首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
2.
3.
In order to analyze the fluctuation of the poly ADP-ribosylation level during the cell cycle of synchronously growing He La S3 cells, we have developed three different assay systems; intact and disrupted nuclear systems, and poly(ADP-ribose) polymerase in vitro system. The optimum conditions for poly ADP-ribosylation in each assay system were similar except the pH optimum. Under the conditions favoring poly ADP-ribosylation, little radioactivity incorporated into poly(ADP-ribose) was lost after termination of the poly ADP-ribosylation by addition of nicotinamide which inhibits the reactions by more than 90% in any system. In the intact nuclear system, the level of poly ADP-ribosylation increased slightly subsequent to late G2 phase with a peak at M phase. The high level of poly ADP-ribosylation in M phase was also confirmed by using selectively collected mitotic cells which were arrested in M phase by Colcemid. The level in mitotic chromosomes was 5.1-fold higher than that in the nuclei from logarithmically growing cells. Colcemid has no effect on the poly ADP-ribosylation. In the disrupted nuclear system, a relatively high level of poly ADP-ribosylation was observed during mid S-G2 phase. When poly(ADP-ribose) polymerase was extracted from the nuclei with a buffer solution containing 0.3 M KCl, more than 90% of the enzyme activity was recovered. The poly(ADP-ribose) polymerase in vitro system was dependent on both DNA and histone—10 μg each. In the enzyme system, enzyme activity was detected throughout the cell cycle and was observed to be highest in G2 phase. The high level at M phase observed in the intact nuclear system was not seen in the other two systems. Under the assay conditions, little influence of poly(ADP-ribose) degrading enzymes was noted on the level of poly ADP-ribosylation in any of the three systems. This was confirmed at various stages during the cell cycle through pulse-labeling and “chasing” by adding nicotinamide.  相似文献   

4.
A slight DNA topoisomerase I activity was detected in highly purified poly(ADP-Rib)polymerase prepared from calf thymus. This copurified activity was found to be suppressed under conditions where the poly(ADP-ribosylation) reaction occurs in the presence of NAD. Purified topoisomerase I from calf thymus was shown to be ADP-ribosylated by poly(ADP-Rib) polymerase purified from the same tissue. Poly(ADP-ribosylation) of topoisomerase I produces an inhibition of the enzymatic activity in parallel to the extent of ADP-ribosylation. The fact that a slight poly(ADP-Rib) polymerase activity was also found to copurify with a topoisomerase I preparation and that topoisomerase I activity can be modified by ADP-ribosylation, may suggest a spatial and functional correlation of these two enzymes in chromatin.  相似文献   

5.
Poly(ADP-ribosylation) is a post-translational modification of nuclear proteins typical of most eukaryotic cells. This process participates in DNA replication and repair and is mainly regulated by two enzymes, poly(ADP-ribose) polymerase, which is responsible for the synthesis of polymers of ADP-ribose, and poly(ADP-ribose) glycohydrolase, which performs polymer degradation. The aim of this work was to investigate in the cockroach Periplaneta americana L. (Blattaria: Blattidae) the behaviour of poly(ADP-ribosylation). In particular, we addressed: (i) the possible modulation of poly(ADP-ribosylation) during the embryonic development; (ii) the expression of poly(ADP-ribose) polymerase and glycohydrolase in different tissues; and (iii) the role of poly(ADP-ribosylation) during spermatogenesis. In this work we demonstrated that: (i) as revealed by specific biochemical assays, active poly(ADP-ribose) polymerase and glycohydrolase are present exclusively in P. americana embryos at early stages of development; (ii) an activity carrying out poly(ADP-ribose) synthesis was found in extracts from testes; and (iii) the synthesis of poly(ADP-ribose) occurs preferentially in differentiating spermatids/spermatozoa. Collectively, our results indicate that the poly(ADP-ribosylation) process in P. americana, which is a hemimetabolous insect, displays catalytical and structural features similar to those described in the holometabolous insects and in mammalian cells. Furthermore, this process appears to be modulated during embryonic development and spermatogenesis.  相似文献   

