首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The failure of preclinical testing to predict the severity of the cytokine storm experienced by the recipients of the superagonistic anti-CD28 monoclonal antibody (mAb) TGN1412 during its Phase 1 clinical trial prompted the development of new in vitro experimental approaches for mimicking in vivo cytokine release and lymphoproliferation. Peripheral blood mononuclear cells (PBMC) presented to TGN1412 immobilised on plastic has previously been shown to stimulate a pro-inflammatory cytokine response. The aim of the present study was to investigate a 'co-culture' model for the detection of TGN1412-like immunomodulatory activity in which TGN1412 was presented to PBMC in the presence of monolayers of endothelium-derived cells and other cell types, followed by measurement of cytokine levels in the culture supernatants and proliferation of PBMC. Culturing PBMC with TGN1412 over primary human umbilical vein endothelial cells (HUVEC) and HUVEC-derived cell lines retaining classic endothelial markers, but not cell lines of non-endothelial origin, mediated the specific release of IL-6, IL-8 and TNFα, and proliferation of PBMC. Low levels of IL-2 and IFNγ were also detected in supernatants with most donors of PBMC. An anti-CD28 mAb agonist, i.e., not a superagonist like TGN1412, did not stimulate cytokine release or proliferation of PBMC in co-cultures. In conclusion, co-culture experiments for TGN1412-specific cytokine release required cells of endothelial origin. However, the profile of released cytokines in co-cultures did not mirror that in the clinical trial participants or the responses from PBMC exposed to TGN1412 immobilised on plastic, suggesting that TGN1412 stimulation of PBMC can occur through more than one mechanism.  相似文献   

2.
The CD28-specific mAb TGN1412 rapidly caused a life-threatening "cytokine storm" in all six healthy volunteers in the Phase I clinical trial of this superagonist, signaling a failure of preclinical safety testing. We report novel in vitro procedures in which TGN1412, immobilized in various ways, is presented to human white blood cells in a manner that stimulates the striking release of cytokines and profound lymphocyte proliferation that occurred in vivo in humans. The novel procedures would have predicted the toxicity of this superagonist and are now being applied to emerging immunotherapeutics and to other therapeutics that have the potential to act upon the immune system. Data from these novel procedures, along with data from in vitro and in vivo studies in nonhuman primates, suggest that the dose of TGN1412 given to human volunteers was close to the maximum immunostimulatory dose and that TGN1412 is not a superagonist in nonhuman primates.  相似文献   

3.
Therapeutic monoclonal antibodies (mAbs) such as the superagonistic, CD28-specific antibody TGN1412, or OKT3, an anti-CD3 mAb, can cause severe adverse events including cytokine release syndrome. A predictive model for mAb-mediated adverse effects, for which no previous knowledge on severe adverse events to be expected or on molecular mechanisms underlying is prerequisite, is not available yet. We used a humanized mouse model of human peripheral blood mononuclear cell-reconstituted NOD-RAG1-/--/-HLADQ(tg+ or tg-)IL-2Rγc-/- mice to evaluate its predictive value for preclinical testing of mAbs. 2–6 hours after TGN1412 treatment, mice showed a loss of human CD45+ cells from the peripheral blood and loss of only human T cells after OKT3 injection, reminiscent of effects observed in mAb-treated humans. Moreover, upon OKT3 injection we detected selective CD3 downmodulation on T cells, a typical effect of OKT3. Importantly, we detected release of human cytokines in humanized mice upon both OKT3 and TGN1412 application. Finally, humanized mice showed severe signs of illness, a rapid drop of body temperature, and succumbed to antibody application 2–6 hours after administration. Hence, the humanized mouse model used here reproduces several effects and adverse events induced in humans upon application of the therapeutic mAbs OKT3 and TGN1412.  相似文献   

