首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
双孢蘑菇Agaricus bisporus是世界上最广泛栽培的食用菌之一.本研究通过分析双孢蘑菇基因组密码子使用偏性,探讨密码子偏性的影响因素及其对基因表达的影响.以双孢蘑菇基因组和转录组数据为依据,分析了双孢蘑菇基因组基因、高表达基因(high expression gene,HEG)和低表达基因(low expre...  相似文献   

2.
王艳  赵懿琛  赵德刚 《广西植物》2021,41(2):274-282
为了解杜仲基因密码子使用模式,该文以杜仲基因组密码子为研究对象,运用CodonW软件对杜仲的320个蛋白编码基因进行同义密码子相对使用频率(RSCU)分析、ENC-GC3s关联分析编码基因的密码子ENC值、PR2-plot偏倚分析编码基因的密码子碱基使用频率,并运用CUSP软件与Codon Usage Database...  相似文献   

3.
Hepatitis C virus (HCV) infection is among the leading causes of hepatocellular carcinoma and liver cirrhosis globally, with a high economic burden. The disease progression is well established, but less is known about the spontaneous HCV infection clearance. This study tries to establish the relationship between codon biasness and expression of HCV clearance candidate genes in normal and HCV infected liver tissues. A total of 112 coding sequences comprising 151 679 codons were subjected to the computation of codon indices, namely relative synonymous codon usage, an effective number of codon (Nc), frequency of optimal codon, codon adaptation index, codon bias index, and base compositions. Codon indices report of GC3s, GC12, hydropathicity, and aromaticity implicates both mutational and translational selection in the candidate gene set. This was further correlated with the differentially expressed genes among the selected genes using BioGPS. A significant correlation is observed between the gene expression of normal liver and cancerous liver tissues with codon bias (Nc). Gene expression is also correlated with relative codon bias values, indicating that CCL5, APOA2, CD28, IFITM1, and TNFSF4 genes have higher expression. These results are quite encouraging in selecting the high responsive genes in HCV clearance. However, there could be additional genes which could also orchestrate the clearance role with the above mentioned first line of defensive genes.  相似文献   

4.
To understand the synonymous codon usage pattern in mitochondrial genome of Antheraea assamensis, we analyzed the 13 mitochondrial protein‐coding genes of this species using a bioinformatic approach as no work was reported yet. The nucleotide composition analysis suggested that the percentages of A, T, G,and C were 33.73, 46.39, 9.7 and 10.17, respectively and the overall GC content was 19.86, that is, lower than 50% and the genes were AT rich. The mean effective number of codons of mitochondrial protein‐coding genes was 36.30 and it indicated low codon usage bias (CUB). Relative synonymous codon usage analysis suggested overrepresented and underrepresented codons in each gene and the pattern of codon usage was different among genes. Neutrality plot analysis revealed a narrow range of distribution for GC content at the third codon position and some points were diagonally distributed, suggesting both mutation pressure and natural selection influenced the CUB.  相似文献   

5.
杨树同义密码子用法的初步分析   总被引:1,自引:0,他引:1  
杨树是世界上广泛栽培的重要造林树种之一,已经成为林木基因工程研究的模式植物。用杨树的314个蛋白编码基因,通过对应分析和ENC-plot分析探讨了若干重要因子对杨树密码子用法的效应。从分析结果中可以看出,在影响最大的第一条向量轴上,基因的坐标位置与该基因的表达水平(CAI)极显著负相关(r=-0.94**),其次是与GC3S和基因长度极显著相关(r=0.86**和r=-0.57**),说明基因表达水平高低是影响密码子发挥作用的主要因素,基因编码区碱基组成和基因长度次之。ENC-plot分析结果也证明了这一点。相对密码子使用值(RSCU)的计算结果表明,高表达基因强烈偏好以A或T结尾的密码子,并确定了TTA和ATA等10个密码子为杨树的主要偏爱密码子。将杨树的密码子使用频率与拟南芥、水稻、大肠杆菌和人等不同模式生物种比较后发现,杨树密码子的偏爱性与同为双子叶植物的拟南芥最为相似,与人和大肠杆菌之间的差异较大。  相似文献   

