首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecologists have recently devoted their attention to the study of species traits and their role in the establishment and spread of nonindigenous species (NIS). However, research efforts have mostly focused on studies of terrestrial taxa, with lesser attention being dedicated to aquatic species. Aquatic habitats comprise of interconnected waterways, as well as exclusive introduction vectors that allow unparalleled artificial transport of species and their propagules. Consequently, species traits that commonly facilitate biological invasions in terrestrial systems may not be as represented in aquatic environments. We provide a global meta‐analysis of studies conducted in both marine and freshwater habitats. We selected studies that conducted experiments with native and NIS under common environmental conditions to allow detailed comparisons among species traits. In addition, we explored whether different factors such as species relatedness, functional feeding groups, latitude, climate, and experimental conditions could be linked to predictive traits. Our results show that species with traits that enhance consumption and growth have a substantially increased probability of establishing and spreading when entering novel ecosystems. Moreover, traits associated with predatory avoidance were more prevalent in NIS and therefore favour invasive species in aquatic habitats. When we analysed NIS interacting with taxonomically distinctive native taxa, we found that consumption and growth were particularly important traits. This suggests that particular attention should be paid to newly introduced species for which there are no close relatives in the local biota. Finally, we found a bias towards studies conducted in temperate regions, and thus, more studies in other climatic regions are needed. We conclude that studies aiming at predicting future range shifts should consider trophic traits of aquatic NIS as these traits are indicative of multiple interacting mechanisms involved in promoting species invasions.  相似文献   

2.
3.

Aim

If evolutionary distance is akin to evolutionary chance, then it follows that species assemblages that are distantly related will also be more disparate in terms of their traits, features and the niches they occupy. Yet, studies have found that the total phylogenetic distance of an assemblage, known as phylogenetic diversity, is an unreliable surrogate for functional diversity. We investigate global variation in the relationship between Faith's phylogenetic diversity (PD) and mean pairwise functional distance (MPFD) across latitude and the influence of migratory species on both these aspects of diversity.

Location

Global.

Time period

Present day.

Major taxa studied

Birds.

Methods

We measure PD and MPFD for over 9000 species of bird across more than 17,000 globally distributed assemblages. We obtain standardised effect sizes for both indices by simulating assemblage composition under an ecologically informed null model. We employ path analysis to characterize variation in the relationship between PD's and MPFD across latitude, elevation and with proportion of migratory species.

Results

Globally, assemblages that were phylogenetically diverse tended to be less functionally dispersed than expected; however, this relationship showed considerable variation across latitude decreasing with distance from the equator. The proportion of migratory species in an assemblage was found to be an important predictor of functional diversity, with migrant rich assemblages generally showing less functional diversity than expected. We identify the Andes and Hengduan Mountains as regions of exceptional bird functional diversity.

Main conclusions

The relationship between phylogenetic diversity and function diversity is context specific, varying across environmental gradients such as latitude, and influenced by ecological phenomena such as migration. Thus, care should be taken using phylogenetic diversity as a proxy for functional diversity, particularly in clades with sparse functional data. Instead, we recommend that studies consider how phylogenetic diversity's surrogacy for functional diversity may be impacted by environmental context and evaluate empirical observations against biogeographically constrained and ecologically informed null models.  相似文献   