4.
Clinical studies in human volunteers are an essential part of drug development. These studies are designed to account for possible differences between the effects of pharmaceutical products in preclinical studies and in humans. However, the tragic outcome of the recent Phase 1 clinical trial on TGN1412 casts considerable doubt over the relevance of this traditional drug development paradigm to the testing of therapeutic agents for human use. The role of alternatives to animal testing is considered, and a series of recommendations are made, which could ensure that clinical trials are well informed and based on the most relevant scientific information.  相似文献   

5.
Superagonistic CD28-specific monoclonal antibodies (CD28SA) are highly effective activators of regulatory T-cells (Treg cells) in rats, but a first-in-man trial of the human CD28SA TGN1412 resulted in an unexpected cytokine release syndrome. Using a novel mouse anti-mouse CD28SA, we re-investigate the relationship between Treg activation and systemic cytokine release. Treg activation by CD28SA was highly efficient but depended on paracrine IL-2 from CD28SA-stimulated conventional T-cells. Systemic cytokine levels were innocuous, but depletion of Treg cells prior to CD28SA stimulation led to systemic release of proinflammatory cytokines, indicating that in rodents, Treg cells effectively suppress the inflammatory response. Since the human volunteers of the TGN1412 study were not protected by this mechanism, we also tested whether corticosteroid prophylaxis would be compatible with CD28SA induced Treg activation. We show that neither the expansion nor the functional activation of Treg cells is affected by high-dose dexamethasone sufficient to control systemic cytokine release. Our findings warn that preclinical testing of activating biologicals in rodents may miss cytokine release syndromes due to the rapid and efficacious response of the rodent Treg compartment, and suggest that polyclonal Treg activation is feasible in the presence of antiphlogistic corticosteroid prophylaxis.  相似文献   

6.
Superagonistic CD28 antibodies (CD28SAs) activate T lymphocytes without concomitant perturbation of the TCR/CD3-complex. In rodents these reagents induce the preferential expansion of regulatory T cells and can be used for the treatment of autoimmune diseases. Unexpectedly, the humanized CD28 superagonist TGN1412 caused severe and life threatening adverse effects during a recently conducted phase I clinical trail. The underlying molecular mechanisms are as yet unclear. We show that TGN1412 as well as the commercially available CD28 superagonist ANC28.1 induce a delayed but extremely sustained calcium response in human naïve and memory CD4+ T cells but not in cynomolgus T lymphocytes. The sustained Ca++-signal was associated with the activation of multiple intracellular signaling pathways and together these events culminated in the rapid de novo synthesis of high amounts of pro-inflammatory cytokines, most notably IFN-γ and TNF-α. Importantly, sustained transmembranous calcium flux, activation of Src-kinases as well as activation of PI3K were found to be absolutely required for CD28SA-mediated production of IFN-γ and IL-2. Collectively, our data suggest a molecular basis for the severe side effects caused by TGN1412 and impinge upon the relevance of non-human primates as preclinical models for reagents that are supposed to modify the function of human T cells.  相似文献   

7.
《MABS-AUSTIN》2013,5(3):697-706
Antagonist anti-CD28 antibodies prevent T-cell costimulation and are functionally different from CTLA4Ig since they cannot block CTLA-4 and PDL-1 co-inhibitory signals. They demonstrated preclinical efficacy in suppressing effector T cells while enhancing immunoregulatory mechanisms. Because a severe cytokine release syndrome was observed during the Phase 1 study with the superagonist anti-CD28 TGN1412, development of other anti-CD28 antibodies requires careful preclinical evaluation to exclude any potential immunotoxicity side-effects. The failure to identify immunological toxicity of TGN1412 using macaques led us to investigate more relevant preclinical models.

We report here that contrary to macaques, and like in man, all baboon CD4-positive T lymphocytes express CD28 in their effector memory cells compartment, a lymphocyte subtype that is the most prone to releasing cytokines after reactivation. Baboon lymphocytes are able to release pro-inflammatory cytokines in vitro in response to agonist or superagonist anti-CD28 antibodies. Furthermore, we compared the reactivity of human and baboon lymphocytes after transfer into non obese diabetic/severe combined immunodeficiency (NOD/SCID) interleukin-2rγ knockout mice and confirmed that both cell types could release inflammatory cytokines in situ after injection of agonistic anti-CD28 antibodies. In contrast, FR104, a monovalent antagonistic anti-CD28 antibody, did not elicit T cell activation in these assays, even in the presence of anti-drug antibodies. Infusion to baboons also resulted in an absence of cytokine release.

