causal evidence. The extensive body of in vivo and in vitro evidence supporting cholinergic promotion of REM sleep via LDT/PPT neuronal activity is surveyed. An interesting question raised by some studies is whether cholinergic influences in rat are less puissant than in cat. At least some of the apparent lesser REM-inducing effect of carbachol in the rat may be due to incomplete control of circadian influences; almost all experiments have been run only in the daytime, inactive period, when REM sleep is more prominent, rather than in the REM-sparse nighttime inactive period. Monoaminergic inhibition of cholinergic neurons, once thought to be the most shaky proposal of the reciprocal interaction model, now enjoys considerable support from both in vivo and in vitro data. However, the observed time course of monoaminergic neurons, their "turning off" discharge activity as REM sleep is approached and entered would seem to be difficult to produce from feedback inhibition, as originally postulated by the reciprocal interaction model. New data suggest the possibility that GABAergic inhibition of Locus Coeruleus and Dorsal Raphe monoaminergic neurons may account for the "REM-off" neurons turning off. However, the source(s) of GABAergic influences suggested by anatomical studies has yet to be definitively identified by electrophysiological recordings of GABAergic neurons that show the requisite inverse time course of activity relative to monoaminergic neurons. New and still preliminary microdialysis data suggest that reticular formation neurons, the effector neurons for REM sleep phenomena, might be disinhibited during REM sleep by decreased GABAergic influence, perhaps stemming from REM-on cholinergic neuronal inhibition of reticular formation GABAergic neurons. Whether the postulated cholinergic inhibition of GABAergic neurons is present is testable with in vitro recordings and double labeling. Taking into account the observed data on neuro-modulators/transmitters, a structural model incorporating interaction of REM-on and REM-off neurons and GABAergic influences is proposed. Finally, with respect to orexin and REM sleep, it is hypothesized that orexinergic activity may be a principal factor controlling REM sleep's absence from the active period in strongly circadian animals such as rat and man.  相似文献   

17.
18.
The influence of 90 h of acute nutritional deprivation (ND) on the cross-sectional areas of muscle fibers and the contractile and fatigue properties of the adult rat diaphragm were determined. Isometric contractile properties and fatigue resistance of the diaphragm were measured by means of an in vitro nerve-muscle strip preparation. Contractions were evoked by using phrenic nerve stimulation (left hemidiaphragm) or direct muscle stimulation (right hemidiaphragm) in the presence of curare. Acute ND resulted in a 20% reduction in body weight. No significant decrements in diaphragm or soleus weights were noted in the ND animals compared with controls (CTL), whereas the weight of the medial gastrocnemius was reduced by 20% in the ND animals. Peak twitch and tetanic tensions (normalized for the weight of the diaphragm strip) were not reduced in ND compared with CTL animals after either nerve or muscle stimulation. The fatigue index of the diaphragm was significantly reduced in ND animals only after nerve stimulation. After the fatigue test, there was rapid recovery of the additional fatigue noted with nerve stimulation. The proportions of type I and II muscle fibers of the diaphragm were similar in the CTL and ND animals. No differences in diaphragm cross-sectional areas were noted for either type I or II muscle fibers in the CTL and ND animals. It is concluded that acute ND has no effect on diaphragm contractility or morphometry and only an inconsequential influence on diaphragm fatigue.  相似文献   

19.
I n R ecent years biogenic amines have been implicated in the control mechanism for induction and maintenance of sleep processes (J ouvet , 1969). Investigators have looked for changes in the rate of synthesis of cerebral norepinephrine from [3H]tyrosine after REM sleep deprivation and reported increased rates of synthesis during REM sleep deprivation (M ark , H einer , M andel and G odin , 1969) and REM sleep rebound following 91 h of deprivation (P ujol , M ouret and G lowinski , 1968). Because tyrosine is thought to be the rate-limiting enzyme (U denfriend , 1966) in the synthetic pathways for norepinephrine and since the above-mentioned studies are suggestive of changes in the activity of the enzyme, we decided to measure tyrosine hydroxylase activity following REM sleep deprivation.  相似文献   

20.
Administration of bromocriptine mesylate (5 mg/kg, i.p.), a dopamine receptor stimulant, to rats which were deprived of REM sleep for 24 hours resulted in a significant increase in wakefulness as well as significant reduction of REM sleep during the first 5 hours of EEG recording. These effects were completely abolished by pretreatment with α-flupenthixol (0.2 mg/kg, i.p.), a dopamine receptor blocker. The loss of REM sleep has not been regained during the next 25 hours of EEG recording suggesting that the stimulation of dopamine receptors reduced REM sleep without causing subsequent REM rebound. These data raise questions on the negative dopamine control of REM sleep and on the potential use of dopamine stimulants in clinical situations characterized by excessive REM or by REM sleep dysfunction (narcolepsy).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号