4.
Coastal human‐made structures, such as marinas and harbors, are expanding worldwide. Species assemblages described from these artificial habitats are novel relative to natural reefs, particularly in terms of the abundance of nonindigenous species (NIS). Although these fouling assemblages are clearly distinctive, the ecosystem functioning and species interactions taking place there are little understood. For instance, large predators may influence the fouling community development either directly (feeding on sessile fauna) or indirectly (feeding on small predators associated with these assemblages). In addition, by providing refuges, habitat complexity may modify the outcome of species interactions and the extent of biotic resistance (e.g., by increasing the abundance of niche‐specific competitors and predators of NIS). Using experimental settlement panels deployed in the field for 2.5 months, we tested the influence of predation (i.e., caging experiment), artificial structural complexity (i.e., mimics of turf‐forming species), and their interactions (i.e., refuge effects) on the development of sessile and mobile fauna in two marinas. In addition, we tested the role of biotic complexity—arising from the habitat‐forming species that grew on the panels during the trial—on the richness and abundance of mobile fauna. The effect of predation and artificial habitat complexity was negligible, regardless of assemblage status (i.e., native, cryptogenic, and nonindigenous). Conversely, habitat‐forming species and associated epibionts, responsible for biotic complexity, had a significant effect on mobile invertebrates (richness, abundance, and community structure). In particular, the richness and abundance of mobile NIS were positively affected by biotic complexity, with site‐dependent relationships. Altogether, our results indicate that biotic complexity prevails over artificial habitat complexity in determining the distribution of mobile species under low predation pressure. Facilitation of native and non‐native species thus seems to act upon diversity and community development: This process deserves further consideration in models of biotic resistance to invasion in urban marine habitats.  相似文献   

5.
Anthropogenic disturbance is considered a risk factor in the establishment of non‐indigenous species (NIS); however, few studies have investigated the role of anthropogenic disturbance in facilitating the establishment and spread of NIS in marine environments. A baseline survey of native and NIS was undertaken in conjunction with a manipulative experiment to determine the effect that heavy metal pollution had on the diversity and invasibility of marine hard‐substrate assemblages. The study was repeated at two sites in each of two harbours in New South Wales, Australia. The survey sampled a total of 47 sessile invertebrate taxa, of which 15 (32%) were identified as native, 19 (40%) as NIS, and 13 (28%) as cryptogenic. Increasing pollution exposure decreased native species diversity at all study sites by between 33% and 50%. In contrast, there was no significant change in the numbers of NIS. Percentage cover was used as a measure of spatial dominance, with increased pollution exposure leading to increased NIS dominance across all sites. At three of the four study sites, assemblages that had previously been dominated by natives changed to become either extensively dominated by NIS or equally occupied by native and NIS alike. No single native or NIS was repeatedly responsible for the observed changes in native species diversity or NIS dominance at all sites. Rather, the observed effects of pollution were driven by a diverse range of taxa and species. These findings have important implications for both the way we assess pollution impacts, and for the management of NIS. When monitoring the response of assemblages to pollution, it is not sufficient to simply assess changes in community diversity. Rather, it is important to distinguish native from NIS components since both are expected to respond differently. In order to successfully manage current NIS, we first need to address levels of pollution within recipient systems in an effort to bolster the resilience of native communities to invasion.  相似文献   

6.
Assembly theory predicts that filtering processes will select species by their attributes to build a community. Some filters increase functional similarity among species, while others lead to dissimilarity. Assuming converging processes to be dominant within habitats, we tested in this study whether species assemblages across a wide range of habitats can be distinguished quantitatively by their mean trait compositions. In addition, we investigated how many and which traits are needed to describe the differences between species assemblages best. The approach has been applied on a dataset that included 12 plant traits and 7644 vegetation relevés covering a wide range of habitats in the Netherlands. We demonstrate that due to the dominant role of converging processes 1) the functional composition can explain up to 80% of the floristic differences between species assemblages using seven plant traits, showing that plant trait combinations provide a powerful tool for predicting the occurrence of species assemblages across different habitats; 2) to achieve a high performance, traits should be taken from different strategy components, i.e. traits that are functionally orthogonal, which does not necessarily coincide with low trait‐trait correlations; 3) the different strategy components identified in this study correspond to the strategy components of some conventional plant ecological strategy schemes (PESS) – schemes to describe the variation between individual species. However, some PESS merge traits into one strategy component that are shown to be functionally different when predicting species assemblages. If such PESS is used to predict assemblages, this leads to a loss in predictive capacity. Potentially, our new approach is globally applicable to quantify community assembly patterns. However this needs to be tested.  相似文献   

7.