6.
Background: Mitochondrial ND gene, which encodes NADH dehydrogenase, is the first enzyme of the mitochondrial electron transport chain. Leigh syndrome, a neurodegenerative disease caused by mutation in the ND2 gene (T4681C), is associated with bilateral symmetric lesions in basal ganglia and subcortical brain regions. Therefore, it is of interest to analyze mitochondrial DNA to glean information for evolutionary relationship. This study highlights on the analysis of compositional dynamics and selection pressure in shaping the codon usage patterns in the coding sequence of MT-ND2 gene across pisces, aves and mammals by using bioinformatics tools like effective number of codons (ENC), codon adaptation index (CAI), relative synonymous codon usage (RSCU) etc. Results: We observed a low codon usage bias as reflected by high ENC values in MT-ND2 gene among pisces, aves and mammals. The most frequently used codons were ending with A/C at the 3rd position of codon and the gene was AT rich in all the three classes. The codons TCA, CTA, CGA and TGA were over represented in all three classes. The F1 correspondence showed significant positive correlation with G, T3 and CAI while the F2 axis showed significant negative correlation with A and T but significant positive correlation with G, C, G3, C3, ENC, GC, GC1, GC2 and GC3. Conclusions: The codon usage bias in MTND2 gene is not associated with expression level. Mutation pressure and natural selection affect the codon usage pattern in MT-ND 2 gene.  相似文献   

7.
张琦  焦翔  刘香健  张月  张素芳  赵宗保 《菌物学报》2018,37(11):1454-1465
运用CodonW等软件,分析了圆红冬孢酵母Rhodosporidium toruloides基因组中191个蛋白质编码基因的密码子使用模式,包括密码子3个位置上的GC含量、有效密码子数和密码子使用频率。圆红冬孢酵母有效密码子数ENc值为38.9,密码子GC含量为63%,密码子第三位GC含量为78.3%,且偏好使用G或C结尾的密码子,确定了圆红冬孢酵母R. toruloides的21个高表达优越密码子。研究发现,圆红冬孢酵母与毕赤酵母、酿酒酵母、大肠杆菌和拟南芥在密码子使用频率上有较大差异,而与解脂耶氏酵母和果蝇差异相对较小。研究结果对提高外源基因在圆红冬孢酵母中表达效率及相关代谢工程和合成生物学研究有一定意义。  相似文献   

8.
The diversity of axon guidance (AG) receptors reflects gains in complexity of the animal nervous system during evolution. Members of the Roundabout (Robo) family of receptors interact with Slit proteins and play important roles in many developmental processes, including AG and neural crest cell migration. There are four members of the Robo gene family. However, the evolutionary history of Robo family genes remain obscure. We analyzed the distribution of Robo family members in metazoan species ranging in complexity from hydras to humans. We undertook a phylogenetic analysis in metazoans, synteny analysis, and ancestral chromosome mapping in vertebrates, and detected selection pressure and functional divergence among four mammalian Robo paralogs. Based on our analysis, we proposed that the ancestral Robo gene could have undergone a tandem duplication in the vertebrate ancestor; then one round of whole genome duplication events occurred before the divergence of ancestral lamprey and gnathostome, generating four paralogs in early vertebrates. Robo4 paralog underwent segmental loss in the following evolutionary process. Our results showed that Robo3 paralog is under more powerful purifying selection pressure compared with other three paralogs, which could correlate with its unique expression pattern and function. Furthermore, we found four sites under positive selection pressure on the Ig1‐2 domains of Robo4 that might interfere with its binding to Slits ligand. Diverge analysis at the amino acid level showed that Robo4 paralog have relatively greater functional diversifications than other Robo paralogs. This coincides with the fact that Robo4 predominantly functions in vascular endothelial cells but not the nervous system.  相似文献   

