首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  总被引:9,自引:0,他引:9  
We studied genetic structure in polar bear (Ursus maritimus) populations by typing a sample of 473 individuals spanning the species distribution at 16 highly variable microsatellite loci. No genetic discontinuities were found that would be consistent with evolutionarily significant periods of isolation between groups. Direct comparison of movement data and genetic data from the Canadian Arctic revealed a highly significant correlation. Genetic data generally supported existing population (management unit) designations, although there were two cases where genetic data failed to differentiate between pairs of populations previously resolved by movement data. A sharp contrast was found between the minimal genetic structure observed among populations surrounding the polar basin and the presence of several marked genetic discontinuities in the Canadian Arctic. The discontinuities in the Canadian Arctic caused the appearance of four genetic clusters of polar bear populations. These clusters vary in total estimated population size from 100 to over 10 000, and the smallest may merit a relatively conservative management strategy in consideration of its apparent isolation. We suggest that the observed pattern of genetic discontinuities has developed in response to differences in the seasonal distribution and pattern of sea ice habitat and the effects of these differences on the distribution and abundance of seals.  相似文献   

2.
    
Until recently, the sea ice habitat of polar bears was understood to be variable, but environmental variability was considered to be cyclic or random, rather than progressive. Harvested populations were believed to be at levels where density effects were considered not significant. However, because we now understand that polar bear demography can also be influenced by progressive change in the environment, and some populations have increased to greater densities than historically lower numbers, a broader suite of factors should be considered in demographic studies and management. We analyzed 35 years of capture and harvest data from the polar bear (Ursus maritimus) subpopulation in Davis Strait, including data from a new study (2005–2007), to quantify its current demography. We estimated the population size in 2007 to be 2,158 ± 180 (SE), a likely increase from the 1970s. We detected variation in survival, reproductive rates, and age-structure of polar bears from geographic sub-regions. Survival and reproduction of bears in southern Davis Strait was greater than in the north and tied to a concurrent dramatic increase in breeding harp seals (Pagophilus groenlandicus) in Labrador. The most supported survival models contained geographic and temporal variables. Harp seal abundance was significantly related to polar bear survival. Our estimates of declining harvest recovery rate, and increasing total survival, suggest that the rate of harvest declined over time. Low recruitment rates, average adult survival rates, and high population density, in an environment of high prey density, but deteriorating and variable ice conditions, currently characterize the Davis Strait polar bears. Low reproductive rates may reflect negative effects of greater densities or worsening ice conditions. © 2013 The Wildlife Society.  相似文献   

3.
    
  相似文献   

4.
    
The rapid loss of arctic sea ice is forcing a larger proportion of the Southern Beaufort Sea polar bear (Ursus maritimus) population to spend more time on land, increasing chances of negative interactions between people and bears. In the United States, the Marine Mammal Protection Act (MMPA) protects polar bears from incidental disturbance from human activities. For the remote and roadless areas of northern Alaska, USA, effective management of small aircraft activity is necessary to limit disturbance, but effects of overflights on polar bear behavior are largely unknown. During 2021 and 2022, we intentionally exposed polar bears (n = 115) to systematic aircraft activity (helicopter, fixed-wing) until we observed a disruption of behavior that qualified as a level B take response (e.g., abrupt change in activity or movement) under the MMPA. We used a Bayesian logistic regression to determine what factors influence and can be used to predict when a polar bear will exhibit a level B take response and estimate the probability of an aircraft eliciting a level B take response at different altitudes above the polar bear. Aircraft type, flight altitude, landscape (barrier islands vs. mainland), and bear behavior (active vs. inactive) upon initial aircraft encounter were all important predictors of take. Probability of take rapidly increased with a decrease in flight altitude starting at 450 m for helicopter and 300 m for fixed-wing aircraft. Active (e.g., standing, walking) polar bears on barrier-island landscapes were more likely to experience take than inactive (e.g., bedded) bears on mainland landscapes. Our findings can help with assessments and management plans by quantifying disturbance to polar bears from current and future human activity that involves aircraft use.  相似文献   

5.
    
