首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two proteases (PRT1 and PRT2) were fractionated from culture supernatants of wild-type Xanthomonas campestris pv. campestris by cation-exchange chromatography on SP-5PW. Inhibitor experiments showed that PRT 1 was a serine protease which required calcium ions for activity or stability or both and that PRT 2 was a zinc-requiring metalloprotease. PRT 1 and PRT 2 showed different patterns of degradation of beta-casein. The two proteases comprised almost all of the extracellular proteolytic activity of the wild type. A protease-deficient mutant which lacked both PRT 1 and PRT 2 showed considerable loss of virulence in pathogenicity tests when bacteria were introduced into mature turnip leaves through cut vein endings. This suggests that PRT 1 and PRT 2 have a role in black rot pathogenesis.  相似文献   

2.
Procedures for the introduction of plasmid DNA into Gram-negative bacteria have been adapted and optimized to permit transformation of the plant pathogen Xanthomonas campestris pathovar campestris with the cloning vector pKT230 and other broad-host-range plasmids. The technique involves CaCl2-induced competence and heat shock and is similar to that routinely used for Escherichia coli. Wild-type X. c. campestris strains appear to restrict incoming unmodified DNA, so that plasmid DNA for transformation must be prepared from X. c. campestris (into which it has previously been introduced by conjugation). To overcome this disadvantage a restriction-deficient mutant has been isolated.  相似文献   

3.
The DsbA/DsbB oxidation pathway is one of the two pathways that catalyze disulfide bond formation of proteins in the periplasm of gram-negative bacteria. It has been demonstrated that DsbA is essential for multiple virulence factors of several animal bacterial pathogens. In this article, we present genetic evidence to show that the open reading frame XC_3314 encodes a DsbB protein that is involved in disulfide bond formation in periplasm of Xanthomonas campestris pv. campestris, the causative agent of crucifer black rot disease. The dsbB mutant of X. campestris pv. campestris exhibited attenuation in virulence, hypersensitive response, cell motility, and bacterial growth in planta. Furthermore, mutation in the dsbB gene resulted in ineffective type II and type III secretion systems as well as flagellar assembly. These findings reveal that DsbB is required for the pathogenesis process of X. campestris pv. campestris.  相似文献   

4.
Two proteases (PRT1 and PRT2) were fractionated from culture supernatants of wild-type Xanthomonas campestris pv. campestris by cation-exchange chromatography on SP-5PW. Inhibitor experiments showed that PRT 1 was a serine protease which required calcium ions for activity or stability or both and that PRT 2 was a zinc-requiring metalloprotease. PRT 1 and PRT 2 showed different patterns of degradation of beta-casein. The two proteases comprised almost all of the extracellular proteolytic activity of the wild type. A protease-deficient mutant which lacked both PRT 1 and PRT 2 showed considerable loss of virulence in pathogenicity tests when bacteria were introduced into mature turnip leaves through cut vein endings. This suggests that PRT 1 and PRT 2 have a role in black rot pathogenesis.  相似文献   

5.
The extracellular proteome of Xanthomonas campestris pv. campestris (Xcc) cultivated in minimal medium was isolated from the cell-free culture supernatant and separated by two-dimensional gel electrophoresis. This technique resolved 97 clearly visible protein spots, which were excised, digested with trypsin and identified on the basis of their peptide mass fingerprints generated by matrix assisted laser desorption/ionisation-time of flight-mass spectrometry. Using this approach 87 different proteins could be distinguished. The Signal P software predicted putative signal peptides for 53% of the extracellular proteins. These proteins are probably transported over the inner membrane and are localized in the periplasm, the outer membrane or secreted into the extracellular space. Among the secreted proteins are 11 degradative enzymes, which are involved in pathogenesis of Xcc. The proteins without obvious secretion signals are known to serve functions in the cytosol. How the cytosolic proteins are delivered to the extracellular space remains unclear.  相似文献   

6.
Gram-negative bacteria use the type II secretion (T2S) system to secrete exoproteins for attacking animal or plant cells or to obtain nutrients from the environment. The system is unique in helping folded proteins traverse the outer membrane. The secretion machine comprises multiple proteins spanning the cell envelope and a cytoplasmic ATPase. Activity of the ATPase, when copurified with the cytoplasmic domain of an interactive ATPase partner, is stimulated by an acidic phospholipid, suggesting the membrane-associated ATPase is actively engaged in secretion. How the stimulated ATPase activity is terminated when secretion is complete is unclear. We fused the T2S ATPase of Xanthomonas campestris pv. campestris, the causal agent of black rot in the crucifers, with fluorescent protein and found that the ATPase in secretion-proficient cells was mainly diffused in cytoplasm. Focal spots at the cell periphery were detectable only in a few cells. The discrete foci were augmented in abundance and intensity when the secretion channel was depleted and the exoprotein overproduced. The foci abundance was inversely related to secretion efficiency of the secretion channel. Restored function of the secretion channel paralleled reduced ATPase foci abundance. The ATPase foci colocalized with the secretion channel. The ATPase may be transiently associated with the T2S machine by alternating between a cytoplasmic and a machine-associated state in a secretion-dependent manner. This provides a logical means for terminating the ATPase activity when secretion is completed. Function-related dynamic assembly may be the essence of the T2S machine.  相似文献   