In conclusion, the baboon represents a suitable species for preclinical immunotoxicity evaluation of anti-CD28 antibodies because their effector memory T cells do express CD28 and because cytokine release can be assessed in vitro and trans vivo.  相似文献   

8.
Antagonist anti-CD28 antibodies prevent T-cell costimulation and are functionally different from CTLA4Ig since they cannot block CTLA-4 and PDL-1 co-inhibitory signals. They demonstrated preclinical efficacy in suppressing effector T cells while enhancing immunoregulatory mechanisms. Because a severe cytokine release syndrome was observed during the Phase 1 study with the superagonist anti-CD28 TGN1412, development of other anti-CD28 antibodies requires careful preclinical evaluation to exclude any potential immunotoxicity side-effects. The failure to identify immunological toxicity of TGN1412 using macaques led us to investigate more relevant preclinical models. We report here that contrary to macaques, and like in man, all baboon CD4-positive T lymphocytes express CD28 in their effector memory cells compartment, a lymphocyte subtype that is the most prone to releasing cytokines after reactivation. Baboon lymphocytes are able to release pro-inflammatory cytokines in vitro in response to agonist or superagonist anti-CD28 antibodies. Furthermore, we compared the reactivity of human and baboon lymphocytes after transfer into non obese diabetic/severe combined immunodeficiency (NOD/SCID) interleukin-2rγ knockout mice and confirmed that both cell types could release inflammatory cytokines in situ after injection of agonistic anti-CD28 antibodies. In contrast, FR104, a monovalent antagonistic anti-CD28 antibody, did not elicit T cell activation in these assays, even in the presence of anti-drug antibodies. Infusion to baboons also resulted in an absence of cytokine release. In conclusion, the baboon represents a suitable species for preclinical immunotoxicity evaluation of anti-CD28 antibodies because their effector memory T cells do express CD28 and because cytokine release can be assessed in vitro and trans vivo.  相似文献   

9.
《Cytokine》2013,61(3):828-837
The administration of several monoclonal antibodies (mAbs) to humans has been associated with acute adverse events characterized by clinically significant release of cytokines in the blood. The limited predictive value of toxicology species in this field has triggered intensive research to establish human in vitro assays using peripheral blood mononuclear cells or blood to predict cytokine release in humans. A thorough characterization of these assays is required to understand their predictive value for hazard identification and risk assessment in an optimal manner, and to highlight potential limitations of individual assay formats.We have characterized a whole human blood cytokine release assay with only minimal dilution by the test antibodies (95% v/v blood) in aqueous presentation format, an assay which has so far received less attention in the scientific world with respect to the evaluation of its suitability to predict cytokine release in humans. This format was compared with a human PBMC assay with immobilized mAbs presentation already well-characterized by others. Cytokine secretion into plasma or cell culture supernatants after 24 h incubation with the test mAbs (anti-CD28 superagonist TGN1412-like material (TGN1412L), another anti-CD28 superagonistic mAb (ANC28.1), a T-cell depleting mAb (Orthoclone™), and a TGN1412 isotype-matched control (Tysabri™) not associated with clinically-relevant cytokine release) was detected by a multiplex assay based on electrochemiluminescent excitation.We provide proof that this whole blood assay is a suitable new method for hazard identification of safety-relevant cytokine release in the clinic based on its ability to detect the typical cytokine signatures found in humans for the tested mAbs and on a markedly lower assay background and cytokine release with the isotype-matched control mAb Tysabri™ – a clear advantage over the PBMC assay. Importantly, quantitative and qualitative differences in the relative cytokine responses to the individual mAbs, in the concentration-response relationships and the prominent cytokine signatures for individual mAbs in the two formats reflect diverging mechanisms of cytokine release and different levels of dependency on high density coating even for two anti-CD28 super-agonistic antibodies. These results clearly show that one generic approach to assessment of cytokine release using in vitro assays is not sufficient, but rather the choice of the method, i.e. applying the whole blood assay or the PBMC assay needs to be well considered depending on the target characteristics and the mechanistic features of the therapeutic mAbs being evaluated.  相似文献   