ABSTRACT Some of the most pronounced ecological responses to climatic warming are expected to occur in polar marine regions, where temperature increases have been the greatest and sea ice provides a sensitive mechanism by which climatic conditions affect sympagic (i.e., with ice) species. Population-level effects of climatic change, however, remain difficult to quantify. We used a flexible extension of Cormack-Jolly-Seber capture-recapture models to estimate population size and survival for polar bears (Ursus maritimus), one of the most ice-dependent of Arctic marine mammals. We analyzed data for polar bears captured from 1984 to 2004 along the western coast of Hudson Bay and in the community of Churchill, Manitoba, Canada. The Western Hudson Bay polar bear population declined from 1,194 (95% CI = 1,020-1,368) in 1987 to 935 (95% CI = 794-1,076) in 2004. Total apparent survival of prime-adult polar bears (5–19 yr) was stable for females (0.93; 95% CI = 0.91-0.94) and males (0.90; 95% CI = 0.88-0.91). Survival of juvenile, subadult, and senescent-adult polar bears was correlated with spring sea ice breakup date, which was variable among years and occurred approximately 3 weeks earlier in 2004 than in 1984. We propose that this correlation provides evidence for a causal association between earlier sea ice breakup (due to climatic warming) and decreased polar bear survival. It may also explain why Churchill, like other communities along the western coast of Hudson Bay, has experienced an increase in human-polar bear interactions in recent years. Earlier sea ice breakup may have resulted in a larger number of nutritionally stressed polar bears, which are encroaching on human habitations in search of supplemental food. Because western Hudson Bay is near the southern limit of the species' range, our findings may foreshadow the demographic responses and management challenges that more northerly polar bear populations will experience if climatic warming in the Arctic continues as projected.  相似文献   

6.
We investigated the use of stable-carbon isotope analysis of serum and cellular fractions of blood to detect the extent of terrestrial feeding in polar bears on land during the ice-free period in western Hudson Bay. We compared blood in bears that were restricted entirely to coastal areas, who showed no evidence of terrestrial feeding, with blood in bears sampled at inland locations and who were known to have fed on berries of Vaccinium uliginosum and Empetrum nigrum . Despite a separation of approximately 9‰ between terrestrial and marine foods, we found no statistical difference in blood 613C values between these two groups of bears. This suggests that (1) carbon pathways associated with feeding on berries result in minor incorporation of terrestrial-based carbon into bulk plasma or cellular fractions of blood, (2) bears feed insignificantly on berries despite observational evidence to the contrary, or (3) carbon mobilized from endogenous lipid reserves overwhelmed the terrestrial signal or could not be segregated isotopically from carbon derived from berry carbohydrates. We discuss evidence for each of these scenarios and suggest that a more effective approach to using stable-carbon isotope analysis to delineate the importance or use of terrestrial foods to polar bears on land in Hudson Bay during the ice-free period might be through the isotopic analysis of exhaled carbon dioxide rather than blood components.  相似文献   

7.
    
Abstract: We present a comprehensive look at a sample of bear spray incidents that occurred in Alaska, USA, from 1985 to 2006. We analyzed 83 bear spray incidents involving brown bears (Ursus arctos; 61 cases, 74%), black bears (Ursus americanus; 20 cases, 24%), and polar bears (Ursus maritimus; 2 cases, 2%). Of the 72 cases where persons sprayed bears to defend themselves, 50 (69%) involved brown bears, 20 (28%) black bears, and 2 (3%) polar bears. Red pepper spray stopped bears' undesirable behavior 92% of the time when used on brown bears, 90% for black bears, and 100% for polar bears. Of all persons carrying sprays, 98% were uninjured by bears in close-range encounters. All bear—inflicted injuries (n = 3) associated with defensive spraying involved brown bears and were relatively minor (i.e., no hospitalization required). In 7% (5 of 71) of bear spray incidents, wind was reported to have interfered with spray accuracy, although it reached the bear in all cases. In 14% (10 of 71) of bear spray incidents, users reported the spray having had negative side effects upon themselves, ranging from minor irritation (11%, 8 of 71) to near incapacitation (3%, 2 of 71). Bear spray represents an effective alternative to lethal force and should be considered as an option for personal safety for those recreating and working in bear country. (JOURNAL OF WILDLIFE MANAGEMENT 72(3):640–645; 2008)  相似文献   

8.
    