9.
10.
The fungal genus Puccinia, comprising of several menacing pathogens, has been a persistent peril to global agriculture. Genome sequencing of various members of Puccinia offers a scope to excavate their genomic riddles. The present study has been addressed at exploring the complex niceties of codon and amino acid usage patterns and subsequent elucidation of the determinants that drive such behavior. Multivariate statistical analysis revealed a complex interplay of natural selection for translation and compositional bias to be operational on the codon usage patterns. Gene expression level was observed to be the most competent factor governing codon usage behavior of the genus. In spite of subtle AT richness of the genus, potential highly expressed gene sets were found to preferentially employ GC rich optimal codons. Estimation of relative dinucleotide abundance revealed preference toward the employment of GpA, CpA, TpC, and TpG dinucleotides and restraint from using TpA dinucleotide among the members of the genus. Extensive codon context analysis revealed that codon pairs with GpA, CpA, TpC, and TpG dinucleotides were over-represented and codon pairs with TpA dinucleotide were extensively avoided at the codon–codon (cP3–cA1) junctions. Amino acid usage signatures of the genus were found to be influenced considerably by several imperative factors like aromatic and hydrophobic character of the encoded gene products, genomic compositional constraint, and gene expressivity. Detailed know-how of the potential highly expressed gene sets and associated optimal codons in the genus promise to be informative for the scientific community engaged in combating Puccinia pathogenesis.  相似文献   

11.
Chromohalobacter salexigens, a Gammaproteobacterium belonging to the family Halomonadaceae, shows a broad salinity range for growth. In order to reveal the factors influencing architecture of protein coding genes in C. salexigens, pattern of synonymous codon usage bias has been investigated. Overall codon usage analysis of the microorganism revealed that C and G ending codons are predominantly used in all the genes which are indicative of mutational bias. Multivariate statistical analysis showed that the genes are separated along the first major explanatory axis according to their expression levels and their genomic GC content at the synonymous third positions of the codons. Both NC plot and correspondence analysis on Relative Synonymous Codon Usage (RSCU) indicates that the variation in codon usage among the genes may be due to mutational bias at the DNA level and natural selection acting at the level of mRNA translation. Gene length and the hydrophobicity of the encoded protein also influence the codon usage variation of genes to some extent. A comparison of the relative synonymous codon usage between 10% each of highly and lowly expressed genes determines 23 optimal codons, which are statistically over represented in the former group of genes and may provide useful information for salt-stressed gene prediction and gene-transformation. Furthermore, genes for regulatory functions; mobile and extrachromosomal element functions; and cell envelope are observed to be highly expressed. The study could provide insight into the gene expression response of halophilic bacteria and facilitate establishment of effective strategies to develop salt-tolerant crops of agronomic value.  相似文献   

12.
13.
为确定瑶药紫九牛叶绿体基因组密码子的使用模式及其成因,该研究以紫九牛叶绿体基因组50条蛋白质编码序列为研究对象,利用Codon W 1.4.2和在线软件CUSP和Chips分析其密码子偏好性。结果表明:(1)RSCU>1的密码子有29个,其中有28个以A/U结尾,说明叶绿体基因组的同义密码子中偏好以A/U结尾。(2)紫九牛叶绿体基因组密码子的GC含量GC1(47.38%)>GC2(39.81%)>GC3(29.60%),ENC值大于45的有40个,说明紫九牛叶绿体基因组存在较弱的偏性。(3)中性绘图分析和ENC-plot分析说明了紫九牛叶绿体基因组密码子的偏好性既受到选择的作用,又受到突变因素的影响。(4)通过构建的高低基因表达库最终确定了15个最优密码子,分别为UUG、AUU、GUU、GUA、UCU、 CCU、ACU、ACA、GCU、CAA、AAC、GAA、UGU、CGU和GGU。该研究为紫九牛叶绿体基因组的确定以及遗传多样性分析提供了依据。  相似文献   

