首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Closely related species may evolve to coexist stably in sympatry through niche differentiation driven by in situ competition, a process termed character displacement. Alternatively, past evolution in allopatry may have already sufficiently reduced niche overlap to permit establishment in sympatry, a process called ecological sorting. The relative importance of each process to niche differentiation is contentious even though they are not mutually exclusive and are both mediated via multivariate trait evolution. We explore how competition has impacted niche differentiation in two monkeyflowers, Mimulus alsinoides and M. guttatus, which often co‐occur. Through field observations, common gardens, and competition experiments, we demonstrate that M. alsinoides is restricted to marginal habitats in sympatry and that the impacts of character displacement on niche differentiation are complex. Competition with M. guttatus alters selection gradients and has favored taller M. alsinoides with earlier seasonal flowering at low elevation and floral shape divergence at high elevation. However, no trait exhibits the pattern typically associated with character displacement, higher divergence between species in sympatry than allopatry. Thus, although character displacement was unlikely the process driving initial divergence along niche axes necessary for coexistence, we conclude that competition in sympatry has likely driven trait evolution along additional niche axes.  相似文献   

3.

Background

Understanding diversity patterns and the mechanisms underlying those patterns along elevational gradients is critically important for conservation efforts in montane ecosystems, especially those that are biodiversity hotspots. Despite recent advances, consensus on the underlying causes, or even the relative influence of a suite of factors on elevational diversity patterns has remained elusive.

Methods and Principal Findings

We examined patterns of species richness, density and range size distribution of birds, and the suite of biotic and abiotic factors (primary productivity, habitat variables, climatic factors and geometric constraints) that governs diversity along a 4500-m elevational gradient in the Eastern Himalayan region, a biodiversity hotspot within the world''s tallest mountains. We used point count methods for sampling birds and quadrats for estimating vegetation at 22 sites along the elevational gradient. We found that species richness increased to approximately 2000 m, then declined. We found no evidence that geometric constraints influenced this pattern, whereas actual evapotranspiration (a surrogate for primary productivity) and various habitat variables (plant species richness, shrub density and basal area of trees) accounted for most of the variation in bird species richness. We also observed that ranges of most bird species were narrow along the elevation gradient. We find little evidence to support Rapoport''s rule for the birds of Sikkim region of the Himalaya.

Conclusions and Significance

This study in the Eastern Himalaya indicates that species richness of birds is highest at intermediate elevations along one of the most extensive elevational gradients ever examined. Additionally, primary productivity and factors associated with habitat accounted for most of the variation in avian species richness. The diversity peak at intermediate elevations and the narrow elevational ranges of most species suggest important conservation implications: not only should mid-elevation areas be conserved, but the entire gradient requires equal conservation attention.  相似文献   

4.

Aim

To test whether spatial turnover patterns of mountain madicolous insect communities in the Southern Hemisphere support the ‘mountain passes are higher in the Tropic’ hypothesis (MPHT). To do this, we compared madicolous communities in the Amazon Mountains (equator) and the Atlantic Forest Mountains (23°S).

Location

Brazil.

Methods

We characterized madicolous insect communities in two elevational gradients between 90 to 3000 m a.s.l. separated by 23° of latitude, totalling 108 sampling sites. Since the MPHT predicts a more intense turnover along elevational gradients at lower latitudes than at higher latitudes, we evaluated beta diversity in the Amazon mountains, at the equator, and in the Atlantic Forest mountains, in the subtropical region. We quantified multiple-site abundance-based dissimilarity to assess whether beta diversity was different between both regions. We also performed constrained ordination (db-RDA) analyses to assess whether community dissimilarity (balanced variation in abundances) was uniquely or jointly explained by environmental, spatial and/or elevational predictors. Additionally, we independently assessed the relationship between community dissimilarity and altitudinal difference in each region and tested for differences in model parameters between regions.

Results

Although we found high species turnover in both regions, the community variation explained by environmental factors and altitude was higher in the Amazon than in the Atlantic Forest, as evidenced by db-RDA and altitudinal difference models. In general, communities were remarkably constrained by spatial predictors, which result from low dispersion capacity of most madicolous insects and low connectivity of madicolous systems. Consequently, the composition of madicolous insects notably diverged between regions, highlighting the complementarity and high conservation value of both systems.

Main Conclusions

Our results indicate that the MPHT explains, at the community level, the differences between low- and high-latitude mountain systems in community turnover along elevational gradients, even within a relatively short latitudinal distance in the Southern Hemisphere.  相似文献   

5.

Aim

We investigated changes in dung beetle β‐diversity components along a subtropical elevational gradient, to test whether turnover or nestedness‐related processes drive the dissimilarity of assemblages at spatial and temporal scales.