Large-scale industrial activities can have negative effects on wildlife populations. Some of these effects, however, could be reduced with effective planning prior to development. The Coastal Plain of the Arctic National Wildlife Refuge, in northeastern Alaska, USA, is an important maternal denning area for polar bears (Ursus maritimus). Recent legislation has opened the area for potential oil and gas development. As a result, there is interest in conducting winter seismic surveys across the area that could disturb denning female polar bears and lead to decreased cub survival. We sought to demonstrate how different seismic survey designs, with and without aerial den detection surveys, could affect the level of potential effect on denning polar bears during spring (Feb–Apr). We developed 5 hypothetical seismic survey designs for a portion of the Coastal Plain ranging from no spatial or temporal restrictions on activities to explicit consideration of when and where operations can occur. We evaluated how many dens might be disturbed by seismic surveys and the average distance activity came within simulated polar bear dens. Survey design had a large effect on the estimated number of dens that could be disturbed; the scenario with the highest spatial and temporal specificity reduced the number of dens disturbed by >90% compared to the scenario with no restrictions on when and where activity could occur. The use of an aerial den detection survey prior to seismic activity further reduced the number of dens disturbed by 68% across all scenarios. The scenario with the highest spatial and temporal specificity always had the lowest level of disturbance for all scenarios with and without the aerial survey included. Our study suggests that large reductions in the probability of disturbance can occur through careful planning on the timing and distribution of proposed activities even when surveys are planned in areas with a high density of polar bear dens. Published 2019. This article is a U.S. Government work and is in the public domain in the USA. The Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   

9.
Predation on ringed seals ( Phoca hispida ) was examined in Barrow Strait between March and May 1984 to 1986. Polar bears were the most important predator. Evidence of bear predation was observed at 18–30% of the ringed seal subnivean structures we located. Ten to 24% of predation attempts were successful, with pups making up 75% to 100% of the seals killed. Bears killed an average of 0.08 to 0.51 seals/km2, which comprised 8 to 44% of the estimated annual pup production. Bears were successful on average in 11.3% of their attempts to kill pups hidden inside birth lairs. On southeast Baffin Island where snow was soft and pups were exposed, bears were successful in 33.5% of their attempts to kill a seal. Negative correlations were found between mean snow depth and predation by polar bears ( r = -0.896, P = 0.04, n = 5) in 1985, and between snow depth and the number of predation attempts ( r = -0.613, P = 0.02, n = 14) in 1986.  相似文献   

10.
    
We compiled, summarized, and reviewed 269 incidents of bear–human conflict involving firearms that occurred in Alaska during 1883–2009. Encounters involving brown bears (Ursus arctos; 218 incidents, 81%), black bears (Ursus americanus; 30 incidents, 11%), polar bears (Ursus maritimus; 6 incidents, 2%), and 15 (6%) unidentified species provided insight into firearms success and failure. A total of 444 people and at least 367 bears were involved in these incidents. We found no significant difference in success rates (i.e., success being when the bear was stopped in its aggressive behavior) associated with long guns (76%) and handguns (84%). Moreover, firearm bearers suffered the same injury rates in close encounters with bears whether they used their firearms or not. Bears were killed in 61% (n = 162) of bear–firearms incidents. Additionally, we identified multiple reasons for firearms failing to stop an aggressive bear. Using logistic regression, the best model for predicting a successful outcome for firearm users included species and cohort of bear, human activity at time of encounter, whether or not the bear charged, and if fish or game meat was present. Firearm variables (e.g., type of gun, number of shots) were not useful in predicting outcomes in bear–firearms incidents. Although firearms have failed to protect some users, they are the only deterrent that can lethally stop an aggressive bear. Where firearms have failed to protect people, we identified contributing causes. Our findings suggest that only those proficient in firearms use should rely on them for protection in bear country. © 2012 The Wildlife Society.  相似文献   