Aim

The ability of predicting which naturalized non-native species are likely to become invasive can help manage and prevent species invasions. The goal of this study is to test whether invasive angiosperm (flowering plant) species are a phylogenetically clustered subset of naturalized species at global, continental and regional scales, and to assess the relationships of phylogenetic relatedness of invasive species with climate condition (temperature and precipitation).

Location

Global.

Time period

Current.

Taxon

Angiosperms (flowering plants).

Methods

The globe is divided into 290 regions, which are grouped into seven biogeographic (continental) regions. Two phylogenetic metrics (net relatedness index and nearest taxon index), which represent different evolutionary depths, are used to quantify phylogenetic relatedness of invasive angiosperms, with respect to different tailor-made species pools. Phylogenetic relatedness of invasive angiosperms is related to climatic variables.

Results

The global assemblage of invasive angiosperm species is a strongly phylogenetically clustered subset of the species of the entire global angiosperm flora. Most invasive angiosperm assemblages are a phylogenetically clustered subset of their respective naturalized species pools, and phylogenetic clustering reflecting shallow evolutionary history is greater than that reflecting deep evolutionary history. In general, the phylogenetic relatedness of invasive species is greater in regions with lower temperature and precipitation across the world.

Main conclusions

The finding that invasive angiosperm assemblages across the globe are, in general, phylogenetically clustered subsets of their respective naturalized species pools has significant implications in biological conservation, particularly in predicting and controlling invasive species based on phylogenetic relatedness among naturalized species.  相似文献   

8.
Lake Superior receives a disproportionate number of ballast water discharges from transoceanic ships operating on the Laurentian Great Lakes. Although this provides dispersal opportunities for nonindigenous species (NIS), relatively few NIS were initially discovered in this lake prior to being recorded elsewhere in the basin. A lack of NIS records from this lake may be an artefact of sampling bias. We tested this hypothesis by sampling benthos and plankton from littoral and deepwater habitats around the perimeter of Lake Superior during June and August 2001. Using morphological analysis techniques, we identified a total of 230 invertebrate taxa representing planktonic, benthic and nektonic lifestyles. Five species with invasion histories in the lower Great Lakes, the bivalves Sphaerium corneum, Pisidium amnicum and P. moitessierianum, gastropod Potamopyrgus antipodarum and amphipod Echinogammarus ischnus, were identified for the first time in Lake Superior. In addition, records of expanded distributions within this lake are presented for the amphipod Gammarus fasciatus and oligochaetes Ripistes parasita and Vejdovskyella intermedia. Recently introduced NIS in Lake Superior were found near international ports, implicating shipping as the vector of their introduction. Intrinsic physical-chemical aspects of Lake Superior may account for the scarcity of NIS in this lake as compared to the lower Great Lakes.  相似文献   

9.
Ballast water moved by transoceanic vessels has been recognized globally as a predominant vector for the introduction of aquatic nonindigenous species (NIS). In contrast, domestic ships operating within confined geographic areas have been viewed as low risk for invasions, and are exempt from regulation in consequence. We examined if the St. Lawrence River could serve as a source of NIS for the Laurentian Great Lakes by surveying ballast water carried by domestic vessels and comparing biological composition in predominant St. Lawrence River—Great Lakes port-pairs in order to determine the likelihood that NIS could be transported to, and survive in, the Great Lakes. Thirteen potential invaders were sampled from ballast water, while 26 taxa sampled from St. Lawrence River ports are not reported from the Great Lakes. The majority of NIS recorded in samples are marine species with low potential for survival in the Great Lakes, however two euryhaline species (copepod Oithona similis, and amphipod Gammarus palustris) and two taxa reported from brackish waters (copepod Microsetella norvegica and decapod Cancer irroratus) may pose a risk for invasion. In addition, four marine NIS were collected in freshwater samples indicating that at least a subset of marine species have potential as new invaders to the Great Lakes. Based on results from this study, the ports of Montreal, Sorel, Tracy and Trois Rivières appear to pose the highest risk for new ballast-mediated NIS from the St. Lawrence River to the Great Lakes.  相似文献   

10.