Location

An elevational gradient (200–1,600 m a.s.l.) of the Atlantic Forest in southern Brazil.

Methods

We investigated the extent to which β‐diversity varied along the elevational gradient (six elevations) at both spatial (among sites at different elevations) and temporal (different months at the same site) scales. We compared both the turnover and nestedness‐related dissimilarity of species and genera using multiple‐site or multiple‐month measures and tested whether these measurements were different from random expectations.

Results

A mid‐elevation peak in species richness along the elevational gradient was observed, and the lowest richness occurred at the highest elevations. We found two different groups of species, lowland and highland species, with a mixing of groups at intermediate elevations. The turnover component of β‐diversity was significantly higher for both spatial (i.e. elevational) and temporal changes in species composition. However, when the data for genera by site were considered, the elevational turnover value decreased in relative importance. Nestedness‐related processes are more important for temporal dissimilarity patterns at higher elevation sites.

Main conclusions

Spatial and temporal turnover of dung beetle species is the most important component of β‐diversity along the elevational gradient. High‐elevation assemblages are not subsets of assemblages that inhabit lower elevations, but this relationship ceases when β‐diversity is measured at the generic level. Environmental changes across elevations may be the cause of the differential establishment of distinctive species, but these species typically belong to the same higher taxonomic rank. Conservation strategies should consider elevational gradients in case‐specific scenarios as they may contain distinct species assemblages in lowlands vs. highlands.
  相似文献   

6.
Interspecific competition might drive the evolution of ecological niches and result in pairs of formerly competing species segregating along ecological gradients following a process of character displacement. This mechanism has been proposed to account for replacement of related species along gradients of elevation in many areas of the world, but the fundamental issue of whether competition is responsible for the origin of elevational replacements has not been tested. To test hypotheses about the role of interspecific competition in the origin of complementary elevational ranges, I combined molecular phylogenetics, phylogeography, and population genetic analyses on Buarremon torquatus and B. brunneinucha (Aves, Emberizidae), whose patterns of elevational distribution suggest character displacement or ecological release. The hypothesis that elevational distributions in these species changed in opposite directions as a result of competition is untenable because: (1) a historical expansion of the range of B. brunneinucha into areas occupied by B. torquatus was not accompanied by a shift in the elevational range of the former species; (2) when B. brunneinucha colonized the range of B. torquatus, lineages of the latter distributions had already diverged; and (3) historical trends in effective population size do not suggest populations with elevational ranges abutting those of putative competitors have declined as would be expected if competition caused range contractions. However, owing to uncertainty in coalescent estimates of historical population sizes, the hypothesis that some populations of B. torquatus have declined cannot be confidently rejected, which suggests asymmetric character displacement might have occurred. I suggest that the main role of competition in elevational zonation may be to act as a sorting mechanism that allows the coexistence along mountain slopes only of ecologically similar species that differ in elevational distributions prior to attaining sympatry. The contrasting biogeographic histories of B. brunneinucha and B. torquatus illustrate how present-day ecological interactions can have recent origins, and highlights important challenges for testing the hypothesis of character displacement in the absence of data on population history and robust reconstructions of the evolution of traits and geographic ranges.  相似文献   

7.
A central challenge in ecology and biogeography is to determine the extent to which physiological constraints govern the geographic ranges of species along environmental gradients. This study tests the hypothesis that temperature and desiccation tolerance are associated with the elevational ranges of 12 ground beetle species (genus Nebria) occurring on Mt. Rainier, Washington, U.S.A. Species from higher elevations did not have greater cold tolerance limits than lower-elevation species (all species ranged from -3.5 to -4.1°C), despite a steep decline in minimum temperature with elevation. Although heat tolerance limits varied among species (from 32.0 to 37.0°C), this variation was not generally associated with the relative elevational range of a species. Temperature gradients and acute thermal tolerance do not support the hypothesis that physiological constraints drive species turnover with elevation. Measurements of intraspecific variation in thermal tolerance limits were not significant for individuals taken at different elevations on Mt. Rainier, or from other mountains in Washington and Oregon. Desiccation resistance was also not associated with a species’ elevational distribution. Our combined results contrast with previously-detected latitudinal gradients in acute physiological limits among insects and suggest that other processes such as chronic thermal stress or biotic interactions might be more important in constraining elevational distributions in this system.  相似文献   

