首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cobalamin (Cbl), epidermal growth factor (EGF), and prions (PrPs) are key molecules for myelin maintenance in the central and peripheral nervous systems. Cbl and EGF increase normal prion (PrPC) synthesis and PrPC levels in rat spinal cord (SC) and elsewhere. Cbl deficiency increases PrPC levels in rat SC and cerebrospinal fluid (CSF), and decreases PrPC-mRNA levels in rat SC. The administration of anti-octapeptide repeat PrPC region antibodies (Abs) to Cbl-deficient (Cbl-D) rats prevents SC myelin lesions and a local increase in tumor necrosis factor (TNF)-α levels, whereas anti-TNF-α Abs prevent SC myelin lesions and the increase in SC and CSF PrPC levels. As it is known that both Cbl and EGF regulate SC PrPC synthesis independently, and that Cbl regulates SC EGF synthesis, EGF may play both Cbl-independent and Cbl-dependent roles. When Cbl-D rats undergo Cbl replacement therapy, SC PrPC levels are similar to those observed in Cbl-D rats. In rat frontal cortex (which is marginally affected by Cbl deficiency in histological terms), Cbl deficiency decreases PrPC levels and the increase induced by Cbl replacement leads to their normalization. Increased nerve PrPC levels are detected in the myelin lesions of the peripheral neuropathy of Cbl-D rats, and CSF PrPC levels are also increased in Cbl-D patients (but not in patients with Cbl-unrelated neurological diseases). Various common steps in the downstream signaling pathway of Cbl, EGF, and PrPC underlines the close relationship between the three molecules in keeping myelin normal.  相似文献   

2.
We have recently demonstrated that the myelinolytic lesions in the spinal cord (SC) of rats made deficient in vitamin B(12) (cobalamin) (Cbl) through total gastrectomy (TG) are tumor necrosis factor-alpha (TNF-alpha)-mediated. We investigate whether or not permanent Cbl deficiency, induced in the rat either through TG or by chronic feeding of a Cbl-deficient diet, might modify the levels of three physiological neurotrophic factors-epidermal growth factor (EGF), vasoactive intestinal peptide (VIP), and somatostatin (SS)-in the cerebrospinal fluid (CSF) of these rats. We also investigated the ability of the central nervous system (CNS) in these Cbl-deficient rats to synthesize EGF mRNA and of the SC to take up labeled Cbl in vivo. Cbl-deficient rats, however the vitamin deficiency is induced, show a selective decrease in EGF CSF levels and an absence of EGF mRNA in neurons and glia in various CNS areas. In contrast, radiolabeled Cbl is almost exclusively taken up by the SC white matter, but to a much higher degree in totally gastrectomized (TGX) rats. Chronic administration of Cbl to TGX rats restores to normal both the EGF CSF level and EGF mRNA expression in the various CNS areas examined. This in vivo study presents the first evidence that the neurotrophic action of Cbl in the CNS of TGX rats is mediated by stimulation of the EGF synthesis in the CNS itself. It thus appears that Cbl inversely regulates the expression of EGF and TNF-alpha genes in the CNS of TGX rats.  相似文献   

3.
The clinical phenotype of cobalamin (Cbl) deficiency is dictated by the essential role of this vitamin in two key enzymatic reactions. Multiple proteins and receptors participate in the absorption, transport and delivery of this vitamin to tissue cells. Cellular uptake of Cbl is mediated by transcobalamin (TC), a plasma protein and a transmembrane receptor (TCblR) with high affinity for TC saturated with Cbl. Knockdown of TCblR with siRNA results in decreased TC–Cbl uptake. The ensuing Cbl deficiency leads to an increase in doubling time and decreased proliferation of these cells. The study confirms the seminal role of this receptor in the cellular uptake of Cbl and its down-regulation as a potential strategy to inhibit proliferation of cancer cells.  相似文献   

4.
Intrinsic factor (IF) was first identified as a component of the gastric mucosa that reacted with an extrinsic factor, later discovered to be vitamin B12 (VB12). IF has been extensively characterized, and its cloned cDNA used to produce sufficient IF to produce high quality antibodies, and to elucidate its 3-dimensional structure bound to cobalamin (Cbl, VB12). The absorption of the IF–Cbl complex involves internalization by endocytosis, incorporation into multivesicular/lysosomal bodies, release of Cbl by lysosomal proteolysis and pH effects, with subsequent binding to transcobalamin (TC). Hereditary IF deficiency is rare, consistent with the need for IF to absorb Cbl, a vitamin essential for cell replication. When mutations occur, they are most often associated with loss of function, but some mutations occur outside the coding region. The IF-mediated intestinal uptake of Cbl has been harnessed for use as a transporter for peptides, proteins and even nanoparticles. Nanoparticle (NP) technology has produced Cbl-coated NPs that can incorporate peptides (insulin, IgG) that can be absorbed orally to function as hormones and antibodies in rodent models, but these systems are not yet ready for clinical use.  相似文献   