10.
The conversion of the cytotoxic and immunosuppressive 6-mercaptopurine (6MP) to the active 6-thioguanine nucleotides (6TGN) is necessary for clinical efficacy of 6MP and its prodrug azathioprine. Another metabolite, 6-methylmercaptopurine nucleotide (6MMPN), is formed via a competing pathway by thiopurine methyl transferase. The concentrations of 6TGN and 6MMPN are measured in washed erythrocytes as a surrogate to the intracellular levels of these metabolites in the target tissues. Analysis of 6TGN and 6MMPN in multi-center clinical studies is more complicated because of the requirement to wash erythrocytes. In this investigation, we found no differences in the concentrations of 6TGN and 6MMPN in blood versus washed erythrocytes in samples obtained from patients taking therapeutic doses of oral 6MP or azathioprine for inflammatory bowel disease. We concluded that whole blood could be used for the analysis of these analytes, thus saving sample preparation time. We also found that the erythrocyte 6TGN concentration in blood at ambient temperature declined 2–4% per day, a loss that can be avoided by shipping blood samples frozen. The loss of 6TGN in blood stored at approximately −80°C was 1% after 1 week and 12% after 24 weeks, indicating the analyte was moderately stable. 6MMPN in blood did not significantly change after 24 weeks of storage at approximately −80°C. In addition, the sensitivity of the 6TGN assay was improved by modifying the HPLC conditions, which made the method more suitable for quantifying low levels of 6TGN in human intestinal biopsy samples and blood.  相似文献   

11.
It has previously been shown that the M (E1) glycoprotein of mouse hepatitis virus strain A59 (MHV-A59) contains only O-linked oligosaccharides and localizes to the Golgi region when expressed independently. A detailed pulse-chase analysis was made of the addition of O-linked sugars to the M protein; upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, three different electrophoretic forms could be distinguished that corresponded to the sequential acquisition of N-acetylgalactosamine (GalNAc), galactose (Gal), and sialic acid (SA). A fourth and fifth form could also be detected which we were unable to identify. Following Brefeldin A treatment, the M protein still acquired GalNAc, Gal, and SA, but the fourth and fifth forms were absent, suggesting that these modifications occur in the trans-Golgi network (TGN). In contrast, in the presence of BFA, the G protein of vesicular stomatitis virus (VSV), which contains N-linked oligosaccharides, acquired Gal and fucose but not SA. These results are consistent with earlier published data showing that Golgi compartments proximal to the TGN, but not the TGN itself, relocate to the endoplasmatic reticulum/intermediate compartment. More importantly, our data argue that, whereas addition of SA to N-linked sugars occurs in the TGN the acquisition of both SA on O-linked sugars and the addition of fucose to N-linked oligosaccharides must occur in Golgi compartments proximal to the TGN. The glycosylation of the M protein moreover indicates that it is transported to trans-Golgi and TGN. This was confirmed by electron microscopy immunocytochemistry, showing that the protein is targeted to cisternae on the trans side of the Golgi and co-localizes, at least in part, with TGN 38, a marker of the TGN, as well as with a lectin specific for sialic acid.  相似文献   

