首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
During estrogen-induced development of the quail oviduct, tubular glands are formed by evagination of epithelial cells into the stroma. The distribution of laminin was studied during the early stages by means of immunofluorescence and immunoperoxidase techniques. Ultrastructural changes in the basal lamina were studied by electron microscopy. Basement membranes at all stages of development were delineated with 3 polyclonal antilaminin antisera. However, in ovariectomized birds, laminin could not be detected by one of the polyclonal antilaminin antisera. Subsequently, this antibody detected laminin as epithelial cell evaginations were induced by estradiol benzoate. The heavy and light chains of Engelbreth Holm sarcoma (EHS) laminin were revealed in immunoblotting by all antibodies. By electron microscopy after the immunoperoxidase technique with antilaminin antisera laminin appears to be accumulated mainly in the lamina densa. Furthermore, the thickness of the basal lamina increases during oviduct development. These data indicate that basal lamina organization is modified during oviduct cell differentiation and that immunoreactivity of epithelial basement membrane laminin changes during development.  相似文献   

3.
Single cell suspensions of human keratinocytes when seeded onto floating three-dimensional gels constructed with type I collagen form a tissue resembling epidermis. These morphogenetic events occur in a serum-free environment in the absence of fibroblasts. Light and transmission electron microscopy show that cells form a basal layer plus suprabasilar cell layers corresponding to the stratum spinosum, stratum granulosum, and stratum corneum. The suprabasilar keratinocyte layers show morphologies which resemble intact skin in which cells are connected by desmosomes and contain intermediate filaments and keratohyalin-fillagrin granules. The basal cell layer differs from skin in vivo in that there is no connection to a basement membrane via hemidesmosomes. Cells in the basal layers are polarized as evidenced by the secretion of type IV collagen, heparan sulfate proteoglycans, and laminin at the cell membrane interface with the collagen gel. These proteins are not organized into a cytological basement membrane. Bullous pemphigoid antigen, a protein component of hemidesmosomes, is synthesized by basal keratinocytes, but like the basement membrane proteins it is not incorporated into a definable cytological structure. Keratinocytes in the basal and suprabasilar layers also synthesize alpha 2 beta 1 integrins. The mechanisms of keratinocyte adhesion to the gel may be through the interactions of this cell surface receptor with laminin and type IV collagen synthesized by the cell and/or direct interactions between the receptor and type I collagen within the gel. This in vitro experimental system is a useful model for defining the molecular events which control the formation and turnover of basement membranes and the mechanisms by which keratinocytes adhere to type I collagen when sheets of keratinocytes are used clinically for wound coverage.  相似文献   

4.
We have generated a monoclonal antibody that recognizes a major component of a specialized extracellular matrix in Drosophila imaginal discs. In mature larvae, antibody binding is observed almost exclusively on imaginal discs. On the basal surface of the thoracic discs, the antigen is localized to particular regions of the epithelium, and ultrastructural studies indicate that the antigen is found in a fibrous network secreted between the cells and the basal lamina. The localized expression indicates that the matrix is not simply related to disc differentiation, as all regions of the columnar disc epithelium are determined to secrete adult cuticle. A correlation of the antigen distribution with known developmental events leads us to propose that the antigen-containing network provides an extensible matrix for the rapid elongation of the disc epithelium during evagination; consistent with this, the antigen is a component of the matrix between the dorsal and ventral surfaces of the evaginated wing pouch. The antigen is very large (greater than 5 X 10(5) Da), can be labeled metabolically with methionine and sulfate, and is digested by chondroitinase ABC; these biochemical characteristics indicate that the antigen is a proteoglycan.  相似文献   

5.
Single cell suspensions of human keratinocytes when seeded onto floating three-dimensional gels constructed with type I collagen form a tissue resembling epidermis. These morphogenetic events occur in a serum-free environment in the absence of fibroblasts. Light and transmission electron microscopy show that cells form a basal layer plus suprabasilar cell layers corresponding to the stratum spinosum, stratum granulosum, and stratum corneum. The suprabasilar keratinocyte layers show morphologies which resemble intact skin in which cells are connected by desmosomes and contain intermediate filaments and keratohyalin-fillagrin granules. The basal cell layer differs from skin in vivo in that there is no connection to a basement membrane via hemidesmosomes. Cells in the basal layers are polarized as evidenced by the secretion of type IV collagen, heparan sulfate proteoglycans, and laminin at the cell membrane interface with the collagen gel. These proteins are not organized into a cytological basement membrane. Bullous pemphigoid antigen, a protein component of hemidesmosomes, is synthesized by basal keratinocytes, but like the basement membrane proteins it is not incorporated into a definable cytological structure. Keratinocytes in the basal and suprabasilar layers also synthesize α2β1 integrins. The mechanisms of keratinocyte adhesion to the gel may be through the interactions of this cell surface receptor with laminin and type IV collagen synthesized by the cell and/or direct interactions between the receptor and type I collagen within the gel. This in vitro experimental system is a useful model for defining the molecular events which control the formation and turnover of basement membranes and the mechanisms by which keratinocytes adhere to type I collagen when sheets of keratinocytes are used clinically for wound coverage.  相似文献   