5.
It is known that cobalamin (Cbl) deficiency damages myelin by increasing tumor necrosis factor (TNF)-α and decreasing epidermal growth factor (EGF) levels in rat central nervous system (CNS), and affects the peripheral nervous system (PNS) morphologically and functionally. It is also known that some polyneuropathies not due to Cbl deficiency are connected with increased TNF-α levels, and that various cytokines (including TNF-α) and growth factors regulate the in vitro synthesis of normal prions (PrPCs). Given that there is extensive evidence that PrPCs play a key role in the maintenance of CNS and PNS myelin, we investigated whether the PrPC octapeptide repeat (OR) region is involved in the pathogenesis of rat Cbl-deficient (Cbl-D) polyneuropathy. After intracerebroventricularly administering antibodies (Abs) against the OR region (OR-Abs) to Cbl-D rats to prevent myelin damage and maximum nerve conduction velocity (MNCV) abnormalities, and PrPCs to otherwise normal rats to reproduce PNS Cbl-D-like lesions, we measured PrPC levels and MNCV of the sciatic and tibial nerves. PrPC and TNF-α levels were increased in sciatic and tibial nerves of Cbl-D and saline-treated rats, and the OR-Abs normalized the myelin ultrastructure, TNF-α levels, and MNCV values of the sciatic and tibial nerves of Cbl-D rats. The same peripheral nerves of the otherwise normal PrPC-treated rats showed typical Cbl-D myelin lesions, significantly increased TNF-α levels, and significantly decreased MNCV values. These findings demonstrate that Cbl deficiency induces excess PrPCs and thereby excess OR regions, which seem to be responsible for the PNS myelin damage, as has recently been found in the case of CNS myelin damage [66]. Furthermore, excess TNF-α is also involved in the pathogenesis of Cbl-D polyneuropathy. In conclusion, we have extended the list of prion diseases by adding one caused by excess PrPCs and the polyneuropathies related to excess TNF-α.  相似文献   

6.
Cellular uptake of vitamin B(12) (cobalamin, Cbl) is mediated by a receptor expressed on the plasma membrane that binds transcobalamin (TC) saturated with Cbl and internalizes the TC-Cbl by endocytosis. A few reports have described the characterization of the receptor protein. However, many discrepancies have emerged in the functional and structural properties of the receptor and therefore, the identity and primary structure of this protein remains unconfirmed. In this report, we provide evidence of a 58 kDa monomeric protein as the likely receptor for the uptake of TC-Cbl and that the functional activity is not associated with a 72/144 kDa monomer/dimer with immunoglobulin Fc structural domain that has been purported to be the receptor in a number of publications.  相似文献   

7.
Cellular uptake of cobalamin is facilitated by a receptor-mediated endocytosis process involving transcobalamin, a plasma protein that binds cobalamin and a cell surface receptor that specifically binds transcobalamin saturated with cobalamin. Intracellular Cbl concentration is maintained by modulating the expression of the receptor, which is cell cycle associated with highest expression in actively proliferating cells and an efflux system that shunts the excess cobalamin out of the cells for mobilization to other tissues where it is most needed. This review describes the process, proteins involved and genes encoding these proteins.  相似文献   

8.
9.
The primary function of cobalamin (Cbl; vitamin B12) is the formation of red blood cells and the maintenance of a healthy nervous system. Before cells can utilise dietary Cbl, the vitamin must undergo cellular transport using two distinct receptor-mediated events. First, dietary Cbl bound to gastric intrinsic factor (IF) is taken up from the apical pole of ileal epithelial cells via a 460 kDa receptor, cubilin, and is transported across the cell bound to another Cbl-binding protein, transcobalamin II (TC II). Second, plasma TC II-Cbl is taken up by cells that need Cbl via the TC II receptor (TC II-R), a 62 kDa protein that is expressed as a functional dimer in cellular plasma membranes. Human Cbl deficiency can develop as a result of acquired or inherited dysfunction in either of these two transmembrane transport events. This review focuses on the biochemical, cellular and molecular aspects of IF and TC II and their cell-surface receptors.  相似文献   