Background

The invasion of habitats by non-indigenous species (NIS) occurs at a global scale and can generate significant ecological, evolutionary, economic and social consequences. Estuarine and coastal ecosystems are particularly vulnerable to pollution from numerous sources due to years of human-induced degradation and shipping. Pollution is considered as a class of disturbance with anthropogenic roots and recent studies have concluded that high frequencies of disturbance may facilitate invasions by increasing the availability of resources.

Methodology/Principal Findings

To examine the effects of heavy metal pollution as disturbance in shaping patterns of exotic versus native diversity in marine fouling communities we exposed fouling communities to different concentrations of copper in one temperate (Virginia) and one tropical (Panama) region. Diversity was categorized as total, native and non-indigenous and we also incorporated taxonomic and functional richness. Our findings indicate that total fouling diversity decreased with increasing copper pollution, whether taxonomic or functional diversity is considered. Both native and non-indigenous richness decreased with increasing copper concentrations at the tropical site whereas at the temperate site, non-indigenous richness was too low to detect any effect.

Conclusions/Significance

Non-indigenous richness decreased with increasing metal concentrations, contradicting previous investigations that evaluate the influence of heavy metal pollution on diversity and invasibility of fouling assemblages. These results provide first insights on how the invasive species pool in a certain region may play a key role in the disturbance vs. non-indigenous diversity relationship.  相似文献   

11.
The presence and impacts of non‐indigenous species (NIS) in marine areas of high conservation or World Heritage significance have rarely been examined. Case studies worldwide suggest that the potential exists for the introduction of NIS to significantly impact conservation values in regions conserved for the uniqueness and diversity of native assemblages. In this study, a preliminary investigation was conducted to provide information essential for managing marine introductions in the Shark Bay World Heritage Property. A focused fouling plate survey sampled a total of 112 encrusting taxa, of which 10 (11.2%) were classified as introduced and 10 others as cryptogenic. Eight introduced bryozoans: Aetea anguina (Linnaeus, 1758), Bugula neritina (Linnaeus, 1758), Bugula stolonifera Ryland, 1960, Conopeum seurati (Canu, 1928), Savignyella lafontii (Audouin, 1826), Schizoporella errata (Waters, 1878), Watersipora subtorquata (d’Orbigny, 1842) and Zoobotryon verticellatum della Chiaje, 1828; one tunicate, Styela plicata Lesueur, 1823; and an introduced hydroid, Obelia dichotoma (Linnaeus, 1758) were frequent, and in some cases dominant, components of encrusting communities. Of the 20 most frequently occurring species detected in the Bay, four were introduced and of the 20 species with highest average percent cover per plate, six were introduced. At one site, space occupation by NIS averaged 71.6% ± 7.4 of plate live cover. Space occupation by an individual NIS was as high as 62.4% of plate area (mean 7.82% ± 1.8). NIS were detected at sites lacking commercial traffic and ballast water discharge and isolated by distance and physical environment, suggesting that hull fouling of recreational craft may be the most important vector in the region. Seventy‐five percent of NIS detected in Shark Bay are established in Australian ports to the south of Shark Bay, while 33% are established to the north, tentatively implicating temperate affinity NIS and the movement of vessels from Australian ports south of Shark Bay as a greater risk to the region.  相似文献   

12.

Aim

The criteria used to define the International Union for Conservation of Nature (IUCN) Red List categories are essentially based on demographic parameters at the species level, but they do not integrate species' traits or their roles in ecosystems. Consequently, current IUCN-based protection measures may not be sufficient to conserve ecosystem functioning and services. Some species may have a singular combination of traits associated with unique functions. Such functionally distinct species are increasingly recognized as a key facet of biodiversity since they are, by definition, functionally irreplaceable. The aim of this study is to investigate whether threatened species are also functionally rare and to identify which traits determine extinction risk.

