首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jasmonic acid in wound signal transduction pathways   总被引:13,自引:0,他引:13  
Wounding induces expression of genes encoding defense-related proteins involved in wound healing. An intensive survey has been carried out to clarify the initial signal transduction pathways that mediate this stress to expression of genes. In this context, signal molecules that intermediate in the wound signal to cellular response have been actively searched for. Jasmonic acid (JA) has been considered to be a key signal molecule in this pathway. Systemin, ABA, ethylene, and electrical current have been suggested to function by transmitting the wound signal to JA. A mitogen-activated protein kinase has been shown to respond rapidly to wounding, and proposed to function as one of the key enzymes involved in JA biosynthesis. Transgenic plants overexpressing a gene encoding a Rab-type, small GTP-binding protein contained 6-fold higher levels of cytokinins than wild-type plants, and responded to wounding by rapidly producing JA and, uncommonly, accumulating salicylic acid (SA), a pathogenic signal. These phenomena observed in the transgenic plants were reproduced when wild-type plants were wounded in the presence of the synthetic cytokinin, benzylaminopurine, suggesting that cytokinins are indispensable in the control of endogenous levels of JA and SA.  相似文献   

2.
在伤信号传导中茉莉酸与水杨酸的关系   总被引:3,自引:0,他引:3  
刘新  张蜀秋 《植物学报》2000,17(2):133-136
近年来,发现茉莉酸和水杨酸都是植物体对外界伤害作出反应,表达抗性基因的信号分子。水杨酸可抑制茉莉酸类的合成及其所诱导的蛋白基因的表达;茉莉酸能阻止病原侵染后所产生的水杨酸的增加。茉莉酸信号转导途径和水杨酸信号转导途径存在着交叉,小GTP结合蛋白和细胞分裂素可能起着信号开关的作用。  相似文献   

3.
在伤信号传导中茉莉酸与水杨酸的关系   总被引:6,自引:1,他引:5  
刘新  张蜀秋 《植物学通报》2000,17(2):133-136
近年来,发现茉莉酸和水杨酸都是植物体对外界伤害作出反应,表达抗性基因的信号分子。水杨酸可抑制茉莉酸类的合成及其所诱导的蛋白基因的表达;茉莉酸能阻止病原侵染后所产缮乃钏岬脑黾印\岳蛩嵝藕抛纪揪逗退钏嵝藕抛纪揪洞嬖谧沤徊妫。牵裕薪岷蛋白和细胞分裂素可能起着信号开关的作用。  相似文献   

4.
5.
6.
7.

Key message

Sensitivity to Erysiphe in Noccaea praecox with low metal supply is related to the failure in enhancing SA. Cadmium protects against fungal-infection by direct toxicity and/or enhanced fungal-induced JA signaling.

Abstract

Metal-based defense against biotic stress is an attractive hypothesis on evolutionary advantages of plant metal hyperaccumulation. Metals may compensate for a defect in biotic stress signaling in hyperaccumulators (metal-therapy) by either or both direct toxicity to pathogens and by metal-induced alternative signaling pathways. Jasmonic acid (JA) and salicylic acid (SA) are well-established components of stress signaling pathways. However, few studies evaluate the influence of metals on endogenous concentrations of these defense-related hormones. Even less data are available for metal hyperaccumulators. To further test the metal-therapy hypothesis we analyzed endogenous SA and JA concentrations in Noccaea praecox, a cadmium (Cd) hyperaccumulator. Plants treated or not with Cd, were exposed to mechanical wounding, expected to enhance JA signaling, and/or to infection by biotrophic fungus Erysiphe cruciferarum for triggering SA. JA and SA were analyzed in leaf extracts using LC–ESI(?)–MS/MS. Plants without Cd were more susceptible to fungal attack than plants receiving Cd. Cadmium alone tended to increase leaf SA but not JA. Either or both fungal attack and mechanical wounding decreased SA levels and enhanced JA in the Cd-rich leaves of plants exposed to Cd. High leaf Cd in N. praecox seems to hamper biotic-stress-induced SA, while triggering JA signaling in response to fungal attack and wounding. To the best of our knowledge, this is the first report on the endogenous JA and SA levels in a Cd-hyperaccumulator exposed to different biotic and abiotic stresses. Our results support the view of a defect in SA stress signaling in Cd hyperaccumulating N. praecox.  相似文献   