10.
Congenital deficiencies of Transcobalamin II (TC II) and R binders of vitamin B12 (B12, cobalamin, Cbl) have been described in several families. The deficiency of TC II exists as at least three variants. The deficiency of TC II is expressed by a profound megaloblastic pancytopenia during the first few weeks of life, but the serum Cbl is normal. In contrast, the deficiency of R binder is asymptomatic, tissues are replete in Cbl, but the serum Cbl is low. All of the R binder in the several body sources is under the same genetic control. Studies of the congenital deficiency TC II suggest the following: (1) The function of TC II is the promotion of cell uptake of physiologic amounts of Cbl, which can also be accomplished by very large amounts of Cbl, and not in any intracellular process. (2) TC II is essential for the absorption, postabsorptive distribution, and recycling of TC II. (3) The metabolic consequences of TC II deficiency are expressed primarily in rapidly dividing cells probably because they are dependent upon the constant need for new Cbl.  相似文献   

11.
Cobalamin (Cbl) transport across the outer membrane of cells of Escherichia coli consists of high affinity Cbl binding to the btuB protein of the Cbl receptor, followed by the proton motive force- and tonB-dependent release of the Cbl into the periplasmic space. During a search for experimental conditions that would mimic this release in vitro with isolated cell envelope particles, we found that calcium was required for the high affinity Cbl binding, and subsaturating calcium concentrations resulted in the decreased affinity of the Cbl receptor for Cbl. The apparent affinity of the Cbl receptor for calcium (KD, approximately 30 nM at pH 6.6) decreased with decreasing pH, resulting in decreased affinity for Cbl at lower pH values. With suboptimal levels of calcium, Cbl binding was decreased by millimolar levels of magnesium.  相似文献   

12.
We examined the regulation/expression of angiotensin II (Ang II) receptors in the transgenic (TG) (mRen-2)27 rat compared to the normal Sprague-Dawley (SD) rat. Ang II receptor binding and mRNA expression were determined by quantitative autoradiography and real-time PCR, respectively. Ang II receptors in the rat prostate rat were of the AT(1) receptor subtype and were significantly reduced in the prostate of the TG rat compared to the normal SD rat. However, AT(1) receptor binding was significantly higher in the prostate of the TG rat treated with the ACE inhibitor lisinopril compared to the untreated TG rat and comparable to the control SD rat. In contrast to the protein, AT(1) receptor mRNA expression was not reduced in the prostate of the TG rat compared to the SD rat. However, AT(1) receptor mRNA was markedly reduced in the prostate of the lisinopril-treated TG rat compared to the untreated TG rat or control SD rat. In conclusion, the findings suggest that AT(1) receptors are present in the rat prostate at a protein level and are subject to down-regulation in the TG rat which may be due to receptor internalisation as a consequence of receptor hyper-stimulation by increased local tissue levels of Ang II. Moreover, AT(1) receptor protein and mRNA expression in the prostate may be inversely modulated.  相似文献   

13.
T lymphocyte activation through stimulation of the T cell receptor complex and co-stimulatory receptors is associated with acute tyrosine phosphorylation of intracellular proteins, which in turn mediate downstream signaling events that regulate interleukin-2 expression and cell proliferation. The extent of protein tyrosine phosphorylation is rapidly attenuated after only 1-2 min of stimulation as a means of tightly controlling the initial signaling response. Here we show that this attenuation of tyrosine phosphorylation of Shc, CrkL, and the proto-oncogene Cbl is mimicked by treatment of mouse T lymphocytes or cultured Jurkat cells with phorbol 12-myristate 13-acetate. This effect is blocked by the specific protein kinase C inhibitor GF109203X, but not by PD98059, an inhibitor of MEK1/2 kinase. Activation of protein kinase C by phorbol ester also causes rapid (t(1)/(2) = 2 min) dissociation of both CrkL and p85/phosphoinositide 3-kinase from Cbl concomitant with Cbl tyrosine dephosphorylation. More important, GF109203X treatment of Jurkat cells prior to T cell receptor stimulation by anti-CD3/CD4 antibodies results in an enhanced (2-fold) peak of Cbl phosphorylation compared with that observed in control cells. Furthermore, the rate of attenuation of both Cbl tyrosine phosphorylation and its association with CrkL following stimulation with anti-CD3/CD4 antibodies is much slower in Jurkat cells treated with GF109203X. Taken together, these data provide strong evidence that one or more isoforms of phorbol ester-responsive protein kinase C play a key role in a feedback mechanism that attenuates tyrosine phosphorylation of proteins and reverses formation of signaling complexes in response to T cell receptor activation.  相似文献   