6.
7.
Poly(ADP-ribosylation) of a DNA topoisomerase   总被引:11,自引:0,他引:11  
A DNA topoisomerase activity, copurifying with poly(ADP-ribose) synthetase from calf thymus, is greater than 95% inhibited if extensive poly(ADP-ribosylation) is allowed to occur. The inhibited DNA topoisomerase, which has drastically different elution properties on hydroxylapatite, can be reactivated by mild alkaline treatment. These results are consistent with a poly(ADP-ribosylation) of the DNA topoisomerase and covalent attachment of the poly(ADP-ribose) moieties to the topoisomerase by alkali-labile bonds.  相似文献   

8.
Poly(ADP-ribosylation) and apoptosis   总被引:5,自引:0,他引:5  
Poly(ADP-ribosylation) is a post-translational modification playing a relevant role in DNA damage recovery, DNA replication and viral integration. Several reports also suggest a modulation of this process during cell death by apoptosis. The aim of this review is to discuss the possible involvement of poly(ADP-ribosylation) during apoptosis, by dealing with general considerations on apoptosis, and further examining the correlation between NAD consumption and cell death, the regulation of poly(ADP-ribose) metabolism in apoptotic cells, the effect of poly(ADP-ribose) polymerase inhibition on cell death occurrence and the use of enzyme cleavage as a marker of apoptosis. Finally, the future prospects of the research in this area will be addressed.  相似文献   

9.
Differences in the spectra of modified nuclear proteins of thymocytes of control and irradiated rats were investigated using antibodies specific for poly(ADP-ribose) and incorporation of a label from 14C-NAD in vitro. Two classes of modified proteins were identified differing in the rate of the polymer metabolism and the degree of poly(ADP-ribosylation). No postirradiation changes were detected in poly(ADP-ribosylation) of the nuclear sap proteins and chromatin. A pronounced increase in modification of proteins with the molecular mass of 72 and 83 kD and a sharp decrease in poly(ADP-ribosylation) of a protein group with the molecular mass of 47 to 65 kD were detected within the nuclear matrix by the second hour following irradiation. A study was made of the localization of modified proteins in polydeoxynucleotide fractions of different sizes (mononucleosomes and their oligomers).  相似文献   

10.
Constitutive and gamma-induced ADP-ribosylation of nuclei and mitochondrial proteins in 2- and 29-month-old rats was studied. ADP-ribosylation was determined by binding of [3H]-adenin with the proteins after incubation of cellular organells in reaction mixture supplemented with [adenin-2,8-3H]-NAD. It was detected that the level of total protein ADP-ribosylation in the nuclei is 4.5-6.2 times higher than in the mitochondria. By inhibition of poly(ADP-ribose) polymerase (PARP) with 3-aminobenzamidine and treatment of ADP-ribosylated proteins with phosphodiesterase I, it was demonstrated that about 90% of [3H]-adenin bound by proteins in the nuclei and 70% in the mitochondria was the result of PARP activity. The level of total ADP-ribosylation of nuclear and mitochondrial proteins in the tissues of old rats was reliably lower than in young animals. This reduction of ADP-ribosylation in old animals is the result of the lower activity of PARP, not of mono(ADP-ribosyl) transferase (MART). The level of ADP-ribosylation of proteins in the nuclei of brain and spleen cells of 2-month-old rats irradiated with of 5 and 10 Gy was by 49-109% higher than in the control. At the same doses of radiation, the level of ADP-ribosylation of nuclear proteins in brain and spleen of old rats increased only by 29-65% compared to the control. Unlike cell nuclei, the radiation-induced activation of ADP-ribosylation in mitochondria was less expressed: the level of ADP-ribosylation increased by 34-37% in young rats and by 11-27% in old animals. This increased binding of ADP-ribose residues by the proteins of nuclei and mitochondria from tissues of gamma-irradiated rats is exceptionally conditioned by activation of poly(ADP-ribosyl)ation because the level of mono(ADP-ribosyl)ation remains constant. The results of this study enable the suggestion that poly(ADP-ribosyl)ation also occurs in the mitochondria of brain and spleen cells of the gamma-irradiated rats, though less pronounced than in cell the cell nuclei of these tissues. Thus, one of the probable causes of the less efficient repair of radiation-induced DNA damage in old organisms is a decline of both constitutive and induced poly(ADP-ribosyl)ation of proteins in cell nucleus and mitochondria.  相似文献   