8.
9.
Cutting leaves of Romaine lettuce ( Lactuca sativa L. cv. Longifolia) produces a wound signal that induces the synthesis of phenylalanine ammonia lyase (PAL, EC 4.3.1.5) and the accumulation of phenolic compounds in cells up to 2 cm from the site of injury, and tissue browning near the site of injury. The response of leaves within a head of Romaine lettuce to putative chemical wound signals [abscisic acid (ABA), jasmonate (JA) and methyl jasmonate (MeJA)] differed significantly with leaf age. Exposure of harvested heads of lettuce to ABA, JA, MeJA, or salicylic acid (SA) did not induce changes in PAL activity, the concentration of phenolic compounds or browning in mature leaf tissue that was similar to the level induced by wounding. Methyl jasmonate applied as vapour (10, 100 or 1000 µl kg−1 FW), or as an aqueous spray or dip (0.01–100 µ M ) at 5 or 10°C did not produce an effect on PAL activity or browning that differed significantly from the untreated controls. In contrast, JA, MeJA and SA did induce elevated levels of PAL activity in younger leaves. However, the levels induced were far lower than those induced by wounding. Wound induced phenolic metabolism in mature leaves appears to be induced by different signals than those functioning in young leaves.  相似文献   

10.
The wound response in tomato--role of jasmonic acid   总被引:27,自引:0,他引:27  
Plants respond to mechanical wounding or herbivore attack with a complex scenario of sequential, antagonistic or synergistic action of different signals leading to defense gene expression. Tomato plants were used as a model system since the peptide systemin and the lipid-derived jasmonic acid (JA) were recognized as essential signals in wound-induced gene expression. In this review recent data are discussed with emphasis on wound-signaling in tomato. The following aspects are covered: (i) systemin signaling, (ii) JA biosynthesis and action, (iii) orchestration of various signals such as JA, H2O2, NO, and salicylate, (iv) local and systemic response, and (v) amplification in wound signaling. The common occurrence of JA biosynthesis and systemin generation in the vascular bundles suggest JA as the systemic signal. Grafting experiments with JA-deficient, JA-insensitive and systemin-insensitive mutants strongly support this assumption.  相似文献   

11.
12.
13.
14.
15.
Pathogenesis-related proteins (PRs) are the antimicrobial proteins which are commonly used as signatures of defense signaling pathways and systemic acquired resistance. However, in Brassica juncea most of the PR proteins have not been fully characterized and remains largely enigmatic. In this study, full-length cDNA sequences of SA (PR1, PR2, PR5) and JA (PR3, PR12 and PR13) marker genes were isolated from B. juncea and were named as BjPR proteins. BjPR proteins showed maximum identity with known PR proteins of Brassica species. Further, expression profiling of BjPR genes were investigated after hormonal, biotic and abiotic stresses. Pre-treatment with SA and JA stimulators downregulates each other signature genes suggesting an antagonistic relationship between SA and JA in B. juncea. After abscisic acid (ABA) treatment, SA signatures were downregulated while as JA signature genes were upregulated. During Erysiphe cruciferarum infection, SA- and JA-dependent BjPR genes showed distinct expression pattern both locally and systemically, thus suggesting the activation of SA- and JA-dependent signaling pathways. Further, expression of SA marker genes decreases while as JA-responsive genes increases during drought stress. Interestingly, both SA and JA signature genes were induced after salt stress. We also found that BjPR genes displayed ABA-independent gene expression pattern during abiotic stresses thus providing the evidence of SA/JA cross talk. Further, in silico analysis of the upstream regions (1.5 kb) of both SA and JA marker genes showed important cis-regulatory elements related to biotic, abiotic and hormonal stresses.  相似文献   

16.
Jasmonic acid (JA) and salicylic acid (SA) are plant hormones involved in plant growth and development. Recent studies demonstrated that presence of a complex interplay between JA and SA signaling pathways to response to pathogenesis attack and biotic stresses. To our best knowledge, no method has existed for simultaneous analyses of JA, SA, and their related compounds. Especially, the glucosides are thought to be the storages or the inactivated compounds, but their contribution should be considered for elucidating the amount of the aglycons. It is also valuable for measuring the endogenous amount of phenylalanine, cinnamic acid, and benzoic acid that are the biosynthetic intermediates of SA due to the existence of isochorismate pathway to synthesize SA. We established this method using deuterium labeled compounds as internal standards. This is the first report of simultaneous analysis of endogenous JA, SA, and their related compounds. Measuring the endogenous JA, SA, and their related compounds that had been accumulated in tobacco plants proved the practicality of the newly developed method. It was demonstrated that accumulation of JA, SA and their related compounds were induced in both case of TMV infection and abiotic stresses.  相似文献   