Location

European continental shelf seas.

Time period

1984–2020.

Major taxa studied

Marine fish.

Methods

Using newly compiled trait information of 425 marine fish species in European waters, and more than 30 years of scientific bottom trawl surveys, we estimated the functional distinctiveness, restrictedness and scarcity of each species and cross-referenced it with their IUCN conservation status.

Results

In European continental shelf seas, 38% of the species threatened with extinction (9 out of 24 species) were identified as the most functionally distinct. By mapping extinction risk in the multidimensional species trait space, we showed that species with the greatest risk of extinction are long-lived and of high trophic level. We also identified that the most functionally distinct species are sparsely distributed (4% of the total area on average) and have scarce abundances (<1% of the relative mean abundance of common species).

Main Conclusions

Because a substantial proportion of threatened species are functionally distinct and thus may play unique roles in ecosystem functioning, we stress that species traits—especially functional rarity—should become an indispensable step in the development of conservation management plans.  相似文献   

13.
Species variation in functional traits may reflect diversification relating to convergence and/or divergence depending on environmental pressures and phylogenetic history. We tested trait-environment relationships and their basis in finer-scale evolutionary processes among nine extant Hawaiian species of Scaevola L. (Goodeniaceae), a taxon with a complex history of three independent colonizations by different phylogenetic lineages, parallel ecological specialization, and homoploid hybridization events in Hawai‘i. Using a wild population for each species, we evaluated traits related to plant function (morphology, leaf and wood anatomy, nutrient and carbon isotope composition). Hawaiian Scaevola species were distributed across coastal, dry forest and wet forest environments; multivariate environmental analysis using abiotic and biotic factors further showed that species from distantly related lineages inhabited similar environments. Many traits correlated with environment (based on the multivariate environmental analysis), considering both distantly related species and more closely related species. Scaevola species within shared habitats generally showed trait convergence across distantly related lineages, particularly among wet forest species. Furthermore, trait diversification through divergence was extensive among closely related Scaevola species that radiated into novel environments, especially in plant morphology and traits affecting water relations. Homoploid hybrid-origin species were “intermediate” compared to their ancestral parent species, and possessed trait combinations relevant for their current habitat. The diversity in functional traits reflected strong influences of both ecology and evolutionary history in native Hawaiian Scaevola species, and trait correspondence with environment was due to the combination of multiple processes within the taxon: trait pre-adaptation and filtering, evolutionary convergence, divergence, and hybridization.  相似文献   

14.
Aim  Hull fouling is a leading vector for the introduction of marine, non‐indigenous species (NIS) worldwide, yet its importance to freshwater habitats is poorly understood. We aimed to establish the complement of NIS transported via this vector to the Great Lakes and to determine if they pose an invasion risk. Location  Laurentian Great Lakes. Methods  During 2007 and 2008, we collected scrapings from exterior surfaces as well as underwater video‐transects from 20 vessels shortly after their arrival in Great Lakes’ ports. Invertebrates present were sorted and identified in the laboratory. Results  Total estimated abundance averaged > 170,000 invertebrates per ship belonging to 109 taxa. Most (72%) of these taxa were freshwater species already present in the Great Lakes, whereas 11 and 31% were native to estuarine and marine habitats respectively, and would not be expected to survive in this habitat. Abundance was dominated by barnacles (51%), cladocerans (19%), bivalves (12%) and amphipods (11%). Sea‐chest grating and the rudder were hot‐spots for biofouling. Invertebrate diversity and total abundance were positively associated with total time spent in port during the last year and time in Pacific South American ports and negatively related to time in high latitudes and sailing speed. Although we found some live, established invaders such as Gammarus tigrinus and Dreissena rostriformis bugensis, only one individual of a freshwater NIS (Alexandrovia onegensis, Oligochaeta) not yet reported in the Great Lakes was detected. The animal’s poor condition and seemingly low population abundance indicated the risk of live introduction by this vector was likely quite low. Main conclusion  Our results indicate that hull fouling appears to pose a low risk of introductions of new species capable of surviving in the Great Lakes, unlike foreign‐sourced freshwater ballast water that historically was discharged by these transoceanic vessels.  相似文献   

15.