7.
8.
The nucleotide sequence of the gene (engXCA) encoding the major extracellular endoglucanase (ENGXCA) of the phytopathogenic bacterium Xanthomonas campestris pv. campestris (X. c. campestris) was determined and compared with the N-terminal amino acid (aa) sequence of the purified enzyme. An open reading frame of 1479 bp encoding 493 aa was identified, of which the N-terminal 25 aa represent a potential signal peptide. Determination of the exact position of a Tn5 insertion within engXCA, which did not reduce the encoded enzyme activity, indicated that the C-terminal region of the protein is not crucial for ENGXCA activity. Comparison of the complete deduced aa sequence with those deduced from other endoglucanase- and exoglucanase-encoding genes revealed a region with a high degree of homology, located towards the C terminus of the protein. These data indicate that the X. c. campestris ENGXCA may have a domain structure similar to that of many other bacterial and fungal cellulolytic enzymes. Hydrophobic cluster analysis was performed on the deduced aa sequence. Comparison of this analysis with those of 30 other cellulase sequences belonging to six different families indicated that the X. c. campestris enzyme can be classified in family A. The two aa residues which had previously been identified as 'potentially catalytic' within this family of cellulases, are conserved in the X. c. campestris ENGXCA.  相似文献   

9.
Cyclic di‐GMP [(bis‐(3′–5′)‐cyclic di‐guanosine monophosphate)] is an almost ubiquitous second messenger in bacteria that is implicated in the regulation of a range of functions that include developmental transitions, aggregative behaviour, adhesion, biofilm formation and virulence. Comparatively little is known about the mechanism(s) by which cyclic di‐GMP exerts these various regulatory effects. PilZ has been identified as a cyclic di‐GMP binding protein domain; proteins with this domain are involved in regulation of specific cellular processes, including the virulence of animal pathogens. Here we have examined the role of PilZ domain proteins in virulence and the regulation of virulence factor synthesis in Xanthomonas campestris pv. campestris (Xcc), the causal agent of black rot of crucifers. The Xcc genome encodes four proteins (XC0965, XC2249, XC2317 and XC3221) that have a PilZ domain. Mutation of XC0965, XC2249 and XC3221 led to a significant reduction of virulence in Chinese radish. Mutation of XC2249 and XC3221 led to a reduction in motility whereas mutation of XC2249 and XC0965 affected extracellular enzyme production. All mutant strains were unaffected in biofilm formation in vitro. The reduction of virulence following mutation of XC3221 could not be wholly attributed to an effect on motility as mutation of pilA, which abolishes motility, has a lesser effect on virulence.  相似文献   

10.
11.
The Xanthomonas campestris rpsM (S13)-rpsK (S11)-rpsD (S4)-rpoA (alpha)-rplQ (L17) cluster, encoding RNA polymerase alpha-subunit and four ribosomal proteins, reside in a 3164-bp DNA region. The N-terminal sequence of the authentic alpha-protein determined chemically matches that predicted from the nucleotide sequence. rplQ is monocistronic, instead of being co-transcribed with the other genes as in Escherichia coli. Antiserum against the His-tagged alpha-protein cross-reacted with the E. coli alpha-protein.  相似文献   

12.
在十字花科黑腐病菌(Xcc)中,hrp基因对寄主的致病性和非寄主的超敏反应中起核心作用,而hrpG对整个hrp基因簇起调控作用.HrpG为OmpR家族的双组分系统感受调控蛋白,含有两个结构域,分别是N端Response_reg和C端Trans reg_C.本研究利用表达载体pQE-30 Xa,成功构建了HrpG的表达重组子,在E.coli M15 [pREP4]中进行诱导表达.通过调节诱导温度、IPTG浓度和诱导时间最终确定在温度为20℃,IPTG浓度为0.8 mmol/L,诱导表达4 h.hrpG基因在宿主细胞E.coli M15获得高效可溶性表达.目前尚未有可溶性HrpG蛋白获得成功表达的报导,本研究中获得HrpG蛋白在大肠杆菌获得大量可溶性的表达,将为in vitro研究HrpG的生理活性,特异的结合位点和调控功能研究打下良好基础.  相似文献   