6.
Drosophila laminin: characterization and localization   总被引:8,自引:3,他引:5       下载免费PDF全文
Drosophila laminin was isolated from the medium of Drosophila Kc cell cultures. It was purified by velocity sedimentation, gel filtration, and chromatography. Drosophila laminin is a disulfide-linked molecule consisting of three chains with apparent molecular masses of 400, 215, and 185 kD. In electron micrographs, it has the cross-shaped appearance with globular domains characteristic of vertebrate laminin with closely similar dimensions. The amino acid composition and lectin-binding properties of Drosophila laminin are given. Polyclonal antibodies to Drosophila laminin were prepared and their specificity was established. In developing embryos immunofluorescence staining was detected between 6 and 8 h of development; and in sections of 8-9-h and older embryos immunostaining was seen at sites where basement membranes are present surrounding internal organs, muscles, underlying the hypodermal epithelium, and in the nervous system. Basement membrane staining was also seen in larva and adults. Cells from Drosophila embryos dissociated at the cellular blastoderm stage were grown in culture and some specific, differentiated cells synthesized laminin after several hours of culture as shown by immunofluorescence. The significance of the evolutionary conservation of the structure of this basement membrane component is discussed.  相似文献   

7.
Tetrahymena thermophila cells have two types of polarized morphogenesis: divisional morphogenesis and oral reorganization (OR). The aim of this research is the analysis of cortical patterns of immunostaining during cell division and in OR using previously characterized antibodies against fenestrin and epiplasm B proteins. During cell division, the anarchic field of basal body proliferation of the new developing oral apparatus (AF) showed concomitant strong binding of the fenestrin antigen and withdrawal of a signal of the epiplasm B antigen. At a specific stage, the fenestrin antigen also appeared as a character of the anterior cortex pole, with a co-localized decrease in the detected epiplasm B antigen. The fenestrin antigen also showed a polarity of duplicating basal bodies in ciliary rows. Indirect immunofluorescence and immunogold labeling experiments were performed in the absence and presence of an inhibitor of activity of serine/threonine kinases, 6-dimethylaminopurine (6-DMAP) as an inducer of the oral replacement process. In the presence of 6-DMAP, one class of cells started OR, and some others were trapped and affected in cell division. Both types of cells showed an instability of oral structures and formed enlarged primordial oral fields. These anarchic fields (AFs) bind the fenestrin antigen, with disappearance of epiplasmic antigen staining. Only one protein (about 64 kDa) is detected in western blots by the anti-fenestrin antibody and it accumulated in 6-DMAP-treated cells that are involved in uncompleted morphogenetic activity. At a defined stage of oral development, both during cell division and in OR, the fenestrin antigen served as a marker of polarity of the cell of the anterior pole character.  相似文献   

8.
9.
Tight junctions might play a role during tissue morphogenesis and cell differentiation. In order to address these questions, we have studied the distribution pattern of the tight junction-associated proteins ZO-1, ZO-2, ZO-3 and occludin in the developing mouse tooth as a model. A specific temporal and spatial distribution of tight junction-associated proteins during tooth development was observed. ZO-1 appeared discontinuously in the cell membrane of enamel organ and dental mesenchyme cells. However, endothelial cells of the dental mesenchyme capillaries displayed a continuous fluorescence at the cell membrane. Inner dental epithelium first showed an evident signal for ZO-1 at the basal pole of the cells at bud/cap stage, but ZO-1 was accumulated at the basal and apical pole of preameloblast/ameloblasts at late bell stage. Surprisingly, in the incisor ZO-1 decreased as the inner dental epithelium differentiated, and was re-expressed in secretory and mature ameloblasts. On the contrary, ZO-2 was confined to continuous cell-cell contacts of the enamel organ in both molars and incisors. The lateral cell membrane of inner dental epithelial cells was specifically ZO-2 labeled. However, ZO-3 was expressed in oral epithelium whereas dental embryo tissues were negative. In addition, occludin was hardly detected in dental tissues at the early stage of tooth development, but was distributed continuously at the cell membrane of endothelial cells of ED19.5 dental mesenchyme. In incisors, occludin was detected at the cell membrane of the secretory pole of ameloblasts. The occurrence and relation during tooth development of tight junction proteins ZO-1, ZO-2 and occludin, but not ZO-3, suggests a combinatory assembly in tooth morphogenesis and cell differentiation.  相似文献   