14.
In the present study MRP2/ABCC2 and BSEP/ABCB11 expression were investigated in sandwich cultured (SC) human and rat hepatocytes exposed to the proinflammatory cytokines. The investigation was also done in lipopolysaccharide (LPS)-treated rats. In SC human hepatocytes, both absolute protein and mRNA levels of MRP2/ABCC2 were significantly down-regulated by TNF-α, IL-6, or IL-1β. In contrast to mRNA decrease, which was observed for BSEP/ABCB11, the protein amount was significantly increased by IL-6 or IL-1β. A discrepancy between the change in BSEP/ABCB11 mRNA and protein levels was encountered in SC human hepatocytes treated with proinflammatory cytokines. In SC rat hepatocytes, Mrp2/Abcc2 mRNA was down-regulated by TNF-α and IL-6, whereas the protein level was decreased by all three cytokines. Down-regulations of both Bsep/Abcb11 mRNA and protein levels were found in SC rat hepatocytes exposed to TNF-α or IL-1β. Administration of LPS triggered the release of the proinflammatory cytokines and caused the decrease of Mrp2/Abcc2 and Bsep/Abcb11 protein in liver at 24 h post-treatment; however, the Mrp2 and Bsep protein levels rebounded at 48 h post-LPS treatment. In total, our results indicate that proinflammatory cytokines regulate the expression of MRP2/Mrp2 and BSEP/Bsep and for the first time demonstrate the differential effects on BSEP/Bsep expression between SC human and rat hepatocytes. Furthermore, the agreement between transporter regulation in vitro in SC rat hepatocytes and in vivo in LPS-treated rats during the acute response phase demonstrates the utility of in vitro SC hepatocyte models for predicting in vivo effects.  相似文献   

15.
Renal brush border membrane bound intrinsic factor   总被引:1,自引:0,他引:1  
A highly active receptor for intrinsic factor (IF)-cobalamin (Cbl) complex has been detected and reported in mammalian kidney earlier (Seetharam, B., et al. (1988) J. Biol. Chem. 263, 4443-4449). The physiological role of this receptor in normal Cbl homeostasis is not known. In addition to binding of exogenously added IF-[57Co]Cbl, the renal apical membranes contain endogenous IF or IF-Cbl. Washing with pH 5/EDTA buffer enhanced the binding of exogenously added IF-[57Co]Cbl to renal apical but not basolateral membranes. The pH 5/EDTA extract from renal apical membranes bound [57Co]Cbl. The complex also bound to rat ileal brush border membrane and promoted ileal transport of [57Co]Cbl. On immunoblots using monospecific antiserum to IF a 62 kDa protein was identified in renal and intestinal apical membranes, serum and in tissue extracts of unperfused rat liver, kidney and heart. The 62 kDa band was eliminated from the renal apical membranes following pH 5/EDTA wash. Rat urine demonstrated unsaturated [57Co]Cbl binding (0.2 to 0.4 pmol/day) of which only 30-40% was immunoprecipitated with anti IF and could be identified on immunoblots. The identification of IF in rat renal apical membranes (160-200 ng/mg protein) and secretion of only traces of IF in urine suggest that the renal IF-Cbl receptor may play a role in sequestering IF/IF-Cbl and prevent urinary loss of Cbl.  相似文献   

16.
17.
During embryonic development, expression of neurotrophin receptor tyrosine kinases (Trks) by sensory ganglia is continuously and dynamically regulated. Neurotrophin signaling promotes selective survival and axonal differentiation of sensory neurons. In embryonic day (E) 15 rat trigeminal ganglion (TG), NGF receptor TrkA is expressed by small diameter neurons, NT-3 receptor TrkC and BDNF receptor TrkB are expressed by large diameter neurons. Organotypic explant and dissociated cell cultures of the TG (and dorsal root ganglia) are commonly used to assay neurotrophin effects on developing sensory neurons. In this study, we compared Trk expression in E15 rat TG explant and dissociated cell cultures with or without neurotrophin treatment. Only a subset of TG cells express each of the three Trk receptors in wholemount explant cultures as in vivo conditions. In contrast, all TG neurons co-express all three Trk receptors upon dissociation, regardless of neurotrophin treatment. Neurons cultured in low concentrations of one neurotrophin first, and switched to higher concentrations of another after 1 day, survive and display morphological characteristics of neurons cultured in a mixture of both neurotrophins for 3 days. Our results indicate that wholemount explant cultures of sensory ganglia represent in vivo conditions in terms of Trk expression patterns; whereas dissociation dramatically alters Trk expression by primary sensory neurons.  相似文献   