12.
The sorting of secreted cargo proteins and their export from the trans-Golgi network (TGN) remains an enigma in the field of membrane trafficking; although the sorting mechanisms of many transmembrane proteins have been well described. The sorting of secreted proteins at the TGN is crucial for the release of signaling factors, as well as extracellular matrix proteins. These proteins are required for cell–cell communication and integrity of an organism. Missecretion of these factors can cause diseases such as neurological disorders, autoimmune disease, or cancer. The major open question is how soluble proteins that are not associated with the membrane are packed into TGN derived transport carriers to facilitate their transport to the plasma membrane. Recent investigations have identified novel types of protein and lipid machinery that facilitate the packing of these molecules into a TGN derived vesicle. In addition, novel research has uncovered an exciting link between cargo sorting and export in which TGN structure and dynamics, as well as TGN/endoplasmic reticulum contact sites, play a significant role. Here, we have reviewed the progress made in our understanding of these processes.  相似文献   

13.
Retrograde transport pathways from early/recycling endosomes to the trans-Golgi network (TGN) are poorly defined. We have investigated the role of TGN golgins in retrograde trafficking. Of the four TGN golgins, p230/golgin-245, golgin-97, GCC185, and GCC88, we show that GCC88 defines a retrograde transport pathway from early endosomes to the TGN. Depletion of GCC88 in HeLa cells by interference RNA resulted in a block in plasma membrane-TGN recycling of two cargo proteins, TGN38 and a CD8 mannose-6-phosphate receptor cytoplasmic tail fusion protein. In GCC88-depleted cells, cargo recycling was blocked in the early endosome. Depletion of GCC88 dramatically altered the TGN localization of the t-SNARE syntaxin 6, a syntaxin required for endosome to TGN transport. Furthermore, the transport block in GCC88-depleted cells was rescued by syntaxin 6 overexpression. Internalized Shiga toxin was efficiently transported from endosomes to the Golgi of GCC88-depleted cells, indicating that Shiga toxin and TGN38 are internalized by distinct retrograde transport pathways. These findings have identified an essential role for GCC88 in the localization of TGN fusion machinery for transport from early endosomes to the TGN, and they have allowed the identification of a retrograde pathway which differentially selects TGN38 and mannose-6-phosphate receptor from Shiga toxin.  相似文献   

14.
The CD28 superagonist (CD28SA) TGN1412 was administered to humans as an agent that can selectively activate and expand regulatory T cells but resulted in uncontrolled T cell activation accompanied by cytokine storm. The molecular mechanisms that underlie this uncontrolled T cell activation are unclear. Physiological activation of T cells leads to upregulation of not only activation molecules but also inhibitory receptors such as PD-1. We hypothesized that the uncontrolled activation of CD28SA-stimulated T cells is due to both the enhanced expression of activation molecules and the lack of or reduced inhibitory signals. In this study, we show that anti-CD3 antibody-stimulated human T cells undergo time-limited controlled DNA synthesis, proliferation and interleukin-2 secretion, accompanied by PD-1 expression. In contrast, CD28SA-activated T cells demonstrate uncontrolled activation parameters including enhanced expression of LFA-1 and CCR5 but fail to express PD-1 on the cell surface. We demonstrate the functional relevance of the lack of PD-1 mediated regulatory mechanism in CD28SA-stimulated T cells. Our findings provide a molecular explanation for the dysregulated activation of CD28SA-stimulated T cells and also highlight the potential for the use of differential expression of PD-1 as a biomarker of safety for T cell immunostimulatory biologics.  相似文献   

