首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Maternal obesity due to long‐term high‐fat diet (HFD) consumption leads to faster growth in offspring during suckling, and increased adiposity at 20 days of age. Decreased expression of the orexigenic neuropeptide Y (NPY) and increased anorexigenic proopiomelanocortin (POMC) mRNA expression were observed in the fed state. However, hunger is the major drive to eat and hypothalamic appetite regulators change in response to meals. Therefore, it is important to compare both satiated and fasting states. Female Sprague–Dawley rats (8 weeks old) were fed a cafeteria‐style HFD (15.33 kJ/g) or chow for 5 weeks before mating, with the same diet continuing throughout gestation and lactation. At postnatal day 20, male pups were killed either after overnight fasting or in the fed state. Pups from obese dams were hyperphagic during both pre‐ and postweaning periods. Pups from obese dams had higher hypothalamic mRNA expression of POMC and NPY Y1 receptor, but lower hypothalamic melanocortin‐4 receptor (MC4R) and its downstream target single‐minded gene 1 (Sim1), in the fed state. Overnight fasting reduced circulating glucose, insulin, and leptin and increased hypothalamic NPY Y1 receptor mRNA in pups from both lean and obese dams. Hypothalamic NPY and agouti‐related protein (AgRP) were only increased by fasting in pups from obese dams; reductions in MC4R and Sim1 were only seen in pups from lean dams. At weaning, the suppressed orexigenic signals in offspring from obese dams were normalized after overnight fasting, although anorexigenic signaling appeared impaired in these animals. This may contribute to their hyperphagia and faster growth.  相似文献   

2.
3.
Otsuka Long-Evans Tokushima Fatty (OLETF) rats lacking CCK-A receptors are hyperphagic, obese, and diabetic. We have previously demonstrated that these rats have a peripheral satiety deficit resulting in increased meal size. To examine the potential role of hypothalamic pathways in the hyperphagia and obesity of OLETF rats, we compared patterns of hypothalamic neuropeptide Y (NPY), proopiomelanocortin (POMC), and leptin receptor mRNA expression in ad libitum-fed Long-Evans Tokushima (LETO) and OLETF rats and food-restricted OLETF rats that were pair-fed to the intake of LETO controls. Pair feeding OLETF rats prevented their increased body weight and elevated levels of plasma insulin and leptin and normalized their elevated POMC and decreased NPY mRNA expression in the arcuate nucleus. In contrast, NPY expression was upregulated in the dorsomedial hypothalamus (DMH) in pair-fed OLETF rats. A similar DMH NPY overexpression was evident in 5-wk-old preobese OLETF rats. These findings suggest a role for DMH NPY upregulation in the etiology of OLETF hyperphagia and obesity.  相似文献   

4.
Neuropeptide Y (NPY) inhibits TRH neurons in fed state, and hypothalamic NPY higher expression during fasting has been proposed to be involved in fasting-induced suppression of the hypothalamus-pituitary-thyroid (HPT) axis. We investigated the role of central Y5 receptors in the control of thyrotropin (TSH) and thyroid hormone (TH) secretion. Fed and fasting rats received twice daily central injections (3rd ventricle) of Y5 receptor antagonist (CGP71683; 15nmol/rat) for 72h. Fasted rats also received a single central injection of CGP71683 (15nmol/rat) at the end of 72h of fasting. In fed rats, Y5 receptor blockade reduced total food intake by 32% and body mass by almost 10% (p<0.01), corroborating the role of this receptor in food intake control. 72h-fasted rats exhibited a 4-fold increase in serum TSH (p<0.001), 1h after a single injection of Y5 antagonist. Also with multiple injections during 72h of fasting, Y5 blockade resulted in activation of thyroid axis, as demonstrated by a 3-times rise in serum T4 (p<0.001), accompanied by unchanged TSH and T3. In fed rats, the chronic central administration of CGP71683 resulted in reduced total serum T4 without changes in free T4 and TSH. Serum leptin and PYY were not altered by the NPY central blockade in both fed and fasted rats, suggesting no role of these hormones in the alterations observed. Therefore, the inhibition of central Y5 neurotransmission resulted in activation of thyroid axis during fasting suggesting that NPY-Y5 receptors contribute to fasting-induced TSH and TH suppression.  相似文献   