18.
Euglena gracilis requires cobalamin (Cbl) as an essential growth factor. Phosphatidylcholine (PC) synthesis was greatly reduced by Cbl deficiency. Rapid cell division occurred after Cbl was replenished, and PC was actively synthesized during the cell divisions. When the deficient cells were given methionine (a precursor for the choline moiety), active synthesis of PC occurred even without the Cbl supplement, although cell division was not induced. As methionine synthase in Euglena requires methylcobalamin as a coenzyme, decrease in methionine synthesis may account for reduced PC synthesis under Cbl-deficient conditions. Phosphatidyleth-anolamine and phosphatidylserine synthesis were also suppressed, commensurate with decrease of PC synthesis, under Cbl deficiency, even though Cbl is not thought to participate in their synthesis. In contrast, a lot of triglyceride and wax ester accumulated in Cbl-deficient cells. Moreover, Cbl depletion altered fatty acid composition, notably due to increased proportion of odd-numbered fatty acids  相似文献   

19.
Cbl proteins have been implicated in the regulation of endocytic trafficking of epidermal growth factor receptor. However, the precise role of Cbl in epidermal growth factor receptor endocytosis is not defined. To directly visualize Cbl in cells and perform structure-function analysis of Cbl's role in epidermal growth factor receptor internalization, a yellow fluorescent protein-fusion of c-Cbl was constructed. Upon epidermal growth factor receptor activation, Cbl-yellow fluorescent protein moved with epidermal growth factor receptor to clathrin-coated pits and endosomes. Localization of Cbl-yellow fluorescent protein to these endocytic organelles was dependent on a proline-rich domain of c-Cbl that interacts with Grb2 as shown by fluorescence resonance energy transfer microscopy. In contrast, direct binding of Cbl to phosphotyrosine 1045 of the epidermal growth factor receptor was required for epidermal growth factor receptor polyubiquitination, but was not essential for Cbl-yellow fluorescent protein localization in epidermal growth factor receptor-containing compartments. These data suggest that the binding of Cbl to epidermal growth factor receptor through Grb2 is necessary and sufficient for Cbl function during clathrin-mediated endocytosis. Overexpression of c-Cbl mutants that are capable of Grb2 binding but defective in linker/RING finger domain function severely inhibited epidermal growth factor receptor internalization. The same dominant-negative mutants of Cbl did not block epidermal growth factor receptor recruitment into coated pits but retained receptors in coated pits, thus preventing receptor endocytosis and transport to endosomes. These data suggest that the linker and RING finger domain of Cbl may function during late steps of coated vesicle formation. We propose that the RING domain of Cbl facilitates endocytosis either by epidermal growth factor receptor monoubiquitylation or by ubiquitylation of proteins associated with the receptor.  相似文献   

20.
The E3 ubiquitin ligase Casitas B lymphoma protein (Cbl) controls the ubiquitin-dependent degradation of EGF receptor (EGFR), but its role in regulating downstream signaling elements with which it associates and its impact on biological outcomes of EGFR signaling are less clear. Here, we demonstrate that stimulation of EGFR on human mammary epithelial cells disrupts adherens junctions (AJs) through Vav2 and Rac1/Cdc42 activation. In EGF-stimulated cells, Cbl regulates the levels of phosphorylated Vav2 thereby attenuating Rac1/Cdc42 activity. Knockdown of Cbl and Cbl-b enhanced the EGF-induced disruption of AJs and cell motility. Overexpression of constitutively active Vav2 activated Rac1/Cdc42 and reorganized junctional actin cytoskeleton; these effects were suppressed by WT Cbl and enhanced by a ubiquitin ligase-deficient Cbl mutant. Cbl forms a complex with phospho-EGFR and phospho-Vav2 and facilitates phospho-Vav2 ubiquitinylation. Cbl can also interact with Vav2 directly in a Cbl Tyr-700-dependent manner. A ubiquitin ligase-deficient Cbl mutant enhanced the morphological transformation of mammary epithelial cells induced by constitutively active Vav2; this effect requires an intact Cbl Tyr-700. These results indicate that Cbl ubiquitin ligase plays a critical role in the maintenance of AJs and suppression of cell migration through down-regulation of EGFR-Vav2 signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号