首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the 1980s, the North Sea plankton community underwent a well‐documented ecosystem regime shift, including both spatial changes (northward species range shifts) and temporal changes (increases in the total abundances of warmer water species). This regime shift has been attributed to climate change. Plankton provide a link between climate and higher trophic‐level organisms, which can forage on large spatial and temporal scales. It is therefore important to understand not only whether climate change affects purely spatial or temporal aspects of plankton dynamics, but also whether it affects spatiotemporal aspects such as metapopulation synchrony. If plankton synchrony is altered, higher trophic‐level feeding patterns may be modified. A second motivation for investigating changes in synchrony is that the possibility of such alterations has been examined for few organisms, in spite of the fact that synchrony is ubiquitous and of major importance in ecology. This study uses correlation coefficients and spectral analysis to investigate whether synchrony changed between the periods 1959–1980 and 1989–2010. Twenty‐three plankton taxa, sea surface temperature (SST), and wind speed were examined. Results revealed that synchrony in SST and plankton was altered. Changes were idiosyncratic, and were not explained by changes in abundance. Changes in the synchrony of Calanus helgolandicus and Para‐pseudocalanus spp appeared to be driven by changes in SST synchrony. This study is one of few to document alterations of synchrony and climate‐change impacts on synchrony. We discuss why climate‐change impacts on synchrony may well be more common and consequential than previously recognized.  相似文献   

2.
Positive feedback is key to producing alternative stable states and largely determines ecological resilience in response to external perturbations. Understanding the positive feedback mechanisms in macrophyte-dominated lakes is crucial for resilience-based management and restoration. Based on the field investigation of submerged macrophyte communities in 35 lakes in China, we found that morphological complexity (MC) and morphological plasticity (MP) are correlated with the stoichiometric homeostasis of phosphorus (HP) and are related to ecosystem structure, functioning, and stability. We also found that the positive feedback strength of lakes dominated by macrophytes is biomass- and diversity-dependent. Eutrophication can decrease the community biomass by decreasing community MC, MP, and HP and the species diversity through low-light availability, ultimately decreasing the positive feedback strength and resilience of clear water states. We argue that functional traits and species diversity should be considered to build more resilient ecosystems in future changing environment scenarios.  相似文献   

3.
Biocrusts are multifunctional communities that are increasingly being used to restore degraded or damaged ecosystems. Concurrently, restoration science is shifting away from the use of purely structural metrics, such as relative abundance, to more functional approaches. Although biocrust restoration technology is advancing, there is a lack of readily available information on how to monitor biocrust functioning and set appropriate restoration goals. We therefore compiled a selection of 22 functional indicators that can be used to monitor biocrust functions, such as CO2 exchange as an indicator of productivity or soil aggregate stability as a proxy for erosion resistance. We describe the functional importance of each indicator and the available protocols with which it may be measured. The majority of indicators can be measured as a functional trait of species by using patches of biocrust or cultures that contain only one species. Practitioners wishing to track the multifunctionality of an entire biocrust community would be advised to choose one indicator from each broad functional group (erosion resistance, nutrient accumulation, productivity, energy balance, hydrology), whereas a targeted approach would be more appropriate for projects with a key function of interest. Because predisturbance data are rarely available for biocrust functions, restoration goals can be based on a closely analogous site, literature values, or an expert elicitation process. Finally, we advocate for the establishment of a global trait database for biocrusts, which would reduce the damage resulting from repeated sampling, and provide a wealth of future research opportunities.  相似文献   

4.
In ecosystems that are strongly structured by predation, reducing top predator abundance can alter several lower trophic levels—a process known as a trophic cascade. A persistent trophic cascade also fits the definition of a regime shift. Such ‘trophic cascade regime shifts'' have been reported in a few pelagic marine systems—notably the Black Sea, Baltic Sea and eastern Scotian Shelf—raising the question of how common this phenomenon is in the marine environment. We provide a general methodology for distinguishing top-down and bottom-up effects and apply this methodology to time series from these three ecosystems. We found evidence for top-down forcing in the Black Sea due primarily to gelatinous zooplankton. Changes in the Baltic Sea are primarily bottom-up, strongly structured by salinity, but top-down forcing related to changes in cod abundance also shapes the ecosystem. Changes in the eastern Scotian Shelf that were originally attributed to declines in groundfish are better explained by changes in stratification. Our review suggests that trophic cascade regime shifts are rare in open ocean ecosystems and that their likelihood increases as the residence time of water in the system increases. Our work challenges the assumption that negative correlation between consecutive trophic levels implies top-down forcing.  相似文献   