11.
The tumor promoter phorbol-12-myristate-13-acetate (PMA) induces rapid poly ADP-ribosylation and a drop in cellular NAD concentration in human monocytes. The antioxidants CuZn-superoxide dismutase, catalase, glutathione peroxidase and butylated-hydroxytoluene inhibit the reaction indicating that active oxygen species produced in the PMA-induced oxidative burst represent intermediates. The inhibitor of ADP-ribosyl-transferase, 3-amino-benzamide, inhibited poly ADP-ribosylation but did not prevent the drop in NAD-levels. PMA also causes the slow accumulation of DNA strand breaks in monocytes. The difference in the kinetics of poly ADP-ribosylation and DNA breakage argues against a simple relationship between the two reactions.  相似文献   

12.
The degree of complexing between DNA and chromosomal proteins and the ability of poly adenosine diphosphate ribosylation (ADP-ribosylation) of nuclear proteins to release this template restriction and expose DNA primer site changes during the HeLa cell cycle. Primer site exposure by NAD and poly ADP(ribose) polymerase was assessed with intact nuclei by single deoxynucleotide incorporation into DNA in the presence of saturating bacterial DNA polymerase. The most marked in vitro enhancement of primer site exposure by ADP-ribosylation occurred in early G1 phase, where cellular template restriction was the greatest. Cytoplasmic DNA polymerase also had high activity in early G1 phase of the cell cycle. Streptozotocin reduces NAD pools in HeLa cells; a concomitant stimulation of nuclear poly ADP(ribose) polymerase activity is noted.  相似文献   

13.
Poly(ADP-ribosylation) of histones in intact human keratinocytes   总被引:6,自引:0,他引:6  
G Krupitza  P Cerutti 《Biochemistry》1989,28(9):4054-4060
The poly(ADP-ribosylation) of chromosomal proteins is an epigenetic consequence of clastogenic DNA damaging agents which affects chromatin structure and function. We studied the poly(ADP-ribosylation) of the major classes of histones in response to DNA breakage induced by an extracellular burst of active oxygen (AO) or the alkylating agent N-methyl-N'-nitrosoguandine (MNNG) in the immortalized human keratinocytes HaCa T using a combination of affinity chromatography on phenylboronate resin and immunoblotting with polyclonal antibodies against histones H1, H2B, H2A, H3, and H4. The following findings characterized the poly(ADPR) reaction: (1) pretreatment of nuclear extracts with snake venom phosphodiesterase which removes poly(ADPR) chains strongly reduced the material which was retained by phenylboronate; (2) the ADPR transferase inhibitor benzamide (100 microM) suppressed AO-induced poly(ADP-ribosylation); (3) poly(ADP-ribosylation) reduced the electrophoretic mobility of the modified histones. Several histones were constitutively poly(ADP-ribosylated) in untreated controls: 0.03% of H2A, 0.04-0.06% of H2B, and 0.04% of H3.1 carried at least one poly(ADPR) chain of undetermined length. AO transiently increased the poly(ADPR) levels of all major histones with the exception of H1. The extent of substitution 30 min after exposure to AO generated by 50 micrograms/mL xanthine and 5 micrograms/mL xanthine oxidase was 0.8% for A24 greater than 0.3% for H4 greater than 0.1% for H3.1 = 0.1% for H3.2 = 0.1% for H2B.2 greater than 0.09% for H2A. Within 60 min, poly(ADPR) substitution had decreased to control levels for H3 and H4 and below control levels for H2A and H2B.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
To analyze the temporal relationship of poly(adenosine diphosphate [ADP]-ribosylation) signal with DNA replication and cell divisions, the effect of 3 aminobenzamide (3ABA), an inhibitor of the poly(ADP-ribose)synthetase, was determined in vivo during the first cleavage division of sea urchins. The incorporation of 3H-thymidine into DNA was monitored and cleavage division was examined by light microscopy. The poly(ADP-ribose) neosynthesized on CS histone variants was measured by labeling with 3H-adenosine during the two initial embryonic cell cycles and the inhibitory effect of 3ABA on this poly(ADP-ribosylation) was determined. The results obtained indicate that the CS histone variants are poly(ADP-ribosylated) de novo during the initial cell cycles of embryonic development. The synthesis of poly(ADP-ribose) is decreased but not abolished by 20 mM of 3ABA. The incubation of zygotes in 3ABA at the entrance into S1 phase decreased 3H-thymidine incorporation into DNA in phase S2, while S1 was unaltered. Alternatively, when the same treatment was applied to zygotes at the exit of S1 phase, a block of the first cleavage division and a retardation of S2 phase were observed. The inhibitory effect of 3ABA on both DNA replication and cell division was totally reversible by a release of the zygotes from this inhibition. Taking together these observations it may be concluded that the poly(ADP-ribosylation) signals related to embryonic DNA replication are not contemporaneous with S phase progression but are a requirement before its initiation. These results also indicate that a poly(ADP-ribosylation) signal is required for cell division; such signal is temporally different from that related to S phase initiation and occurs at the exit of S phase. © 1993 Wiley-Liss, Inc.  相似文献   