5.
We have studied the hypothalamic activity of the neuropeptide Y (NPY) system in dietary-induced obese male Wistar rats and examined whether the NPY antagonist, BW1229U91, can inhibit the hyperphagia during positive energy balance associated with feeding rats an energy-rich, highly palatable diet. Rats given a highly palatable, high-fat diet became obese after 8 weeks and exhibited hyperinsulinemia and hyperleptinemia, as compared to lean rats fed on standard pellet laboratory diet. Hypothalamic NPY mRNA concentrations were significantly reduced by approximately 70% in dietary-obese rats compared with lean controls, and the former were hypersensitive to intracerebroventricular injections of NPY, possibly as a result of NPY receptor up-regulation. Intracerebroventricular injections of BW 1229U91, that inhibits food intake in starved rats, did not alter food intake in either control or obese rats fed either standard pellet diet or the highly palatable diet, respectively. We conclude that dietary-obese rats have underactive hypothalamic NPYergic neurons compared to lean controls, possibly as a result of increased plasma concentrations of leptin and/or insulin that directly inhibit the NPY neuronal activity. The lack of effect of BW1229U91 on the increased caloric intake of dietary-obese rats suggests that the hyperphagia is not NPY-driven and supports the data indicating reduced synaptic activity of the hypothalamic NPY system.  相似文献   

6.
To determine if the anorectic effects of the insulin antagonist diazoxide (DZ) are mediated by reduced central neuropeptide Y (NPY), female Zucker rats, given DZ (150 mg/kg/day) or placebo for about four weeks, were sacrificed following overnight fasting or free feeding. Several hypothalamic and extra-hypothalamic nuclei were extracted for NPY content. DZ reduced weight gain in obese rats and lowered glucose of lean and obese rats without affecting insulin. Contrary to the hypothesis, DZ increased NPY in hypothalamic nuclei of free fed lean and obese rats. DZ elevated hypothalamic NPY levels in fasted obese rats and had more diverse effects in extra-hypothalamic nuclei of lean rats.  相似文献   

7.
Fasting increases neuropeptide Y (NPY) concentrations in the arcuate nucleus (ARC), its site of synthesis, and in other regions of the rat hypothalamus. Neuropeptide Y is a potent central orexigenic agent and may therefore stimulate appetite during fasting. We tested the hypothesis that low plasma insulin levels stimulate ARC levels of NPY in fasted rats. Compared with freely fed controls (n = 8), rats fasted for 72 h (n = 8) showed significantly lower plasma insulin levels (28.9 ± 1.6 vs. 52.6 ± 5.7 pmol/l; p < 0.001) and higher ARC NPY concentrations (14.2 ± 1.8 vs. 8.4 ± 2.2 fmol/μg protein; p < 0.001). Fasted rats treated with subcutaneous insulin (5 U/kg/day; n = 10), which nearly normalized plasma insulin (46.6 ± 2.8 pmol/l), showed intermediate ARC NPY levels (11.2 ± 1.4 fmol/μg protein; p < 0.01 vs. controls and untreated fasted rats). Insulin administered peripherally, therefore, attenuates fasting-induced NPY increases in the ARC, supporting the hypothesis that hypoinsulinemia stimulates hypothalamic NPY.  相似文献   