Aim

To evaluate how environment and evolutionary history interact to influence global patterns of mammal trait diversity (a combination of 14 morphological and life‐history traits).

Location

The global terrestrial environment.

Taxon

Terrestrial mammals.

Methods

We calculated patterns of spatial turnover for mammalian traits and phylogenetic lineages using the mean nearest taxon distance. We then used a variance partitioning approach to establish the relative contribution of trait conservatism, ecological adaptation and clade specific ecological preferences on global trait turnover.

Results

We provide a global scale analysis of trait turnover across mammalian terrestrial assemblages, which demonstrates that phylogenetic turnover by itself does not predict trait turnover better than random expectations. Conversely, trait turnover is consistently more strongly associated with environmental variation than predicted by our null models. The influence of clade‐specific ecological preferences, reflected by the shared component of phylogenetic turnover and environmental variation, was considerably higher than expectations. Although global patterns of trait turnover are dependent on the trait under consideration, there is a consistent association between trait turnover and environmental predictive variables, regardless of the trait considered.

Main conclusions

Our results suggest that changes in phylogenetic composition are not always coupled with changes in trait composition on a global scale and that environmental conditions are strongly associated with patterns of trait composition across species assemblages, both within and across phylogenetic clades.  相似文献   

16.
17.
Invasive species are a leading cause of the current biodiversity decline, and hence examining the major traits favouring invasion is a key and long-standing goal of invasion biology. Despite the prominent role of the advertisement calls in sexual selection and reproduction, very little attention has been paid to the features of acoustic communication of invasive species in nonindigenous habitats and their potential impacts on native species. Here we compare for the first time the transmission efficiency of the advertisement calls of native and invasive species, searching for competitive advantages for acoustic communication and reproduction of introduced taxa, and providing insights into competing hypotheses in evolutionary divergence of acoustic signals: acoustic adaptation vs. morphological constraints. Using sound propagation experiments, we measured the attenuation rates of pure tones (0.2–5 kHz) and playback calls (Lithobates catesbeianus and Pelophylax perezi) across four distances (1, 2, 4, and 8 m) and over two substrates (water and soil) in seven Iberian localities. All factors considered (signal type, distance, substrate, and locality) affected transmission efficiency of acoustic signals, which was maximized with lower frequency sounds, shorter distances, and over water surface. Despite being broadcast in nonindigenous habitats, the advertisement calls of invasive L. catesbeianus were propagated more efficiently than those of the native species, in both aquatic and terrestrial substrates, and in most of the study sites. This implies absence of optimal relationship between native environments and propagation of acoustic signals in anurans, in contrast to what predicted by the acoustic adaptation hypothesis, and it might render these vertebrates particularly vulnerable to intrusion of invasive species producing low frequency signals, such as L. catesbeianus. Our findings suggest that mechanisms optimizing sound transmission in native habitat can play a less significant role than other selective forces or biological constraints in evolutionary design of anuran acoustic signals.  相似文献   