10.
11.
We have generated a monoclonal antibody (Mab E1C) that recognizes the differentiated nervous system in Drosophila embryos. At the cellular blastoderm stage, Mab E1C behaves as a general ectodermal marker but, in subsequent stages, it also labels the mesoderm. As neurogenesis takes place, staining increases within the neuromeres and is almost exclusively restricted to the nervous tissue by the time neuronal differentiation is completed. In third instar larvae, Mab E1C stains the central nervous system (CNS) as well as the imaginal discs which display a staining pattern related to their degree of neuronal differentiation. No labelling can be detected in adult brains or ovaries. Western blots are consistent with this developmental profile and allow the characterization of a major glycoprotein of 135 X 10(3) Mr (135K) which cosediments with a membrane fraction prepared from embryos. Additional glycoproteins (100K and 80K) are extracted from embryo homogenates by immunoaffinity procedures. In larvae, the 100K polypeptide is not detected. The properties of the 135K and 100K components are highly reminiscent of the molecular pattern of the Drosophila insulin receptor homologue (Petruzzelli et al. (1985) J. biol. Chem. 250, 16072-16075). It is shown that a Mab directed against the human insulin receptor stains the same cells as Mab E1C in imaginal discs and in the CNS. Moreover, this Mab cross-reacts with the 135K and 100K components of the embryonic antigen E1C.  相似文献   

12.
Dystroglycan is a receptor for the basement membrane components laminin-1, -2, perlecan, and agrin. Genetic studies have revealed a role for dystroglycan in basement membrane formation of the early embryo. Dystroglycan binding to the E3 fragment of laminin-1 is involved in kidney epithelial cell development, as revealed by antibody perturbation experiments. E3 is the most distal part of the carboxyterminus of laminin alpha1 chain, and is composed of two laminin globular (LG) domains (LG4 and LG5). Dystroglycan-E3 interactions are mediated solely by discrete domains within LG4. Here we examined the role of this interaction for the development of mouse embryonic salivary gland and lung. Dystroglycan mRNA was expressed in epithelium of developing salivary gland and lung. Immunofluorescence demonstrated dystroglycan on the basal side of epithelial cells in these tissues. Antibodies against dystroglycan that block binding of alpha-dystroglycan to laminin-1 perturbed epithelial branching morphogenesis in salivary gland and lung organ cultures. Inhibition of branching morphogenesis was also seen in cultures treated with polyclonal anti-E3 antibodies. One monoclonal antibody (mAb 200) against LG4 blocked interactions between a-dystroglycan and recombinant laminin alpha1LG4-5, and also inhibited salivary gland and lung branching morphogenesis. Three other mAbs, also specific for the alpha1 carboxyterminus and known not to block branching morphogenesis, failed to block binding of alpha-dystroglycan to recombinant laminin alpha1LG4-5. These findings clarify why mAbs against the carboxyterminus of laminin alpha1 differ in their capacity to block epithelial morphogenesis and suggest that dystroglycan binding to alpha1LG4 is important for epithelial morphogenesis of several organs.  相似文献   

13.
In the earliest stages of its development the chick blastoderm is a flattened disc at the surface of the yolk. It gradually increases in diameter, partially because the cells are rapidly proliferating, but also because the cells at the periphery (the margin of overgrowth) are migrating in a centrifugal direction. These cells utilize the inner surface of the vitelline membrane as their substratum. In the normal blastoderm, these cells at the edge of the spreading blastoderm are the only cells which are attached to the vitelline membrane. This investigation is concerned with the possible role played by fibronectin in the interaction between these migrating cells and the vitelline membrane. Chick blastoderms, explanted by the New (1955) technique have been treated with synthetic peptides that mimic the adhesive recognition signal of the fibronectin molecule. The pentapeptide GRGDS (containing the specific RGD cell adhesion sequence) caused the edge cells of the blastoderm to detach within minutes, and the expansion of the blastoderm was inhibited for about 4 hr. After this period there was gradual recovery and the cells reattached and spreading resumed. Examination of the margin of the blastoderm by scanning electron microscopy showed that cell processes were lost soon after treatment with GRGDS but concomitant with reattachment and the resumption of spreading, the cell processes reformed. The pentapeptide GRDGS (with the amino acids G and D inverted) produced a brief inhibition of spreading, but after an hour these blastoderms spread at the same rate as controls. Immunocytochemical staining with anti-fibronectin demonstrated that fibronectin was not only present at the interface of the edge cells and the vitelline membrane, but also between the epiblast and the hypoblast. These results indicate that tissue movement during blastoderm spreading is dependent upon fibronectin and that the specific RGD amino acid sequence, and presumably the VLA/integrin family of receptors, is involved in this embryonic morphogenetic movement.  相似文献   