5.
Warming of the global climate is now unequivocal and its impact on Earth' functional units has become more apparent. Here, we show that marine ecosystems are not equally sensitive to climate change and reveal a critical thermal boundary where a small increase in temperature triggers abrupt ecosystem shifts seen across multiple trophic levels. This large-scale boundary is located in regions where abrupt ecosystem shifts have been reported in the North Atlantic sector and thereby allows us to link these shifts by a global common phenomenon. We show that these changes alter the biodiversity and carrying capacity of ecosystems and may, combined with fishing, precipitate the reduction of some stocks of Atlantic cod already severely impacted by exploitation. These findings offer a way to anticipate major ecosystem changes and to propose adaptive strategies for marine exploited resources such as cod in order to minimize social and economic consequences.  相似文献   

6.
Traditionally, marine ecosystem structure was thought to be bottom‐up controlled. In recent years, a number of studies have highlighted the importance of top‐down regulation. Evidence is accumulating that the type of trophic forcing varies temporally and spatially, and an integrated view – considering the interplay of both types of control – is emerging. Correlations between time series spanning several decades of the abundances of adjacent trophic levels are conventionally used to assess the type of control: bottom‐up if positive or top‐down if this is negative. This approach implies averaging periods which might show time‐varying dynamics and therefore can hide part of this temporal variability. Using spatially referenced plankton information extracted from the Continuous Plankton Recorder, this study addresses the potential dynamic character of the trophic structure at the planktonic level in the North Sea by assessing its variation over both temporal and spatial scales. Our results show that until the early‐1970s a bottom‐up control characterized the base of the food web across the whole North Sea, with diatoms having a positive and homogeneous effect on zooplankton filter‐feeders. Afterwards, different regional trophic dynamics were observed, in particular a negative relationship between total phytoplankton and zooplankton was detected off the west coast of Norway and the Skagerrak as opposed to a positive one in the southern reaches. Our results suggest that after the early 1970s diatoms remained the main food source for zooplankton filter‐feeders east of Orkney–Shetland and off Scotland, while in the east, from the Norwegian Trench to the German Bight, filter‐feeders were mainly sustained by dinoflagellates.  相似文献   

7.
Functionally distinct species (i.e. species with unique trait combinations in the community) can support important ecological roles and contribute disproportionately to ecosystem functioning. Yet, how functionally distinct species have responded to recent climate change and human exploitation has been widely overlooked. Here, using ecological traits and long-term fish data in the North Sea, we identified functionally distinct and functionally common species, and evaluated their spatial and temporal dynamics in relation to environmental variables and fishing pressure. Functionally distinct species were characterized by late sexual maturity, few, large offspring, and high parental care, many being sharks and skates that play critical roles in structuring food webs. Both functionally distinct and functionally common species increased in abundance as ocean temperatures warmed and fishing pressure decreased over the last three decades; however, functionally distinct species increased throughout the North Sea, but primarily in southern North Sea where fishing was historically most intense, indicating a rebound following fleet decommissioning and reduced harvesting. Yet, some of the most functionally distinct species are currently listed as threatened by the IUCN and considered highly vulnerable to fishing pressure. Alarmingly these species have not rebounded. This work highlights the relevance and potential of integrating functional distinctiveness into ecosystem management and conservation prioritization.  相似文献   

8.
1. Valuable insights into mechanisms of community responses to environmental change can be gained by analysing in tandem the variation in functional and taxonomic composition along environmental gradients. 2. We assess the changes in species and functional trait composition (i.e. dominant traits and functional diversity) of diverse bee communities in contrasting fire-driven systems in two climatic regions: Mediterranean (scrub habitats in Israel) and temperate (chestnut forests in southern Switzerland). 3. In both climatic regions, there were shifts in species diversity and composition related to post-fire age. In the temperate region, functional composition responded markedly to fire; however, in the Mediterranean, the taxonomic response to fire was not matched by functional replacement. 4. These results suggest that greater functional stability to fire in the Mediterranean is achieved by replacement of functionally similar species (i.e. functional redundancy) which dominate under different environmental conditions in the heterogeneous landscapes of the region. In contrast, the greater functional response in the temperate region was attributed to a more rapid post-fire vegetation recovery and shorter time-window when favourable habitat was available relative to the Mediterranean. 5. Bee traits can be used to predict the functional responses of bee communities to environmental changes in habitats of conservation importance in different regions with distinct disturbance regimes. However, predictions cannot be generalized from one climatic region to another where distinct habitat configurations occur.  相似文献   