14.
It is well known that stop codons play a critical role in the process of protein synthesis. However, little effort has been made to investigate whether stop codon usage exhibits biases, such as widely seen for synonymous codon usage. Here we systematically investigate stop codon usage bias in various eukaryotes as well as its relationships with its context, GC3 content, gene expression level, and secondary structure. The results show that there is a strong bias for stop codon usage in different eukaryotes, i.e., UAA is overrepresented in the lower eukaryotes, UGA is overrepresented in the higher eukaryotes, and UAG is least used in all eukaryotes. Different conserved patterns for each stop codon in different eukaryotic classes are found based on information content and logo analysis. GC3 contents increase with increasing complexity of organisms. Secondary structure prediction revealed that UAA is generally associated with loop structures, whereas UGA is more uniformly present in loop and stem structures, i.e., UGA is less biased toward having a particular structure. The stop codon usage bias, however, shows no significant relationship with GC3 content and gene expression level in individual eukaryotes. The results indicate that genomic complexity and GC3 content might contribute to stop codon usage bias in different eukaryotes. Our results indicate that stop codons, like synonymous codons, exhibit biases in usage. Additional work will be needed to understand the causes of these biases and their relationship to the mechanism of protein termination. [Reviewing Editor: Dr. Manyuan Long]  相似文献   

15.
Chlamydia trachomatis (C.t) is a Gram-negative obligate intracellular bacteria and is a major causative of infectious blindness and sexually transmitted diseases. Among the varied serovars of this organism, A, B and C are reported as prominent ocular pathogens. Genomic studies of these strains shall aid in deciphering potential drug targets and genomic influence on pathogenesis. Hence, in this study we performed deep statistical profiling of codon usage in these serovars. The overall base composition analysis reveals that these serovars are over biased to AU than GC. Similarly, relative synonymous codon usage also showed preference towards A/U ending codons. Parity Rule 2 analysis inferred unequal distribution of AT and GC, indicative of other unknown factors acting along with mutational pressure to influence codon usage bias (CUB). Moreover, absolute quantification of CUB also revealed lower bias across these serovars. The effect of natural selection on CUB was also confirmed by neutrality plot, reinforcing natural selection under mutational pressure turned to be a pivotal role in shaping the CUB in the strains studied. Correspondence analysis (COA) clarified that, C.t C/TW-3 to show a unique trend in codon usage variation. Host influence analysis on shaping the codon usage pattern also inferred some speculative relativity. In a nutshell, our finding suggests that mutational pressure is the dominating factor in shaping CUB in the strains studied, followed by natural selection. We also propose potential drug targets based on cumulative analysis of strand bias, CUB and human non-homologue screening.  相似文献   

16.
以普通野生稻(Oryza rufipogon Griff.)线粒体基因组为对象,分析其蛋白质编码基因的密码子使用特征及与亚洲栽培稻(O. sativa L.)的差异,探讨其密码子偏性形成的影响因素和进化过程。结果显示:普通野生稻线粒体基因组编码序列第1、第2和第3位碱基的GC含量依次为49.18%、42.67%和40.86%;有效密码子数(Nc)分布于45.32~61.00之间,其密码子偏性较弱; Nc值仅与GC_3呈显著相关,密码子第3位的碱基组成对密码子偏性影响较大;第1向量轴上显示9.91%的差异,其与GC3s、Nc、密码子偏好指数(CBI)和最优密码子使用频率(Fop)的相关性均达到显著水平;而GC_3和GC12的相关性未达到显著水平。因此,普通野生稻线粒体基因组密码子的使用偏性主要受自然选择压力影响而形成。本研究确定了21个普通野生稻线粒体基因组的最优密码子,大多以A或T结尾,与叶绿体密码子具有趋同进化,但是与核基因组具有不同的偏好性。同义密码子相对使用度(RSCU)、PR2偏倚分析和中性绘图分析显示,普通野生稻线粒体基因功能和其密码子使用密切相关,且线粒体密码子使用在普通野生稻、粳稻(O. sativa L. subsp. japonica Kato)和籼稻(O. sativa L. subsp.indica Kato)内具有同质性。  相似文献   