14.
Radioimmunoassays were developed for the basement membrane components, 7 S collagen and fragments of the noncollagenous protein laminin, which allowed quantitative analysis of as little as 0.1–0.4 ng of these proteins. Similar materials could be detected by these assays in serum, in kidney digests, and in the medium of cell cultures obtained from mice and rats. Distinct changes in the amounts of antigen in serum and kidney were observed during aging and in mice inoculated with a basement membrane tumor.  相似文献   

15.
Branching epithelial morphogenesis requires interactions between the surrounding mesenchyme and the epithelium, as well as interactions between basement membrane components and the epithelium. Embryonic submandibular gland was used to study the roles of two mesenchymal proteins, epimorphin and tenascin-C, as well as the epithelial protein laminin-1 and one of its integrin receptors on branching morphogenesis. Laminin-1 is a heterotrimer composed of an alpha 1 chain and two smaller chains (beta 1 and gamma 1). Immunofluorescence revealed a transient expression of laminin alpha 1 chain in the epithelial basement membrane during early stages of branching morphogenesis. Other laminin-1 chains and alpha 6, beta 1, and beta 4 integrin subunits seemed to be expressed constitutively. Expression of epimorphin, but not tenascin-C, was seen in the mesenchyme during early developmental stages, but a mAb against epimorphin did not perturb branching morphogenesis of this early epithelium. In contrast, inhibition of branching morphogenesis was seen with a mAb against the carboxy terminus of laminin alpha 1 chain, the E3 domain. An inhibition of branching was also seen with a mAb against the integrin alpha 6 subunit. The antibodies against laminin alpha 1 chain and integrin alpha 6 subunit perturbed development in distinct fashions. Whereas treatment with the anti-E3 resulted in discontinuities of the basement membrane at the tips of the branching epithelium, treatment with the mAb against alpha 6 integrin subunit seemed to leave the basement membrane intact. We suggest that the laminin E3 domain is involved in basement membrane formation, whereas alpha 6 beta 1 integrin binding to laminin-1 may elicit differentiation signals to the epithelial cells.  相似文献   

16.
Extracellular matrix and membrane proteins and their correct secretion probably are key elements in morphogenesis and differentiation in Drosophila. In this study, we have analysed the effects of monensin, a Na+-H+-ionophore which blocks normal secretion, applied during cellular blastoderm formation on further development. Normal cell morphology and intercellular contacts are lost and the extracellular matrix becomes disorganized. Gastrulation is blocked and abnormal foldings can be observed. Cuticle phenotypes showed different degrees of ventral, dorsal, head and posterior defects. The results are discussed in the context of what is known about membrane and extracellular matrix proteins in Drosophila.  相似文献   

17.
We have studied the interaction of a human tumor cell line, A253, derived from a submandibular gland carcinoma with a differentiation promoting reconstituted basement membrane extract, Matrigel. When cultured on plastic, these cells maintain a flat, cobblestone, epithelial morphology. On Matrigel, A253 cells initially form a honeycomb network of cords of cells which subsequently thickens. With time, these cords of cells become discontinuous and blunted, whereupon multilobular clusters of cells develop. These clusters possess a lumen with polarized, PAS(+) cells containing numerous desmosomes and an abundance of glycogen. Culture of the cells on laminin, the most abundant protein found in Matrigel, also induces this morphologic differentiation. Using synthetic laminin-derived peptides, the biologically active IKVAV-containing site of laminin was most active in attachment assays, as well as in inhibiting glandular-like morphogenesis when added to the media of cells cultured on Matrigel. Antibodies to the cell surface 67- and 32-kDa laminin binding proteins partially inhibited the glandular-like morphogenesis, suggesting that multiple interactions with laminin are likely required for the differentiation process. Our data demonstrate that A253 cells can undergo glandular-like morphogenesis on basement membrane and that laminin appears to be the major initiating factor.  相似文献   