11.
  1. Greenhouse‐gas‐induced warming in the Arctic has caused declines in sea ice extent and changed its composition, raising concerns by all circumpolar nations for polar bear conservation.
  2. Negative impacts have been observed in three well‐studied polar bear subpopulations. Most subpopulations, however, receive little or no direct monitoring, hence, resource selection functions (RSF) may provide a useful proxy of polar bear distributions. However, the efficacy of RSFs constructed from past data, that is, reference RSFs, may be degraded under contemporary conditions, especially in a rapidly changing environment.
  3. We assessed published Arctic‐wide reference RSFs using tracking data from adult female polar bears captured in the Beaufort Sea. We compared telemetry‐derived seasonal distributions of polar bears to RSF‐defined optimal sea ice habitat during the period of RSF model development, 1985–1995, and two subsequent periods with diminished sea ice: 1996–2006 and 2007–2016. From these comparisons, we assessed the applicability of the reference RSFs for contemporary polar bear conservation.
  4. In the two decades following the 1985–1995 reference period, use and availability of optimal habitat by polar bears declined during the ice melt, ice minimum, and ice growth seasons. During the ice maximum season (i.e., winter), polar bears used the best habitat available, which changed relatively little across the three decades of study. During the ice melt, ice minimum, and ice growth seasons, optimal habitat in areas used by polar bears decreased and was displaced north and east of the Alaska Beaufort Sea coast. As optimal habitat diminished in these seasons, polar bears expanded their range and occupied greater areas of suboptimal habitat.
  5. Synthesis and applications: Sea ice declines due to climate change continue to challenge polar bears and their conservation. The distribution of Southern Beaufort Sea polar bears remained similar during the ice maximum season, so the reference RSFs developed from data collected >20 years ago continue to accurately model their winter distribution. In contrast, reference RSFs for the ice transitional and minimum seasons showed diminished predictive efficacy but were useful in revealing that contemporary polar bears have been increasingly forced to use suboptimal habitats during those seasons.
  相似文献   

12.
    
Polar bear (Ursus maritimus) subpopulations in several areas with seasonal sea ice regimes have shown declines in body condition, reproductive rates, or abundance as a result of declining sea ice habitat. In the Foxe Basin region of Nunavut, Canada, the size of the polar bear subpopulation has remained largely stable over the past 20 years, despite concurrent declines in sea ice habitat. We used fatty acid analysis to examine polar bear feeding habits in Foxe Basin and thus potentially identify ecological factors contributing to population stability. Adipose tissue samples were collected from 103 polar bears harvested during 2010–2012. Polar bear diet composition varied spatially within the region with ringed seal (Pusa hispida) comprising the primary prey in northern and southern Foxe Basin, whereas polar bears in Hudson Strait consumed equal proportions of ringed seal and harp seal (Pagophilus groenlandicus). Walrus (Odobenus rosmarus) consumption was highest in northern Foxe Basin, a trend driven by the ability of adult male bears to capture large‐bodied prey. Importantly, bowhead whale (Balaena mysticetus) contributed to polar bear diets in all areas and all age and sex classes. Bowhead carcasses resulting from killer whale (Orcinus orca) predation and subsistence harvest potentially provide an important supplementary food source for polar bears during the ice‐free period. Our results suggest that the increasing abundance of killer whales and bowhead whales in the region could be indirectly contributing to improved polar bear foraging success despite declining sea ice habitat. However, this indirect interaction between top predators may be temporary if continued sea ice declines eventually severely limit on‐ice feeding opportunities for polar bears.  相似文献   

13.
    