8.
Phosphatidylinositol 3-OH-kinase (PI3K) and STAT3 are signal transduction molecules activated by leptin in brain areas controlling food intake. To investigate their role in leptin-mediated inhibition of hypothalamic neuropeptide Y (Npy) and agouti-related peptide (Agrp) gene expression, male Sprague-Dawley rats (n = 5/group) were either fed ad libitum or subjected to a 52-h fast. At 12-h intervals, the PI3K inhibitor LY-294002 (LY, 1 nmol) or vehicle was injected intracerebroventricularly (ICV) as a pretreatment, followed 1 h later by leptin (3 microg icv) or vehicle. Fasting increased hypothalamic Npy and Agrp mRNA levels (P < 0.05), and ICV leptin administration prevented this increase. As predicted, LY pretreatment blocked this inhibitory effect of leptin, such that Npy and Agrp levels in LY-leptin-treated animals were similar to fasted controls. By comparison, leptin-mediated activation of hypothalamic STAT3 signaling, as measured by induction of both phospho-STAT3 immunohistochemistry and suppressor of cytokine signaling-3 (Socs3) mRNA, was not significantly attenuated by ICV LY pretreatment. Because NPY/AgRP neurons project to the hypothalamic paraventricular nucleus (PVN), we next investigated whether leptin activation of PVN neurons is similarly PI3K dependent. Compared with vehicle, leptin increased the number of c-Fos positive cells within the parvocellular PVN (P = 0.001), and LY pretreatment attenuated this effect by 35% (P = 0.043). We conclude that leptin requires intact PI3K signaling both to inhibit hypothalamic Npy and Agrp gene expression and activate neurons within the PVN. In addition, these data suggest that leptin activation of STAT3 is insufficient to inhibit expression of Npy or Agrp in the absence of PI3K signaling.  相似文献   

9.
Estradiol is a potent hypophagic agent that reduces food intake and body weight without a concomitant fall in plasma leptin levels. We investigated whether the hypophagic effect of estradiol is mediated by stimulating POMC and/or inhibiting NPY neuronal pathways in the hypothalamus, which respectively inhibit and stimulate feeding. We examined hypothalamic gene expression of Ob-Rb, NPY, POMC, MC4-R, and AgRP in intact Wistar rats treated with estradiol for 48 hours. Food intake and body weight were reduced in estradiol-treated rats but fat mass was unchanged; plasma leptin and insulin levels were not significantly different from untreated, freely fed controls. In untreated rats that were pair-fed to match the estradiol-treated group, body weight was also reduced without changes in fat mass, although leptin and insulin levels decreased significantly. Ob-Rb expression was increased in both hypophagic groups despite serum leptin were only decreased in pair-fed animals, suggesting an estradiol-stimulating effect on Ob-Rb expression. No significant differences were found in POMC, AgRP, or MC4-R expression among any of the experimental groups. A significant but small decrease in NPY expression was also found in both hypophagic groups; this was explained by the combined effect of both surgery and reduced food intake. These results indicate that estradiol mediated hypophagia in intact rats could be brought about by an enhanced hypothalamic leptin sensitivity but is unlikely to be driven by changes in NPY or melanocortin system.  相似文献   

10.
Corticotropin-releasing factor overexpressing (CRF-OE) male mice showed an inhibited feeding response to a fast, and lower plasma acyl ghrelin and Fos expression in the arcuate nucleus compared to wild-type (WT) mice. We investigated whether hormones and hypothalamic feeding signals are impaired in CRF-OE mice and the influence of sex. Male and female CRF-OE mice and WT littermates (4–6 months old) fed ad libitum or overnight fasted were assessed for body, adrenal glands and perigonadal fat weights, food intake, plasma hormones, blood glucose, and mRNA hypothalamic signals. Under fed conditions, compared to WT, CRF-OE mice have increased adrenal glands and perigonadal fat weight, plasma corticosterone, leptin and insulin, and hypothalamic leptin receptor and decreased plasma acyl ghrelin. Compared to male, female WT mice have lower body and perigonadal fat and plasma leptin but higher adrenal glands weights. CRF-OE mice lost these sex differences except for the adrenals. Male CRF-OE and WT mice did not differ in hypothalamic expression of neuropeptide Y (NPY) and proopiomelanocortin (POMC), while female CRF-OE compared to female WT and male CRF-OE had higher NPY mRNA levels. After fasting, female WT mice lost more body weight and ate more food than male WT, while CRF-OE mice had reduced body weight loss and inhibited food intake without sex difference. In male WT mice, fasting reduced plasma insulin and leptin and increased acyl ghrelin and corticosterone while female WT showed only a rise in corticosterone. In CRF-OE mice, fasting reduced insulin while leptin, acyl ghrelin and corticosterone were unchanged with no sex difference. Fasting blood glucose was higher in CRF-OE with female > male. In WT mice, fasting increased hypothalamic NPY expression in both sexes and decreased POMC only in males, while in CRF-OE mice, NPY did not change, and POMC decreased in males and increased in females. These data indicate that CRF-OE mice have abnormal basal and fasting circulating hormones and hypothalamic feeding-related signals. CRF-OE also abolishes the sex difference in body weight, abdominal fat, and fasting-induced feeding and changes in plasma levels of leptin and acyl ghrelin.  相似文献   