15.
Human cytomegalovirus (HCMV) glycoprotein B (gB), encoded by the UL55 open reading frame, is an essential envelope glycoprotein involved in cell attachment and entry. Previously, we identified residue serine 900 (Ser900) as a unique site of reversible casein kinase 2 phosphorylation in the cytoplasmic domain of HCMV gB. We have also recently shown that gB is localized to the trans-Golgi network (TGN) in HCMV-permissive cells, thereby identifying the TGN as a possible site of virus envelopment. The aim of the current study was to determine the role of Ser900 phosphorylation in transport of gB to the TGN and in HCMV biogenesis. Recombinant HCMV strains were constructed that expressed gB molecules containing either an aspartic acid (gBAsp900) or alanine residue (gBAla900) substitution at Ser900 to mimic the phosphorylated or nonphosphorylated form, respectively. Immunofluorescence analysis of the trafficking of gB mutant molecules in fibroblasts infected with the HCMV recombinants revealed that gBAsp900 was localized to the TGN. In contrast, gBAla900 was partially mislocalized from the TGN, indicating that phosphorylation of gB at Ser900 was necessary for TGN localization. The increased TGN localization of gBAsp900 was due to a decreased transport of the molecule to post-TGN compartments. Remarkably, the substitution of an aspartic acid residue for Ser900 also resulted in an increase in levels of progeny virus production during HCMV infection of fibroblasts. Together, these results demonstrate that phosphorylation of gB at Ser900 is necessary for gB localization to the TGN, as well as for efficient viral replication, and further support the TGN as a site of HCMV envelopment.  相似文献   

16.
《MABS-AUSTIN》2013,5(5):1290-1299
The CD28 superagonist (CD28SA) TGN1412 was administered to humans as an agent that can selectively activate and expand regulatory T cells but resulted in uncontrolled T cell activation accompanied by cytokine storm. The molecular mechanisms that underlie this uncontrolled T cell activation are unclear. Physiological activation of T cells leads to upregulation of not only activation molecules but also inhibitory receptors such as PD-1. We hypothesized that the uncontrolled activation of CD28SA-stimulated T cells is due to both the enhanced expression of activation molecules and the lack of or reduced inhibitory signals. In this study, we show that anti-CD3 antibody-stimulated human T cells undergo time-limited controlled DNA synthesis, proliferation and interleukin-2 secretion, accompanied by PD-1 expression. In contrast, CD28SA-activated T cells demonstrate uncontrolled activation parameters including enhanced expression of LFA-1 and CCR5 but fail to express PD-1 on the cell surface. We demonstrate the functional relevance of the lack of PD-1 mediated regulatory mechanism in CD28SA-stimulated T cells. Our findings provide a molecular explanation for the dysregulated activation of CD28SA-stimulated T cells and also highlight the potential for the use of differential expression of PD-1 as a biomarker of safety for T cell immunostimulatory biologics.  相似文献   

17.
Furin and TGN38 are menbrane proteins that cycle between the plasma membrane and the trans-Golgi network (TGN), each maintaining a predominant distribution in the TGN. We have used chimeric proteins with an extracellular Tac domain and the cytoplasmic domain of TGN38 or furin to study the trafficking of these proteins in endosomes. Previously, we demonstrated that the postendocytic trafficking of Tac-TGN38 to the TGN is via the endocytic recycling pathway (Ghosh, R.N.,W.G. Mallet,T.T. Soe,T.E.McGraw, and F.R. Maxfield.1998.J.Cell Biol.142:923-936).Here we show that internalized Tac-furin is delivered to the TGN through late endosomes, bypassing the endocytic recycling compartment. The transport of Tac-furin from late endosomes to the TGN appears to proceed via an efficient, single-pass mechanism. Delivery of Tac-furin but not Tac-TGN38 to the TGN is blocked by nocodazole, and the two pathways are also differentially affected by wortmannin. These studies demonstrate the existence of two independentpathways for endosomal transport of proteins to the TGN from the plasma membrane.  相似文献   