Subpopulation growth rates and the probability of decline at current harvest levels were determined for 13 subpopulations of polar bears (Ursus maritimus) that are within or shared with Canada based on mark–recapture estimates of population numbers and vital rates, and harvest statistics using population viability analyses (PVA). Aboriginal traditional ecological knowledge (TEK) on subpopulation trend agreed with the seven stable/increasing results and one of the declining results, but disagreed with PVA status of five other declining subpopulations. The decline in the Baffin Bay subpopulation appeared to be due to over‐reporting of harvested numbers from outside Canada. The remaining four disputed subpopulations (Southern Beaufort Sea, Northern Beaufort Sea, Southern Hudson Bay, and Western Hudson Bay) were all incompletely mark–recapture (M‐R) sampled, which may have biased their survival and subpopulation estimates. Three of the four incompletely sampled subpopulations were PVA identified as nonviable (i.e., declining even with zero harvest mortality). TEK disagreement was nonrandom with respect to M‐R sampling protocols. Cluster analysis also grouped subpopulations with ambiguous demographic and harvest rate estimates separately from those with apparently reliable demographic estimates based on PVA probability of decline and unharvested subpopulation growth rate criteria. We suggest that the correspondence between TEK and scientific results can be used to improve the reliability of information on natural systems and thus improve resource management. Considering both TEK and scientific information, we suggest that the current status of Canadian polar bear subpopulations in 2013 was 12 stable/increasing and one declining (Kane Basin). We do not find support for the perspective that polar bears within or shared with Canada are currently in any sort of climate crisis. We suggest that monitoring the impacts of climate change (including sea ice decline) on polar bear subpopulations should be continued and enhanced and that adaptive management practices are warranted.  相似文献   

14.
    
Climate warming is causing unidirectional changes to annual patterns of sea ice distribution, structure, and freeze‐up. We summarize evidence that documents how loss of sea ice, the primary habitat of polar bears (Ursus maritimus), negatively affects their long‐term survival. To maintain viable subpopulations, polar bears depend on sea ice as a platform from which to hunt seals for long enough each year to accumulate sufficient energy (fat) to survive periods when seals are unavailable. Less time to access to prey, because of progressively earlier breakup in spring, when newly weaned ringed seal (Pusa hispida) young are available, results in longer periods of fasting, lower body condition, decreased access to denning areas, fewer and smaller cubs, lower survival of cubs as well as bears of other age classes and, finally, subpopulation decline toward eventual extirpation. The chronology of climate‐driven changes will vary between subpopulations, with quantifiable negative effects being documented first in the more southerly subpopulations, such as those in Hudson Bay or the southern Beaufort Sea. As the bears' body condition declines, more seek alternate food resources so the frequency of conflicts between bears and humans increases. In the most northerly areas, thick multiyear ice, through which little light penetrates to stimulate biological growth on the underside, will be replaced by annual ice, which facilitates greater productivity and may create habitat more favorable to polar bears over continental shelf areas in the short term. If the climate continues to warm and eliminate sea ice as predicted, polar bears will largely disappear from the southern portions of their range by mid‐century. They may persist in the northern Canadian Arctic Islands and northern Greenland for the foreseeable future, but their long‐term viability, with a much reduced global population size in a remnant of their former range, is uncertain.  相似文献   

15.
    
David E. Kenny 《Zoo biology》2007,26(3):167-173
After the development of rickets in two hand‐reared polar bear (Ursus maritimus) cubs at the Denver Zoological Foundation we initiated a project opportunistically evaluating sera 25‐OH‐D3, calcium, phosphorus, and alkaline phosphatase levels in seven mother‐reared polar bear cubs. From one to three serum samples were obtained while the cub was still in the den with no access to natural sunlight and one after the cub exited the den. The sera 25‐OH‐D3 increased as the cubs grew (108±37 nmol/L [n=7] while in den, 184.6±48.3 nmol/L [n=7] out of the den) but were substantially lower then captive adults (348±215 nmol/L [n=36]) or free‐ranging adults (360±135 nmol/L [n=56]). We found that age was correlated significantly with 25‐OH‐D3 levels but den status (in or out) was not significant. Sera calcium and phosphorus values were highest in denned cubs (calcium, 2.9±0.4 mmol/L [n=13]; phosphorus, 3.1±0.5 mmol/L [n=13]) and then declined as the cubs matured and left the den (calcium, 2.5±0.1 mmol/L [n=7]; phosphorus, 2.4±0.4 mmol/L [n=7]). The enzyme alkaline phosphatase (presumably the bone isoenzyme) was high in denned growing cubs (831±426 IU/L [n=13]) and then declined gradually as the cubs aged and exited the den (96±83 IU/L [n=7]). Zoo Biol 0:1–7, 2007. © 2007 Wiley‐Liss, Inc.  相似文献   

16.
    