9.
Macrozoobenthic community structure was studied in two surveys along a transect of 13 stations following the submersed Pleistocene Elbe valley in the south-eastern North Sea during May to June 2000 and March 2001. Two replicates of bottom samples were taken with a van Veen grab of 0.1 m2 sampling size. In order to analyse the benthic macrofauna communities, the animals obtained were identified and counted, and MDS and cluster analysis were performed. Out of 200 taxa identified, 84 were polychaetes, 46 molluscs, 40 crustaceans, 15 echinoderms, and 15 belonged to other groups. Mean abundance was 4,860 individuals per m2, mean biomass 32.9 g ash free dry mass per m2. Mean diversity was 1.76 and mean evenness 0.54. The macrofauna of the Pleistocene Elbe valley is composed of three associations according to the cluster analysis. Each association is described by a combination of characterizing and discriminating species. An Amphiura-brachiataTellimya-ferruginosa-association was found in the south-eastern part of the depression, whereas a transitional association with elements of both assemblages lead to an Amphiura-filiformisGalathowenia-oculataNuculoma-tenuis-association in the north-western part of the valley. In the context of the entire southern North Sea, both associations are small-scale substructures, and as such are contained in the Nucula-nitidosa-community and the Amphiura-filiformis-community, respectively. A north-westward shift of the community of the southern Elbe valley was found and discussed as a possible consequence of warm winters of the last decades.  相似文献   

10.
Describing the spatial and temporal dynamics of communities is essential for understanding the impacts of global environmental change on biodiversity and ecosystem functioning. Trait‐based approaches can provide better insight than species‐based (i.e. taxonomic) approaches into community assembly and ecosystem functioning, but comparing species and trait dynamics may reveal important patterns for understanding community responses to environmental change. Here, we used a 33‐year database of fish monitoring to compare the spatio‐temporal dynamics of taxonomic and trait structure in North Sea fish communities. We found that the majority of variation in both taxonomic and trait structure was explained by a pronounced spatial gradient, with distinct communities in the southern and northern North Sea related to depth, sea surface temperature, salinity and bed shear stress. Both taxonomic and trait structure changed significantly over time; however taxonomically, communities in the south and north diverged towards different species, becoming more dissimilar over time, yet they converged towards the same traits regardless of species differences. In particular, communities shifted towards smaller, faster growing species with higher thermal preferences and pelagic water column position. Although taxonomic structure changed over time, its spatial distribution remained relatively stable, whereas in trait structure, the southern zone of the North Sea shifted northward and expanded, leading to homogenization. Our findings suggest that global environmental change, notably climate warming, will lead to convergence towards traits more adapted for novel environments regardless of species composition.  相似文献   

11.
We hypothesized that associations among plant functional traits may differ within different ecological assemblages and plant communities. Association among plant traits including plant maximum height, seed weight, fruit type, pollination mode, mean leaf area, and leaf type were explored within life forms, plant strategy groups along with lowland and montane forest vegetation. In total, 83 sampling plots of 400 m2 were placed along a 2400 m altitudinal gradient in Hyrcanian forest. Importance‐values of species within vegetation types were used for weighting data and trait associations were explored using categorical principal component analysis. A G‐test and Fisher's exact test of independence were used to retest significance of the correlations. Different paired trait associations (association lines) including height–leaf, height–seed, height–pollination, leaf–seed, seed–fruit and fruit–pollination were observed and their ecological or physiological basis was discussed. Life forms, strategy types and vegetation types differed based on association lines. Some of the well‐known trade‐offs appear by increasing scale from ecological groups to vegetation types in Hyrcanian forest. The observed patterns of trait associations in Hyrcanian forest and several other ecosystems of the world call the generality of previously accepted trait correlations into question.  相似文献   

12.
Pselaphinae is a species‐rich beetle subfamily found globally, with many exhibiting myrmecophily—a symbiotic association with ants. Pselaphine–ant associations vary from facultative to obligate, but direct behavioral observations still remain scarce. Pselaphines are speciose and ecologically abundant within tropical leaf litter invertebrate communities where ants dominate, implying a potentially important ecological role that may be affected by habitat disturbances that impact ants. In this study, we measured and analyzed putative functional traits of leaf litter pselaphines associated with myrmecophily through morphometric analysis. We calculated “myrmecophile functional diversity” of pselaphines at different sites and examined this measure's relationship with ant abundance, in both old growth and logged rainforest sites in Sabah, Borneo. We show that myrmecophile functional diversity of pselaphine beetles increases as ant abundance increases. Old growth rainforest sites support a high abundance of ants, which is associated with a high abundance of probable myrmecophilous pselaphines. These results suggest a potential link between adult morphological characters and the functional role these beetles play in rainforest litter as ecological interaction partners with ants.  相似文献   