18.
Summary Two polyclonal antisera, anti-xyloglucan (anti-XG) and anti-polygalacturonic acid/rhamnogalacturonan I (anti-PGA/RG-I), which recognize, respectively, noncellulosic -(14)-D-glucan containing polysaccharides and the unesterified forms of the acidic pectic polysaccharide polygalacturonic acid/rhamnogalacturonan I, were used to localize epitopes recognized by the two antisera in the root tip of oat (Avena sativa). Immunoblot analysis shows that epitopes recognized by the anti-XG antibodies are present in both the mixed linkage -(13)-(14)-D-glucans (MG) and in xyloglucan (XG). Immunogold electron microscopy shows that the cell walls of meristematic, cortical, epidermal, columella, and peripheral cells contain significant amounts of such epitopes. In contrast, the molecules that carry these MG/XG epitopes appear to be sparse in the expanded middle lamella of meristematic cells, but dense in the expanded middle lamella of peripheral root cap cells. This finding suggests that the porosity of the middle lamella is altered in peripheral root cap cells to facilitate mucilage secretion. In contrast, few PGA/RG-I epitopes were detected in any cell walls of any of the cell types examined. Double immunogold labeling experiments revealed an intriguing localization pattern of MG/XG and of PGA/RG-I epitopes in the peripheral mucilage-secreting cells of the root cap. Whereas MG/XG epitopes were abundant in the cell wall, they were sparse in both the secreted mucilage and in intracellular secretory vesicles. In marked contrast, PGA/RG-I epitopes were detected at high density in intracellular secretory vesicles, but unexpectedly, were quite sparse in both the cell wall and in the mucilage. These immunolabeling patterns are consistent with the hypotheses that the synthesis and secretion of particular -D-glucans is subject to both activation and down-regulation during cell development and differentiation and that post-secretory alterations of pectic polysaccharides, such as enzymatic release of RG-I-type mucilage molecules from PGA/RG-I precursors, may occur in the peripheral cell walls of the oat root cap.Abbreviations MG mixed linkage -(13)-(14)-D-glucan - PGA/RG-I polygalacturonic acid/rhamnogalacturonan I - SEPS sycamore extracellular polysaccharides - TGN trans Golgi network - XG xyloglucan  相似文献   

19.
Do lipids such as sphingomyelin (SM) that are known to assemble into specific membrane domains play a role in the organization and function of transmembrane proteins? In this paper, we show that disruption of SM homeostasis at the trans-Golgi network (TGN) by treatment of HeLa cells with d-ceramide-C6, which was converted together with phosphatidylcholine to short-chain SM and diacylglycerol by SM synthase, led to the segregation of Golgi-resident proteins from each other. We found that TGN46, which cycles between the TGN and the plasma membrane, was not sialylated by a sialyltransferase at the TGN and that this enzyme and its substrate TGN46 could not physically interact with each other. Our results suggest that SM organizes transmembrane proteins into functional enzymatic domains at the TGN.  相似文献   

20.
Six volunteers experienced severe inflammatory response during the Phase I clinical trial of a monoclonal antibody that was designed to stimulate a regulatory T cell response. Soon after the trial began, each volunteer experienced a “cytokine storm”, a dramatic increase in cytokine concentrations. The monoclonal antibody, TGN1412, raised serum concentrations of both pro- and anti-inflammatory cytokines το very hiγh values during the first day, while lymphocyte and monocyte concentrations plummeted. Because the subjects were healthy and had no prior indications of immune deficiency, this event provided an unusual opportunity to study the dynamic interactions of cytokines and other measured parameters. Here, the response histories of nine cytokines have been modeled by a set of linear ordinary differential equations. A general search procedure identifies parameters of the model, whose response fits the data well during the five-day measurement period. The eighteenth-order model reveals plausible cause-and-effect relationships among the cytokines, showing how each cytokine induces or inhibits other cytokines. It suggests that perturbations in IL2, IL8, and IL10 have the most significant inductive effect, while IFN-γ and IL12 have the greatest inhibiting effect on other cytokine concentrations. Although TNF-α is a major pro-inflammatory factor, IFN-γ and three other cytokines have faster initial and median response to TGN1412 infusion. Principal-component analysis of the data reveals three clusters of similar cytokine responses: [TNF-α, IL1, IL10], [IFN-γ, IL2, IL4, IL8, and IL12], and [IL6]. IL1, IL6, IL10, and TNF-α have the highest degree of variability in response to uncertain initial conditions, exogenous effects, and parameter estimates. This study illuminates details of a cytokine storm event, and it demonstrates the value of linear modeling for interpreting complex, coupled biological system dynamics from empirical data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号