11.
Ghersi G  Chen W  Lee EW  Zukowska Z 《Peptides》2001,22(3):453-458
Recently, we have discovered that neuropeptide Y (NPY), a sympathetic neurotransmitter, is also present in human umbilical endothelial cells (HUVECs), and is potently chemotactic and angiogenic by acting on one or several of Y1-Y5 receptors. In HUVECs, NPY is co-localized with dipeptidyl peptidase IV (DPPIV) which cleaves Tyr(1)-Pro(2) from NPY(1-36) to form NPY(3-36) resulting in the formation of a non-Y1 receptor agonist, which remains angiogenic. Presently we studied the effects of DPPIV's blockade using monoclonal antibodies (mAbs) on migration of HUVECs in response to NPY(1-36) or NPY(3-36) following cell wounding. Both peptides caused similar dose-dependent increases in cell migration (+80% at 0.1 nM) 12 h after wounding. DPPIV mAbs, E19 and E26, significantly reduced HUVEC's migration below that of the untreated cells, and blocked responses to NPY(1-36) but not NPY(3-36). Enhanced expression of DPPIV was found in the migrating cells and in cells with their protrusions at the edge of the wound (immunostaining and Western blot). Thus, DPPIV's expression is stimulated by endothelial wounding and its enzymatic activity is required for NPY-mediated chemotaxis. Furthermore, this suggests that non-Y1 receptors activated by NPY(3-36) (Y2, Y3 and/or Y5) mediate angiogenic effects of NPY.  相似文献   

12.
While a dysregulation in neuropeptide Y (NPY) signaling has been described in rodent models of obesity, few studies have investigated the time-course of changes in NPY content and responsiveness during development of diet-induced obesity. Therefore we investigated the effect of differing lengths (2-17 weeks) of high-fat diet on hypothalamic NPY peptide content, release and NPY-induced hyperphagia. Male Sprague-Dawley rats (211 +/- 3 g) were fed either a high-fat diet (30% fat) or laboratory chow (5% fat). Animals were implanted with intracerebroventricular cannulae to investigate feeding responses to NPY (0.5 nmol, 1 nmol) after 4 or 12 weeks of diet. At the earlier stage of obesity, NPY-induced hyperphagia was not altered; however, animals maintained on the high-fat diet for the longer duration were hyper-responsive to NPY, compared to chow-fed control rats (p < 0.05). Overall, hypothalamic NPY peptide content tended to be decreased from 9 to 17 weeks of diet (p < 0.05). Total hypothalamic NPY content was negatively correlated with plasma leptin concentration (p < 0.05), suggesting the hypothalamic NPY system remains responsive to leptin's inhibitory signal. In addition, hypothalamic NPY overflow was significantly reduced in high-fat fed animals (p < 0.05). Together these results suggest a reduction in hypothalamic NPY activity in high-fat fed animals, perhaps in an attempt to restore energy balance.  相似文献   

13.
Neuropeptide Y (NPY), a 36-amino-acid peptide widely expressed in the brain is involved in many physiological responses, including hypothalamic control of food intake and cardiovascular homeostasis. NPY mediates its effects through binding to the Y1, Y2 and Y5 G-protein-coupled receptors. Little is known of the role of the Y2 receptor in mediating the different NPY effects. We inactivated the Y2 receptor subtype in mice and found that these mice developed increased body weight, food intake and fat deposition. The null mutant mice showed an attenuated response to leptin administration but a normal response to NPY-induced food intake and intact regulation of re-feeding and body weight after starvation. An absence of the Y2 receptor subtype also affected the basal control of heart rate, but did not influence blood pressure. These findings indicate an inhibitory role for the Y2 receptor subtype in the central regulation of body weight and control of food intake.  相似文献   