17.
The efficiency of gene expression in all organisms depends on the nucleotide composition of the coding region. GC content and codon usage are the two key sequence features known to influence gene expression, but the underlying molecular mechanisms are not entirely clear. Here we have determined the relative contributions of GC content and codon usage to the efficiency of nuclear gene expression in the unicellular green alga Chlamydomonas reinhardtii. By comparing gene variants that encode an identical amino acid sequence but differ in their GC content and/or codon usage, we show that codon usage is the key factor determining translational efficiency and, surprisingly, also mRNA stability. By contrast, unfavorable GC content affects gene expression at the level of the chromatin structure by triggering heterochromatinization. We further show that mutant algal strains that permit high‐level transgene expression are less susceptible to epigenetic transgene suppression and do not establish a repressive chromatin structure at the transgenic locus. Our data disentangle the relationship between GC content and codon usage, and suggest simple strategies to overcome the transgene expression problem in Chlamydomonas.  相似文献   

18.
Analysis of synonymous codon usage pattern in the genome of a thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1 using multivariate statistical analysis revealed a single major explanatory axis accounting for codon usage variation in the organism. This axis is correlated with the GC content at third base of synonymous codons (GC3s) in correspondence analysis taking T. elongatus genes. A negative correlation was observed between effective number of codons i.e. Nc and GC3s. Results suggested a mutational bias as the major factor in shaping codon usage in this cyanobacterium. In comparison to the lowly expressed genes, highly expressed genes of this organism possess significantly higher proportion of pyrimidine-ending codons suggesting that besides, mutational bias, translational selection also influenced codon usage variation in T. elongatus. Correspondence analysis of relative synonymous codon usage (RSCU) with A, T, G, C at third positions (A3s, T3s, G3s, C3s, respectively) also supported this fact and expression levels of genes and gene length also influenced codon usage. A role of translational accuracy was identified in dictating the codon usage variation of this genome. Results indicated that although mutational bias is the major factor in shaping codon usage in T. elongatus, factors like translational selection, translational accuracy and gene expression level also influenced codon usage variation.  相似文献   

19.
In many organisms, the difference in codon usage patterns among genes reflects variation in local base compositional biases and the intensity of natural selection. In this study, a comparative analysis was performed to investigate the characteristics of codon bias and factors in shaping the codon usage patterns among mitochondrion, chloroplast and nuclear genes in common wheat (Triticum aestivum L.). GC contents in nuclear genes were higher than that in mitochondrion and chloroplast genes. The neutrality and correspondence analyses indicated that the codon usage in nuclear genes would be a result of relative strong mutational bias, while the codon usage patterns of mitochondrion and chloroplast genes were more conserved in GC content and influenced by translation level. The Parity Rule 2 (PR2) plot analysis showed that pyrimidines were used more frequently than purines at the third codon position in the three genomes. In addition, using a new alterative strategy, 11, 12, and 24 triplets were defined as preferred codons in the mitochondrion, chloroplast and nuclear genes, respectively. These findings suggested that the mitochondrion, chloroplast and nuclear genes shared particularly different features of codon usage and evolutionary constraints.  相似文献   

20.
Our environment is stressed with a load of heavy and toxic metals. Microbes, abundant in our environment, are found to adapt well to this metal-stressed condition. A comparative study among five Cupriavidus/Ralstonia genomes can offer a better perception of their evolutionary mechanisms to adapt to these conditions. We have studied codon usage among 1051 genes common to all these organisms and identified 15 optimal codons frequently used in highly expressed genes present within 1051 genes. We found the core genes of Cupriavidus metallidurans CH34 have a different optimal codon choice for arginine, glycine and alanine in comparison with the other four bacteria. We also found that the synonymous codon usage bias within these 1051 core genes is highly correlated with their gene expression. This supports that translational selection drives synonymous codon usage in the core genes of these genomes. Synonymous codon usage is highly conserved in the core genes of these five genomes. The only exception among them is C. metallidurans CH34. This genomewide shift in synonymous codon choice in C. metallidurans CH34 may have taken place due to the insertion of new genes in its genomes facilitating them to survive in heavy metal containing environment and the co-evolution of the other genes in its genome to achieve a balance in gene expression. Structural studies indicated the presence of a longer N-terminal region containing a copper-binding domain in the cupC proteins of C. metallidurans CH3 that helps it to attain higher binding efficacy with copper in comparison with its orthologs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号