15.
Poly(ADP-ribosylated) histones in chromatin replication   总被引:2,自引:0,他引:2  
Poly(ADP-ribosylation) of histones and several other nuclear proteins seem to participate in nuclear processes involving DNA strand breaks like repair, replication, or recombination. This is suggested from the fact that the enzyme poly(ADP-ribose) polymerase responsible for this modification is activated by DNA strand breaks produced in these nuclear processes. In this article I provide three lines of evidence supporting the idea that histone poly(ADP-ribosylation) is involved in chromatin replication. First, cellular lysates from rapidly dividing mouse or human cells in culture synthesize a significant number of oligo- in addition to mono(ADP-ribosylated) histones. Blocking the cells by treatment of cultures with 5 mM butyrate for 24 h or by serum or nutrient depletion results in the synthesis of only mono- but not of oligo(ADP-ribosylated) histones under the same conditions. Thus, the presence of oligo(ADP-ribosylated) histones is related to cell proliferation. Second, cellular lysates or nuclei isolated under mild conditions in the presence of spermine and spermidine and devoid of DNA strand breaks mainly synthesize mono(ADP-ribosylated) histones; introduction of a small number of cuts by DNase I or micrococcal nuclease results in a dramatic increase in the length of poly(ADP-ribose) attached to histones presumably by activation of poly(ADP-ribose) polymerase. Free ends of DNA that could stimulate poly(ADP-ribosylation) of histones are present at the replication fork. Third, putatively acetylated species of histone H4 are more frequently ADP-ribosylated than nonacetylated H4; the number of ADP-ribose groups on histone H4 was found to be equal or exceed by one the number of acetyl groups on this molecule. Since one recognized role of tetraacetylated H4 is its participation in the assembly of new nucleosomes, oligo(ADP-ribosylation) of H4 (and by extension of other histones) may function in new nucleosome formation. Based on these results I propose that poly(ADP-ribosylated) histones are employed for the assembly of histone complexes and their deposition on DNA during replication. Modified histones arise at the replication fork by activation of poly(ADP-ribose) polymerase by unligated Okazaki fragments.  相似文献   

16.
The patterns of poly(ADP-ribosylation) in vivo of CS (cleavage stage) histone variants were compared in sea urchin zygotes at the entrance and the exit of S1 and S2 in the initial developmental cell cycles. This post-translational modification was detected by Western immunoblots with rabbit sera anti-poly(ADP-ribose) that was principally reactive against ADP-ribose polymers and slightly against ADP-ribose oligomers. The effect of 3 aminobenzamide (3-ABA), an inhibitor of the poly(ADP-ribose) synthetase, on S phase progression was determined in vivo by measuring the incorporation of 3H thymidine into DNA. The results obtained indicate that the CS histone variants are poly(ADP-ribosylated) in a cell cycle dependent manner. A significantly positive reaction of several CS variants with sera anti-poly(ADP-ribose) was found at the entrance into S phase, which decreases after its completion. The incubation of zygotes in 3-ABA inhibited the poly(ADP-ribosylation) of CS variants and prevented both the progression of the first S phase and the first cleavage division. These observations suggest that the poly(ADP-ribosylation) of atypical CS histone variants is relevant for initiation of sea urchin development and is required for embryonic DNA replication.  相似文献   