17.
Jasmonic acid (JA) and salicylic acid (SA) have both been implicated as important signal molecules mediating induced defenses of Nicotiana tabacum L. against herbivores and pathogens. Since the application of SA to a wound site can inhibit both wound-induced JA and a defense response that it elicits, namely nicotine production, we determined if tobacco mosaic virus (TMV) inoculation, with its associated endogenous systemic increase in SA, reduces a plant's ability to increase JA and nicotine levels in response to mechanical damage, and evaluated the consequences of these interactions for the amount of tissue removed by a nicotine-tolerant herbivore, Manduca sexta. Additionally, we determined whether the release of volatile methyl salicylic acid (MeSA) from inoculated plants can reduce wound-induced JA and nicotine responses in uninoculated plants sharing the same chamber. The TMV-inoculated plants, though capable of inducing nicotine normally in response to methyl jasmonate applications, had attenuated wound-induced JA and nicotine responses. Moreover, larvae consumed 1.7- to 2.7-times more leaf tissue from TMV-inoculated plants than from mock-inoculated plants. Uninoculated plants growing in chambers downwind of either TMV-inoculated plants or vials releasing MeSA at 83- to 643-times the amount TMV-inoculated plants release, exhibited normal wound-induced responses. We conclude that tobacco plants, when inoculated with TMV, are unable to elicit normal wound responses, due likely to the inhibition of JA production by the systemic increase in SA induced by virus-inoculation. The release of volatile MeSA from inoculated plants is not sufficient to influence the wound-induced responses of neighboring plants. Received: 6 January 1999 / Accepted: 11 January 1999  相似文献   

18.
19.
Jasmonic acid (JA) is part of a long-distance signal-transduction pathway that effects increases in de-novo nicotine synthesis in the roots of Nicotiana sylvestris Speg et Comes (Solanaceae) after leaf wounding. Elevated nicotine synthesis increases whole-plant nicotine pools and makes plants more resistant to herbivores. Leaf wounding rapidly increases JA pools in damaged leaves, and after a 90-min delay, root JA pools also increase. The systemic response in the roots could result from either: (i) the direct transport of JA from wounded leaves, or (ii) JA synthesis or its release from conjugates in roots in response to a second, systemic signal. We synthesized [2-14C]JA, and applied it to a single leaf in a quantity (189 μg) known to elicit both a whole-plant nicotine and root JA response equivalent to that found in plants subjected to leaf wounding. We quantified radioactive material in JA, and in metabolites both more and less polar than JA, from treated and untreated leaves and roots of plants in eight harvests after JA application. [2-14C]Jasmonic acid was transported from treated leaves to roots at rates and in quantities equivalent to the wound-induced changes in endogenous JA pools. The [2-14C]JA that had been transported to the roots declined at the same rate as endogenous JA pools in the roots of plants after leaf wounding. Most of the labeled material applied to leaves was metabolized or otherwise immobilized at the application site, and the levels of [2-14C]JA in untreated leaves did not increase over time. We measured the free JA pools before and after four different hydrolytic extractions of root and shoot tissues to estimate the size of the potential JA conjugate pools, and found them to be 10% or less of the free JA pool. We conclude that the direct transport of wound-induced JA from leaves to roots can account for the systemic increase in root JA pools after leaf wounding, and that metabolism into less polar structures determines the duration of this systemic increase. However, the conclusive falsification of this hypothesis will require the suppression of all other signalling pathways which could have shoot-to-root transport kinetics similar to that of endogenous JA. Received: 14 April 1997 / Accepted: 9 June 1997  相似文献   

20.
Immunomodulation of jasmonate to manipulate the wound response   总被引:1,自引:0,他引:1  
Jasmonates are signals in plant stress responses and development. The exact mode of their action is still controversial. To modulate jasmonate levels intracellularly as well as compartment-specifically, transgenic Nicotiana tabacum plants expressing single-chain antibodies selected against the naturally occurring (3R,7R)-enantiomer of jasmonic acid (JA) were created in the cytosol and the endoplasmic reticulum. Consequently, the expression of anti-JA antibodies in planta caused JA-deficient phenotypes such as insensitivity of germinating transgenic seedlings towards methyl jasmonate and the loss of wound-induced gene expression. Results presented here suggest an essential role for cytosolic JA in the wound response of tobacco plants. The findings support the view that substrate availability takes part in regulating JA biosynthesis upon wounding. Moreover, high JA levels observed in immunomodulated plants in response to wounding suggest that tobacco plants are able to perceive a reduced level of physiologically active JA and attempt to compensate for this by increased JA accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号