13.
Knowiedge on community structure of North Sea meiofauna has greatly increased recently. A quasisynoptic picture of meiofauna densities and copepod community structure from 171 stations of the southern North Sea, sampled in April–May 1986, has been obtained during the North Sea Benthos Survey. Latitudinal patterns in meiofauna abundance and copepod weight, abundance and diversity exist in an area between 51°30′N and 58°30′N. Using TWINSPAN-classification five major groups of copepod species can be recognized which are related to sediment type, latitude and depth. The part of the meiofauna in total benthic energy flow, their role in the benthic food web and in biogeochemical cycles is discussed based on existing literature. There are still considerable gaps in knowledge and the field is not progressing rapidly. Publication no. 599 Netherlands Institute of Ecology, Centre for Estuarine and Coastal Ecology, Yerseke, The Netherlands.  相似文献   

14.
Seasonal monitoring of the meiobenthos in the Dutch estuaries revealed an anomaly in density and diversity of harpacticoid copepods in the Westerschelde.Another Dutch estuary, the Eems Dollard, has comparable hydrodynamical, physical and sedimentological, characteristics and a similar fauna, but even in the severely organically polluted oligohaline mudflats of this estuary, annual average density and diversity of endo-epibenthic harpacticoid communities are higher than at similar less enriched meso- to polyhaline biotopes of the Westerschelde.Besides the concentrations of inorganic pollutants, such as phosphates and nitrates, the concentrations of pesticides, cyanide, detergents, phenoles, oils, polychlorobenzenes, polycyclic aromatic hydrocarbons and heavy metals were compared in both estuaries and compared to suggested permissive levels when available. From this it appears that these pollutants are present in the Westerschelde either in too low concentrations to be considered dangerous or at concentrations comparable to those occurring in the Eems Dollard, except for heavy metals.The load of a.o. Zn, Cu and Pb is distinctly and persistently higher in sediments and suspensions of the Westerschelde than in the Eems Dollard and copper is continuously present in a concentration at which, according to bioassays, egg production and larval development of planktonic copepods are severely affected. The remarkable scarcity of harpacticoid life on nutrient rich mudflats of the Westerschelde is thus probably due to heavy metal pollution.Since no other hardbodied meio- and macrobenthic taxa nor the plankton of this estuary show such a marked impoverishment, benthic harpacticoids prove to be suitable as indicators for the first stages of ecosystem-breakdown in estuarine and coastal zones polluted by trace-metals.  相似文献   

15.
16.
17.
In areas of the North Pacific that are largely free of overfishing, climate regime shifts – abrupt changes in modes of low‐frequency climate variability – are seen as the dominant drivers of decadal‐scale ecological variability. We assessed the ability of leading modes of climate variability [Pacific Decadal Oscillation (PDO), North Pacific Gyre Oscillation (NPGO), Arctic Oscillation (AO), Pacific‐North American Pattern (PNA), North Pacific Index (NPI), El Niño‐Southern Oscillation (ENSO)] to explain decadal‐scale (1965–2008) patterns of climatic and biological variability across two North Pacific ecosystems (Gulf of Alaska and Bering Sea). Our response variables were the first principle component (PC1) of four regional climate parameters [sea surface temperature (SST), sea level pressure (SLP), freshwater input, ice cover], and PCs 1–2 of 36 biological time series [production or abundance for populations of salmon (Oncorhynchus spp.), groundfish, herring (Clupea pallasii), shrimp, and jellyfish]. We found that the climate modes alone could not explain ecological variability in the study region. Both linear models (for climate PC1) and generalized additive models (for biology PC1–2) invoking only the climate modes produced residuals with significant temporal trends, indicating that the models failed to capture coherent patterns of ecological variability. However, when the residual climate trend and a time series of commercial fishery catches were used as additional candidate variables, resulting models of biology PC1–2 satisfied assumptions of independent residuals and out‐performed models constructed from the climate modes alone in terms of predictive power. As measured by effect size and Akaike weights, the residual climate trend was the most important variable for explaining biology PC1 variability, and commercial catch the most important variable for biology PC2. Patterns of climate sensitivity and exploitation history for taxa strongly associated with biology PC1–2 suggest plausible mechanistic explanations for these modeling results. Our findings suggest that, even in the absence of overfishing and in areas strongly influenced by internal climate variability, climate regime shift effects can only be understood in the context of other ecosystem perturbations.  相似文献   