18.
Aim In recent years evidence has accumulated that plant species are differentially sorted from regional assemblages into local assemblages along local‐scale environmental gradients on the basis of their function and abiotic filtering. The favourability hypothesis in biogeography proposes that in climatically difficult regions abiotic filtering should produce a regional assemblage that is less functionally diverse than that expected given the species richness and the global pool of traits. Thus it seems likely that differential filtering of plant traits along local‐scale gradients may scale up to explain the distribution, diversity and filtering of plant traits in regional‐scale assemblages across continents. The present work aims to address this prediction. Location North and South America. Methods We combine a dataset comprising over 5.5 million georeferenced plant occurrence records with several large plant functional trait databases in order to: (1) quantify how several critical traits associated with plant performance and ecology vary across environmental gradients; and (2) provide the first test of whether the woody plants found within 1° and 5° map grid cells are more or less functionally diverse than expected, given their species richness, across broad gradients. Results The results show that, for many of the traits studied, the overall distribution of functional traits in tropical regions often exceeds the expectations of random sampling given the species richness. Conversely, temperate regions often had narrower functional trait distributions than their smaller species pools would suggest. Main conclusion The results show that the overall distribution of function does increase towards the equator, but the functional diversity within regional‐scale tropical assemblages is higher than that expected given their species richness. These results are consistent with the hypothesis that abiotic filtering constrains the overall distribution of function in temperate assemblages, but tropical assemblages are not as tightly constrained.  相似文献   

19.
Vessel hull fouling is a major vector for the translocation of nonindigenous species (NIS). Antifouling (AF) paints are the primary method for preventing the establishment and translocation of fouling species. However, factors such as paint age, condition and method of application can all reduce the effectiveness of these coatings. Areas of hull that escape AF treatment (through limited application or damage) constitute key areas that may be expected to receive high levels of fouling. The investigation focused on whether small-scale (mm2 to cm2) areas of unprotected surface or experimental ‘scrapes’ provided sufficient area for the formation of fouling assemblages within otherwise undamaged AF surfaces. Recruitment of fouling taxa such as algae, spirorbids and hydroids was recorded on scrapes as narrow as 0.5 cm wide. The abundance and species richness of fouling assemblages developing on scrapes ≥1 cm often equalled or surpassed levels observed in reference assemblages totally unprotected by AF coatings. Experiments were conducted at three sites within the highly protected and isolated marine park surrounding Lady Elliott Island at the southernmost tip of the Great Barrier Reef, Australia. Several NIS were recorded on scrapes of AF coated surfaces at this location, with 1-cm scrapes showing the greatest species richness and abundance of NIS relative to all other treatments (including controls) at two of the three sites investigated. Slight disruptions to newly antifouled surfaces may be all that is necessary for the establishment of fouling organisms and the translocation of a wide range of invasive taxa to otherwise highly protected marine areas.  相似文献   

20.
The introduction and translocation of nonindigenous marine species is widespread and can pose severe threats to biodiversity and ecosystem functioning. Predicting which species are potential invaders is of particular interest to ecologists. One approach is to identify characteristics that predispose a species to becoming a successful invader. Since its introduction in the 1980’s, the invasive Asian shore crab, Hemigrapsus sanguineus, has shown a remarkable ability to colonize rocky intertidal habitats along the east coast of the United States. In Long Island Sound H. sanguineus occurs sympatrically with the functionally equivalent, but non-invasive, native Atlantic mud crab, Panopeus herbstii. The presence of both species at the same site allowed us to make a detailed, simultaneous assessment of life history traits and adult dispersibility of co-occurring invading and native crab species. We investigated fecundity and maturation rates, length of breeding season and brood production for both species, and conducted field experiments using mark–recapture techniques to determine mobility patterns. Our results show that the nonindigenous Asian crab has a greater reproductive potential than the native mud crab as evidenced by a longer breeding season, multiple brood production and higher fecundity rates. Field experiments confirmed previous studies indicating H. sanguineus is a highly mobile crab, and further demonstrated that adult Asian crabs are more likely than mud crabs to disperse from their shelter/refuge sites. Recovery rates for native mud crabs were significantly higher than those for Asian crabs in three experimental trials, across sites and years. This work provides new information about life history characteristics of both species and supports the hypothesis that high reproductive potential combined with high adult dispersal ability may be important factors associated with the invasion/establishment success of the Asian shore crab. More study is needed, however, to determine the applicability of these findings to other highly successful marine invaders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号