We estimated demographic parameters and harvest risks for polar bears ( Ursus maritimus ) inhabiting the Gulf of Boothia, Nunavut, from 1976 to 2000. We computed survival and abundance from capture–recapture and recovery data (630 marks) using a Burnham joint live–dead model implemented in program MARK. Annual mean total survival (including harvest) was 0.889 ± 0.179 (± 1 SE) for cubs, 0.883 ± 0.087 for subadults (ages 1–4), 0.919 ± 0.044 for adult females, and 0.917 ± 0.041 for adult males. Abundance in the last 3 yr of study was 1,592 ± 361 bears. Mean size of newborn litters was 1.648 ± 0.098 cubs. By age 7, 0.97 ± 0.30 of available females were producing litters. Harvest averaged 38.4 ± 4.2 bears/year in the last 5 yr of study; however, the 2002–2007 kill averaged 56.4 bears/yr. We used a harvested Population Viability Analysis (PVA) to examine impacts of increasing rates of harvest. We estimated the current population growth rate, λ H , to be 1.025 ± 0.032. Although this suggests the population is growing, progressive environmental changes may require more frequent population inventory studies to maintain the same levels of harvest risk.  相似文献   

17.
    
Oil and gas activities on Alaska's North Slope overlap spatially with polar bear (Ursus maritimus) maternal denning habitat and temporally with the peri-partum and emergence periods. Noise associated with these activities can be substantial and concerns regarding the effects on polar bears have been acknowledged. But the secluded and ephemeral nature of subnivean maternal dens renders the measurement of behavioral and physiological responses of bears to noise exposure challenging, except for rare cases when disturbance-prompted den abandonment has been documented. These limitations, coupled with the uncertainty associated with the synergistic effects of anthropogenic activities on bears in a rapidly changing Arctic, prompt the need to develop predictive models of disturbance to ensure management guidelines effectively mitigate disturbance. Towards this end, we characterized noise propagation from 9 sources (2 aircraft, 2 over-tundra tracked vehicles, 4 wheeled on-road vehicles, and humans walking) used to support industrial activities around artificial snow dens near Milne Point, Alaska, USA, in March–April 2010. We built dens in 4 configurations to mimic variability in den roof thickness and to evaluate differences in noise propagation from when the den was closed compared to being open, similar to den emergence. We integrated these data with an existing polar bear audiogram and developed models to predict auditory-detection probabilities as a function of distance from the den. Within a closed den, aircraft had high probabilities (detection probability ≥75%) of being detected by polar bears at distances ≤1.6 km and ground-based sources had high probabilities of detection at distances ≤0.8 km. On average, closed dens reduced noise levels by 15 decibels (dB) relative to open dens. Our findings indicate that although polar bear snow dens effectively attenuate acoustic sound pressure levels, noise from some industrial support vehicles was likely to be detected farther from dens than previously documented. These results reinforce the importance of maintaining buffer zones around polar bear dens to minimize the potential for den disturbance. © 2020 The Wildlife Society.  相似文献   

18.
    