14.
Prior data demonstrated differential roles for cholecystokinin (CCK)1 receptors in maintaining energy balance in rats and mice. CCK1 receptor deficiency results in hyperphagia and obesity of Otsuka Long-Evans Tokushima Fatty (OLETF) rats but not in mice. To ascertain the role of CCK1 receptors in high-fat-diet (HFD)-induced obesity, we compared alterations in food intake, body weight, fat mass, plasma glucose, and leptin levels, and patterns of hypothalamic gene expression in OLETF rats and mice lacking CCK1 receptors in response to a 10-wk exposure to HFD. Compared with Long-Evans Tokushima Otsuka (LETO) control rats, OLETF rats on HFD had sustained overconsumption over the 10-wk period. High fat feeding resulted in greater increases in body weight and plasma leptin levels in OLETF than in LETO rats. In situ hybridization determinations revealed that, while HFD reduced neuropeptide Y (NPY) mRNA expression in both the arcuate nucleus (Arc) and the dorsomedial hypothalamus (DMH) of LETO rats, HFD resulted in decreased NPY expression in the Arc but not in the DMH of OLETF rats. In contrast to these results in OLETF rats, HFD increased food intake and induced obesity to an equal degree in both wild-type and CCK1 receptor(-/-) mice. NPY gene expression was decreased in the Arc in response to HFD, but was not detectable in the DMH in both wild-type and CCK1 receptor(-/-) mice. Together, these data provide further evidence for differential roles of CCK1 receptors in the controls of food intake and body weight in rats and mice.  相似文献   

15.
The aim of the current study was to gain further insight into the implication of leptin in the regulation of hypothalamic gene expression during long-term food deprivation with emphasis on phase 3 of fasting (P3, late protein breakdown). Among plasma parameters, glucose, non-esterified fatty acids, and insulin levels tended to be decreased by leptin infusion, whilst corticosterone levels remained unchanged. From Northern blot analysis, NPY, AGRP, and MCH mRNA gene expressions were differentially regulated during prolonged fasting in leptin-perfused rats. In comparison with fed animals, NPY, AGRP, and MCH mRNA levels in P3 rats treated with leptin either remained stable or increased slightly. Regarding anorexigenic peptides (CART and POMC) and prepro-OX, fasting with leptin induced only slight changes in gene expression. Similar data have been obtained in leptin-treated fasted rats at various doses within the physiological range. We conclude that leptin and particularly low levels of plasma leptin can reasonably be considered as a constituent of a signal triggering the fasting-induced enhanced drive for refeeding in P3.  相似文献   

16.
Yahya A  Xiao C  Chance WT  Sheriff S 《Peptides》2006,27(11):2731-2737
Neuropeptide Y (NPY) Y4 receptor (Y4R) in rat brainstem has been implicated in the signaling of satiety. In this study, we investigated the effects of leptin, and refeeding-induced satiety on Y4R mRNA expression in rat brainstem. Y4R receptor-specific primers were used to amplify the mRNA obtained from hypothalamus and brainstem utilizing conventional RT-PCR and quantitative real-time RT-PCR. No PCR product for Y4R was obtained from entire hypothalamic mRNA. Real-time RT-PCR showed a significant two-fold increase in the relative quantity of Y4R mRNA in brainstem of refed rats in comparison to food deprived or ad lib fed rats. Consistently, plasma leptin level was elevated in refed rats in comparison to food deprived rats. Similarly, leptin-treated rats exhibited a significant increase in Y4R mRNA in brainstem as compared to saline-injected rats. Plasma leptin was significantly elevated in leptin-treated rats. These results suggest that refeeding stimulates the expression of Y4R gene in the brainstem and that leptin may be one of the peripheral factors involved in this anorectic signaling mechanism.  相似文献   

17.
Mice lacking NPY Y1 receptors develop obesity without hyperphagia indicating increased energy storage and/or decreased energy expenditure. Then, we investigated glucose utilization in these animals at the onset of obesity. Fasted NPY Y1 knockouts showed hyperinsulinemia associated with increased whole body and adipose tissue glucose utilization and glycogen synthesis but normal glycolysis. Since leptin modulates NPY actions, we studied whether the lack of NPY Y1 receptor affected leptin-mediated regulation of glucose metabolism. Leptin infusion normalized hyperinsulinemia and glucose turnover. These results suggest a possible mechanism for the development of obesity without hyperphagia via dysfunction in regulatory loops involving NPY, leptin and insulin.  相似文献   