13.
Black rot of cabbage caused by Xanthomonas campestris pv. campestris is one of the most important diseases of crucifers worldwide. Expression of defence-related enzymes in cabbage in response to X. campestris pv. campestris was investigated in the current experiment. Among the defence-related enzymes (phynylalanine ammonia lyase, peroxidase, polyphenol oxidase, superoxide dismutase [SOD] and chitinase) and quantity of phenolic compounds studied in the present investigation, phenylalanine ammonia lyase (PAL), the key enzyme in the phenylpropanoid pathway was the first enzyme suppressed at three days after inoculation in X. campestris pv. campestris-cabbage system. Correlation analysis indicated that PAL and phenolic compounds are the two most important compounds determining the susceptibility of cabbage to X. campestris pv. campestris. Induction of peroxidase isoform-1 (Rf value: 0.059) and SOD isoform-1 (Rf value: 0.179) three days after pathogen inoculation implicated the role of these isozymes in susceptible cabbage – X. campestris pv. campestris interaction. This study demonstrates the susceptibility of cabbage to X. campestris pv. campestris is a result of declination of PAL and phenolic contents at biochemical level as a manifestation of increase in bacterial population at the cellular level within the host tissues.  相似文献   

14.
Previous studies have indicated that the yellow pigments (xanthomonadins) produced by phytopathogenic Xanthomonas bacteria are unimportant during pathogenesis but may be important for protection against photobiological damage. We used a Xanthomonas campestris pv. campestris parent strain, single-site transposon insertion mutant strains, and chromosomally restored mutant strains to define the biological role of xanthomonadins. Although xanthomonadin mutant strains were comparable to the parent strain for survival when exposed to UV light; after their exposure to the photosensitizer toluidine blue and visible light, survival was greatly reduced. Chromosomally restored mutant strains were completely restored for survival in these conditions. Likewise, epiphytic survival of a xanthomonadin mutant strain was greatly reduced in conditions of high light intensity, whereas a chromosomally restored mutant strain was comparable to the parent strain for epiphytic survival. These results are discussed with respect to previous results, and a model for epiphytic survival of X. campestris pv. campestris is presented.  相似文献   

15.
16.
17.
A promoter-probe plasmid suitable for use in Xanthomonas campestris pathovar campestris (causal agent of crucifer black rot) was constructed by ligating a broad host range IncQ replicon into the promoter-probe plasmid pKK232-8, which contains a promoterless chloramphenicol acetyltransferase gene. Xanthomonas chromosomal DNA fragments were 'shotgun' cloned into a restriction site in front of this gene, and the resulting library was transferred en masse into Xanthomonas. Individual transconjugants possessing DNA insertions with promoter activity in plants were identified by virtue of their ability to infect chloramphenicol-treated turnip seedlings. Of 19 transconjugants identified in this way five were chloramphenicol resistant both in turnip seedlings and on agar plates. However the remaining 14 were only chloramphenicol resistant in planta, and thus apparently contained plant-inducible promoter fragments. Resistance to chloramphenicol was correlated with increased chloramphenicol acetyltransferase activity for the transconjugants assayed. The promoter fragments were used to isolate genomic clones from a library, and the role of the genes contained in these clones in pathogenicity is being investigated.  相似文献   

18.
19.
Fully sequenced genomes of Xanthomonas campestris pv. campestris (Xcc) strains are reported. However, intra‐pathovar differences are still intriguing and far from clear. In this work, the contrasting virulence between two isolates of Xcc ‐ Xcc51 (more virulent) and XccY21 (less virulent) is evaluated by determining their pan proteome profiles. The bacteria are grown in NYG and XVM1 (optimal for induction of hrp regulon) broths and collected at the max‐exponential growth phase. Shotgun proteomics reveals a total of 329 proteins when Xcc isolates are grown in XVM1. A comparison of both profiles reveals 47 proteins with significant abundance fluctuations, out of which, 39 show an increased abundance in Xcc51 and are mainly involved in virulence/adaptation mechanisms, genetic information processing, and membrane receptor/iron transport systems, such as BfeA, BtuB, Cap, Clp, Dcp, FyuA, GroEs, HpaG, Tig, and OmpP6. Several differential proteins are further analyzed by qRT‐PCR, which reveals a similar expression pattern to the protein abundance. The data shed light on the complex Xcc pathogenicity mechanisms and point out a set of proteins related to the higher virulence of Xcc51. This information is essential for the development of more efficient strategies aiming at the control of black rot disease.  相似文献   

20.
Chung WJ  Shu HY  Lu CY  Wu CY  Tseng YH  Tsai SF  Lin CH 《Proteomics》2007,7(12):2047-2058
The bacterium Xanthomonas campestris pathovar campestris (XCC) 17 is a local isolate that causes crucifer black rot disease in Taiwan. In this study, its proteome was separated using 2-DE and the well-resolved proteins were excised, trypsin digested, and analyzed by MS. Over 400 protein spots were analyzed and 281 proteins were identified by searching the MS or MS/MS spectra against the proteome database of the closely related XCC ATCC 33913. Functional categorization of the identified proteins matched 141 (50%) proteins to 81 metabolic pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. In addition, we performed a comparative proteome analysis of the pathogenic strain 17 and an avirulent strain 11A to reveal the virulence-related proteins. We detected 22 up-regulated proteins in strain 17 including the degrading enzymes EngXCA, HtrA, and PepA, which had been shown to have a role in pathogenesis in other bacteria, and an anti-host defense protein, Ohr. Thus, further functional studies of these up-regulated proteins with respect to their roles in XCC pathogenicity are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号