17.
The effect of poly(ADP-ribosylation) on calf thymus topoisomerase type II reactions has been investigated. Unknotting of phage P4 head DNA, and relaxation and catenation of supercoiled PM2 DNA are inhibited. We conclude that the inhibition results from poly(ADP-ribosylation) on the following grounds. Firstly, the enzyme poly(ADP-ribose) (PADPR) synthetase and NAD are required, secondly, the competitive synthetase inhibitor nicotinamide abolishes topoisomerase inhibition, and thirdly, the polymer alone is not inhibitory. The mechanism of inhibition appears to be disruption of the strand cleavage reaction. A topoisomerase-DNA complex can be formed that upon treatment with protein denaturant at low ionic strength results in strand cleavage. The amount of DNA present in such a cleavable-complex progressively decreased following pretreatment of topoisomerase type II with PADPR synthetase and increasing concentrations of NAD. Treatment of the pre-formed complex with NAD and PADPR synthetase had no effect on its salt-induced dissociation. This suggests that either poly(ADP-ribosylation) has no influence on dissociation of topoisomerase, in contrast to association, or topoisomerase is not accessible to the synthetase when bound to DNA. Similar data were obtained with calf thymus type I topoisomerase.  相似文献   

18.
Acceptor proteins for poly(adenosine diphosphoribosyl)ation were determined in resting human lymphocytes, in lymphocytes with N-methyl-N′-nitro-N-nitrosoguanidine-induced DNA damage and in lymphocytes stimulated to proliferate by phytohemagglutinin. Kinetic studies showed that the increase in ADP-ribosylation which occurred in response to N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) treatment was greater in magnitude but more transient in duration than that which occurred in phytohemagglutinin-stimulated cells. Gel electrophoretic analyses revealed that MNNG treatment and phytohemagglutinin stimulation both caused an increase in ADP-ribosylation of poly(ADP-ribose) polymerase and core histones. In MNNG-treated cells, an increase in ADP-ribosylation of histone H1 was also observed. In contrast, phytohemagglutinin-stimulated cells showed no increase in ADP-ribosylation of histone H1. In MNNG-treated cells there was also ADP-ribosylation of a protein of molecular weight 62 000, while in phytohemagglutinin-stimulated cells there was a marked increase in ADP-ribosylation of a protein of molecular weight 96000. MNNG treatment of phytohemagglutinin-stimulated cells produced a pattern of ADP-ribosylation that appeared to be due to the combined effects of the individual treatments. 3-Aminobenzamide effectively inhibited ADP-ribosylation under all treatment conditions.  相似文献   

19.
1. Acceptor proteins for poly(ADP-ribose) have been identified in nuclei from mouse testis, liver, kidney and spleen. Purified nuclei were incubated in vitro with [14C]NAD, extracted sequentially with 5% HClO4 and 0.25 N-HCl and labelled proteins analysed on acetic acid/urea polyacrylamide gels pH 2.9. 2. Results show that: (a) in vitro there are significant differences between tissues in the extent of poly(ADP-ribosylation) of nuclear proteins; (b) in testis nuclei two tissue specific proteins are poly(ADP-ribosylated) to higher specific activity than histones; (c) there are significant differences between in vivo and in vitro studies on poly(ADP-ribosylation) of nuclear proteins in testis nuclei.  相似文献   

20.
ADP and poly ADP-ribosylation are post-translational modifications of proteins which have been reported to occur essentially in eucaryotic nuclei. This phenomenon has been shown to interfere with a great variety of biological functions (cell differentiation, DNA repair, malignant transformation...). In this paper, we demonstrate for the first time that ADP-ribosylation occurs also in cytosol (120 000 g supernatant) and that several cytosolic proteins can be ADP-ribosylated in rat liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号