18.
In lactating rats, food restriction potentiates the already high levels of hypothalamic neuropeptide Y (NPY). To investigate the role that high levels of NPY might play in the prolongation of lactational infertility that typically accompanies a food restricted lactation we investigated the effects of chronic central infusions of NPY in ad libitum-fed lactating females. First, we compared the effects of intracerebroventricular (icv) infusion of NPY from Days 12-19 postpartum at a dose of 14.4 microg/day with a similar treatment in nonlactating females. In subsequent experiments we examined the effects of NPY infusions into the lateral ventricle at doses of 6 or 20 mug/day or unilaterally into the medial preoptic area at a dose of 1 microg/day from either Days 12-19 or 7-21 postpartum. Effects on food intake; female body weight; and, where appropriate, litter weight and length of lactational diestrus were compared between NPY and vehicle-treated females. As expected NPY infusion produced a robust increase in body weight and food intake in nonlactating females that was accompanied by a suppression of cyclicity. By contrast NPY treatment in lactating rats resulted in a marked decrease in litter growth and an earlier termination of lactational diestrus.  相似文献   

19.
Although acute food deprivation and chronic food restriction both result in body weight loss, they produce different metabolic states. To evaluate how these two treatments affect hypothalamic peptide systems involved in energy homeostasis, we compared patterns of hypothalamic neuropeptide Y (NPY), agouti-related protein (AgRP), proopiomelanocotin (POMC), and leptin receptor gene expression in acutely food-deprived and chronically food-restricted rats. Both acute food deprivation and chronic food restriction reduced body weight and circulating leptin levels and resulted in increased arcuate NPY and decreased arcuate POMC gene expression. Arcuate AgRP mRNA levels were only elevated in acutely deprived rats. NPY gene expression was increased in the compact subregion of the dorsomedial hypothalamus (DMH) in response to chronic food restriction, but not in response to acute food deprivation. Leptin receptor expression was not affected by either treatment. Double in situ hybridization histochemistry revealed that, in contrast to the situation in the arcuate nucleus, NPY and leptin receptor mRNA-expressing neurons were not colocalized in the DMH. Together, these data suggest that arcuate and DMH NPY gene expression are differentially regulated. DMH NPY-expressing neurons do not appear to be under the direct control of leptin signaling.  相似文献   

20.
Neuropeptide Y (NPY) is known to induce robust feeding through the action of NPY receptors in the hypothalamus. Among the subtypes of NPY receptors, Y(1) receptors may play a key role in feeding regulation. In the present study, we demonstrated that a novel Y(1) antagonist, J-104870, shows high selectivity and potency for the Y(1) receptor with an anorexigenic effect on NPY-mediated feeding. J-104870 displaced [(125)I]peptide YY (PYY) binding to cloned human and rat Y(1) receptors with K(i) values of 0.29 and 0.54 nM, respectively, and inhibited the NPY (10 nM)-induced increase in intracellular calcium levels (IC(50) = 3.2 nM) in cells expressing human Y(1) receptors. In contrast, J-104870 showed low affinities for human Y(2) (K(i) > 10 microM), Y(4) (K(i) > 10 microM), and Y(5) receptors (K(i) = 6 microM). In rat hypothalamic membranes, J-104870 also completely displaced the binding of [(125)I]1229U91, which is known to bind to the typical Y(1) receptor, with a high affinity (K(i) = 2.0 nM). Intracerebroventricular (ICV) injection of J-104870 (200 microg) significantly suppressed NPY (5 microg)-induced feeding in satiated Sprague-Dawley rats by 74%. Furthermore, ICV and oral administration of J-104870 (200 microg and 100 mg/kg, respectively) significantly suppressed spontaneous food intake in Zucker fatty rats. These findings suggested that J-104870 is a selective and potent nonpeptide Y(1) antagonist with oral bioavailability and brain penetrability. In addition, the anorexigenic effect of J-104870 clearly revealed the participation of the Y(1) receptor in NPY-mediated feeding regulation. The potent and orally active Y(1) antagonist J-104970 is a useful tool for elucidating the physiological roles of NPY in obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号