18.
税伟  冯洁  李慧  江聪  孙祥  刘橼锰  张永永  孙晓瑞 《生态学报》2022,42(19):8050-8060
喀斯特退化天坑地下森林主要分布在不同坡向的倒石坡上,探究环境过滤、竞争排斥和随机过程在天坑地下森林群落构建中的作用,有助于揭示天坑物种避难所价值,为天坑植物多样性的保护及坑外地表生态恢复提供科学的参考。以云南沾益深陷塘退化天坑为例,综合运用功能性状生态学和系统发育方法,研究不同坡向植物群落的土壤环境特征、功能性状变异、系统发育信号及系统发育多样性。研究表明:(1)不同坡向土壤环境差异较大,相对于南坡和北坡而言,东坡的土壤环境变异程度最大。(2)各坡向具有不同的优势种群,其中壳斗科植物种群多度较大,在北坡和东坡的黄背栎(Quercus pannosa)种群数量较大,在南坡则是青冈(Cyclobalanopsis glauca)多度最大。各优势物种功能性状在不同坡向存在差异,整体上变异程度中等,但南坡优势物种变异程度最大。(3)叶宽、长宽比、叶厚度、比叶面积具有较强且显著的系统发育信号(K>1,P<0.05),性状进化过程中受遗传因素影响较大;而叶长、叶面积、叶干重、叶干物质含量、最大树高系统发育信号弱(K<1),性状进化过程中受生境因素影响较大。(4)各坡向植物群落构建过程由生态位理论的环境过滤和竞争排斥作用主导,坡向从北坡-东坡-南坡的转变过程中,植物群落构建中环境过滤作用逐渐减小,竞争排斥作用逐渐增大。北坡可能较长时间内都是以旱生型植物为主要建群种,而南坡则可能最终演替成亚热带湿润气候型的顶极群落。  相似文献   

19.
Benthic epifauna was sampled in six areas from the German Bight towards the Norwegian Sea using a 2-m standard beam trawl. Nine replicates were taken in each area and year from 1999 to 2006. This data set (60–67 replicates per area) was used to describe the spatial variability in local species composition and to assess the effect of increasing sampling effort on species richness and community structure. Our results confirmed the importance of the 50-m depth contour for the separation of benthic fauna in the North Sea. Low species richness, sparse sessile fauna and high abundances of scavenging species such as Asterias rubens, Liocarcinus holsatus, Astropecten irregularis and Ophiura albida were characteristic of the low-water area south of the 50-m contour. Differences in community structure were less conspicuous in deeper waters north of the 50-m contour, but distribution patterns and abundances of single species such as Echinus elegans, Hyalinoecia tubicola, Ophiothrix fragilis, Scaphander lignarius as well as several hermit crabs resulted in well-defined epifaunal communities. One replicate caught 17–28% of the species found in 60–67 samples and was sufficient to separate the community in the German Bight from those in the central and northern North Sea by using multidimensional scaling. Nine replicates sampled a proportion of 53–60% and provided additional information on the spatial variability of community structure in the central and northern North Sea. Our study indicates that appropriate replication enhances the quality of the data and can partly overcome the constraints of sampling with a 2-m beam trawl. This might be helpful for future monitoring programmes.  相似文献   

20.
The North Sea, one of the most productive of the earth's seas and oceans, is also surrounded by some of earth's most densely populated and heavily industrialized regions. A growing number of signals are being received which indicate that this valuable ecosystem is increasingly under stress. This has generated a corresponding increase in concern over the steps to be taken to protect the North Sea. While there are divergent views on what constitutes an ‘ideal’ North Sea, there is a general recognition that any decisions that are made should be based on a good understanding of this ecosystem. The intention of this paper is to give an overview of what is presently known, and to identify areas where more studies are needed. A brief summary of the hydrography and the biota of the North Sea is given. Biotic and abiotic structure justify partitioning the North Sea into three ecologically different regions: southern, central, and northern. For the most part, neither the top predators,e.g. marine birds and mammals, nor the macroalgae and sea grasses are included in this overview.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号