The life-history, genetic, and habitat use differences between the 2 polar bear (Ursus maritimus) subpopulations in Alaska, USA, have been used to determine the geographic border separating them, but it has sparked a debate of the correct placement of the border for several years. Recently, the Southern Beaufort Sea (SBS) polar bear subpopulation has declined because of sea ice loss, while the Chukchi Sea (CS) subpopulation appears stable. To provide additional information about potential differences between the SBS and CS subpopulations, such as differences in prey sources, we used stable isotope analysis of carbon and nitrogen from bone collagen of polar bears in these 2 neighboring subpopulations. We analyzed polar bear bones from 112 individuals collected from 1954–2019. Our purpose was to determine if the SBS and CS subpopulations could be distinguished based on the stable isotope signatures of bone collagen. A difference >1‰ in stable carbon isotope (δ13C) values suggests a change in carbon sources, such as nearshore to offshore, while a 3‰ change in stable nitrogen isotope (δ15N) values equates to a change of about 1 trophic level. Our study indicated a difference in δ13C values (P ≤ 0.001) but not δ15N values (P = 0.654) between the CS (−13.0 ± 0.3‰ and 22.0 ± 0.9‰, respectively) and SBS bears (−14.7 ± 1.3‰ and 22.2 ± 1.0‰, respectively). Our findings indicate that the 2 subpopulations are consuming similar high trophic level prey, while feeding in ecosystems with different δ13C baselines. We performed a logistic regression analysis using δ13C and δ15N values of the polar bears to predict their placement into these 2 subpopulations. Using Icy Cape, Alaska as the geographical boundary, the analysis correctly placed polar bears in their respective subpopulations 82% of the time. Overall accuracy of placement changed to 84% when using the current geographical boundary at Utqiaġvik, Alaska. We predicted samples collected from the Wainwright, Alaska region as 58% CS and 42% SBS polar bears. This suggests that the area between Wainwright and Icy Cape is a polar bear mixing zone that includes bears from both subpopulations. Bone collagen has a long-term, potentially life-long, stable isotope turnover rate, and our results could be used to determine the association of harvested polar bears to Alaska subpopulations, thus aiding in transboundary harvest quota management.  相似文献   

19.
    
The Arctic Ocean is undergoing rapid transformation toward a seasonally ice‐free ecosystem. As ice‐adapted apex predators, polar bears (Ursus maritimus) are challenged to cope with ongoing habitat degradation and changes in their prey base driven by food‐web response to climate warming. Knowledge of polar bear response to environmental change is necessary to understand ecosystem dynamics and inform conservation decisions. In the southern Beaufort Sea (SBS) of Alaska and western Canada, sea ice extent has declined since satellite observations began in 1979 and available evidence suggests that the carrying capacity of the SBS for polar bears has trended lower for nearly two decades. In this study, we investigated the population dynamics of polar bears in Alaska''s SBS from 2001 to 2016 using a multistate Cormack–Jolly–Seber mark–recapture model. States were defined as geographic regions, and we used location data from mark–recapture observations and satellite‐telemetered bears to model transitions between states and thereby explain heterogeneity in recapture probabilities. Our results corroborate prior findings that the SBS subpopulation experienced low survival from 2003 to 2006. Survival improved modestly from 2006 to 2008 and afterward rebounded to comparatively high levels for the remainder of the study, except in 2012. Abundance moved in concert with survival throughout the study period, declining substantially from 2003 and 2006 and afterward fluctuating with lower variation around an average of 565 bears (95% Bayesian credible interval [340, 920]) through 2015. Even though abundance was comparatively stable and without sustained trend from 2006 to 2015, polar bears in the Alaska SBS were less abundant over that period than at any time since passage of the U.S. Marine Mammal Protection Act. The potential for recovery is likely limited by the degree of habitat degradation the subpopulation has experienced, and future reductions in carrying capacity are expected given current projections for continued climate warming.  相似文献   

20.
Determinants of Home Range Size for Polar Bears (Ursus maritimus)   总被引:1,自引:0,他引:1  
The mean home range size of female polar bears ( Ursus maritimus ; 125 100 km2 ± 11 800; n  = 93) is substantially larger than the predicted value (514 km2) for a terrestrial carnivore of similar weight. To understand this difference, we correlated home range size and sea ice characteristics. Home range size was related to (i) the ratio of land vs. sea within a given home range (42% of explained variance), and (ii) seasonal variation in ice cover (24%). Thus, bears using land during the ice-free season had larger home ranges and bears living in areas of great seasonal variation in ice cover also had larger home ranges. In another analysis we investigated how variation in a bear's environment in space and time affects its choice of home range. We found that polar bears adjusted the size of their home range according to the amount of annual and seasonal variation within the centre of their home range. For example, polar bears experiencing unpredictable seasonal and annual ice tended to increase their home range size if increasing home range size resulted in reducing variation in seasonal and annual ice. Polar bears make trade-offs between alternate space-use strategies. Large home ranges occur when variable ice cover is associated with more seals but also a more unpredictable distribution of those seals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号