18.
Basement membranes are thin extracellular matrices which contact epithelial cells and promote their adhesion, migration, differentiation, and morphogenesis. These matrices are composed of collagen IV, heparan sulfate proteoglycan, laminin, and entactin as well as other minor components. Sertoli cells, like most epithelial cells, are in contact at their basal surface with a basement membrane. When cultured within three-dimensional basement membrane gels (Matrigel), Sertoli cells reorganize into cords that resemble testicular seminiferous cords found in the in vivo differentiating testis. Anti-laminin and anti-entactin antisera inhibit this cord morphogenesis by Sertoli cells whereas antisera against type IV and type I collagen, heparan sulfate proteoglycan, fibronectin, and preimmune sera had no effect. The RGD (RGDS-NH2) sequence, found in the cell binding domain of the integrin family of cell adhesion molecules as well as in the A chain of laminin and in entactin, effectively inhibited Sertoli cell cord formation at a concentration of 1.0 mg/ml but was unable to prevent Sertoli cell attachment at concentrations as high as 2.0 mg/ml. A synthetic pentapeptide from a cell-binding domain of the B1 chain of laminin. YIGSR-NH2, inhibited cord formation at a concentration of 0.25 mg/ml, but Sertoli cells were still adherent to the basement membrane matrix. At concentrations greater than 0.50 mg/ml, Sertoli cells detached. Antiserum against the YIGSR-NH2-containing sequence was also effective in inhibiting cord formation by Sertoli cells. Ligand (YIGSR-NH2 peptide) blot analysis of Sertoli cell lysates revealed an interaction with a major band at 60 kDa and with minor bands at 39 and 127 kDa. Furthermore, in Western blot analysis the anti-67-kDa laminin-binding protein antibody recognized a 59- to 60-kDa protein in Sertoli cells. The data indicate that laminin is involved in both Sertoli cell attachment and migration during formation of histotypic cord structures by these cells in culture. Two separate laminin cell-binding domains appear to be involved in Sertoli cell cord morphogenesis in vitro and are likely to participate in the formation of seminiferous cords in vivo.  相似文献   

19.
Laminin is structurally conserved in the sea urchin basal lamina   总被引:6,自引:0,他引:6       下载免费PDF全文
The extracellular matrix is involved in the regulation of differentiation and morphogenesis. Here we report the identification of a sea urchin embryonic extracellular matrix protein by means of a monoclonal antibody BL1 (Mab BL1) and the isolation of the protein from basal lamina preparations. In paraffin sections of fixed embryos, the antibody can be detected on the basal surfaces of cells after the blastula stage. Immunoprecipitation from embryo lysates and salt extracts of metabolically labeled basal lamina preparations demonstrates that the basal lamina antigen is a large mol. wt protein of approximate mol. wt 106 which consists of disulfide-linked subunits of mol. wts ˜480 000 and 260 000. Electron microscopic images show that the Mab BL1 basal lamina antigen is structurally related to the vertebrate extracellular matrix protein laminin.  相似文献   

20.
The deposition of the basement membrane glycoproteins, laminin, fibronectin, and type IV procollagen was studied by indirect immunofluorescence microscopy during the attachment and differentiation of murine C-1300 neuroblastoma cells. A typical cytoplasmic perinuclear staining for the basement membrane antigens was seen both in undifferentiated and differentiated cells. Freshly seeded suspended cells lacked surface fluorescence but in two hours after plating, distinct punctate laminin deposits became discernible on the ventral surface of the cells. Notably, in sparsely seeded undifferentiated cultures, the cell-associated extracellular laminin deposits could only be detected under the primary attaching cells, whereas daughter cells in clonal cell colonies lacked such fluorescence. In cultures induced to neurite formation with dibutyryl cyclic AMP, laminin deposition was also detected in association with the growing cytoplasmic extensions. No distinct differences were found between the secreted proteins of cultures of differentiated and nondifferentiated neuroblastoma cells, but the patterns of fucosylation of high-molecular weight proteins in the two cultures were markedly different. We conclude that cultured neuroblastoma cells both synthesize, secrete and deposit laminin. The distribution of laminin during neuroblastoma cell attachment and neurite extension suggests that this glycoprotein may be involved in cell–to–substratum interactions in C-1300 cell cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号