8.
Understanding diversity patterns along environmental gradients and their underlying mechanisms is a major topic in current biodiversity research. In this study, we investigate for the first time elevational patterns of vascular plant species richness and endemism on a long-isolated continental island (Crete) that has experienced extensive post-isolation mountain uplift. We used all available data on distribution and elevational ranges of the Cretan plants to interpolate their presence between minimum and maximum elevations in 100-m elevational intervals, along the entire elevational gradient of Crete (0–2400 m). We evaluate the influence of elevation, area, mid-domain effect, elevational Rapoport effect and the post-isolation mountain uplift on plant species richness and endemism elevational patterns. Furthermore, we test the influence of the island condition and the post-isolation mountain uplift to the elevational range sizes of the Cretan plants, using the Peloponnese as a continental control area. Total species richness monotonically decreases with increasing elevation, while endemic species richness has a unimodal response to elevation showing a peak at mid-elevation intervals. Area alone explains a significant amount of variation in species richness along the elevational gradient. Mid-domain effect is not the underlying mechanism of the elevational gradient of plant species richness in Crete, and Rapoport''s rule only partly explains the observed patterns. Our results are largely congruent with the post-isolation uplift of the Cretan mountains and their colonization mainly by the available lowland vascular plant species, as high-elevation specialists are almost lacking from the Cretan flora. The increase in the proportion of Cretan endemics with increasing elevation can only be regarded as a result of diversification processes towards Cretan mountains (especially mid-elevation areas), supported by elevation-driven ecological isolation. Cretan plants have experienced elevational range expansion compared to the continental control area, as a result of ecological release triggered by increased species impoverishment with increasing elevation.  相似文献   

9.

Aim

Many studies demonstrate that climate limits invertebrates along tropical elevational gradients, but we have only a rudimentary understanding of the role of nutrient limitation and climatic seasonality. Here we examined the relationships between ant community structure, nutrient use and season along three undisturbed elevational gradients, each from a different continent.

Location

Ecuador (South America), Papua New Guinea (PNG: Oceania), Tanzania (Africa).

Time period

2011–2014.

Major taxa studied

Ants.

Methods

Along each of the three gradients, we placed six distinct nutrient types (amino acid, sucrose, sucrose + amino acid, lipid, NaCl, H2O). In total, we distributed 2370 baits at 38 sites from 203 m to 3972 m. We used generalized linear models to test for the effects of elevation and season on ant species richness and activity and relative nutrient use. We also tested if changes in ant trophic guilds corresponded to changes in the use of particular nutrients.

Results

Both species richness and activity decreased with elevation along each gradient. However, there were significant interaction effects among elevation, region and season, as ant activity in the dry season was higher in Ecuador and Tanzania but lower in PNG. Relative nutrient use varied among regions: ant preference for some nutrients changed with increasing elevation in Ecuador (decrease in lipid use) and Tanzania (decrease in amino acid and H2O use), while season affected nutrient use in PNG. There were common trends in trophic guilds along the three elevational gradients (e.g. proportional increase of predators), but these did not explain most of the nutrient use patterns.

Main conclusion

While the structure of ant communities changed similarly with elevation, both the seasonal and elevational effects on nutrient use by ants differed between continents. We argue that regional differences in climate and nutrient availability rather than ant functional composition shape nutrient use by ants.  相似文献   

10.

Background

Studying diversity and distribution patterns of species along elevational gradients and understanding drivers behind these patterns is central to macroecology and conservation biology. A number of studies on biogeographic gradients are available for terrestrial ecosystems, but freshwater ecosystems remain largely neglected. In particular, we know very little about the species richness gradients and their drivers in the Himalaya, a global biodiversity hotspot.

Methodology/Principal Findings

We collated taxonomic and distribution data of fish species from 16 freshwater Himalayan rivers and carried out empirical studies on environmental drivers and fish diversity and distribution in the Teesta river (Eastern Himalaya). We examined patterns of fish species richness along the Himalayan elevational gradients (50–3800 m) and sought to understand the drivers behind the emerging patterns. We used generalized linear models (GLM) and generalized additive models (GAM) to examine the richness patterns; GLM was used to investigate relationship between fish species richness and various environmental variables. Regression modelling involved stepwise procedures, including elimination of collinear variables, best model selection, based on the least Akaike’s information criterion (AIC) and the highest percentage of deviance explained (D2). This maiden study on the Himalayan fishes revealed that total and non-endemic fish species richness monotonously decrease with increasing elevation, while endemics peaked around mid elevations (700–1500 m). The best explanatory model (synthetic model) indicated that water discharge is the best predictor of fish species richness patterns in the Himalayan rivers.

Conclusions/Significance

This study, carried out along one of the longest bioclimatic elevation gradients of the world, lends support to Rapoport’s elevational rule as opposed to mid domain effect hypothesis. We propose a species-discharge model and contradict species-area model in predicting fish species richness. We suggest that drivers of richness gradients in terrestrial and aquatic ecosystems are likely to be different. These studies are crucial in context of the impacts of unprecedented on-going river regulation on fish diversity and distribution in the Himalaya.  相似文献   

11.
The Andean mountain range has played an important role in the evolution of South American biota. However, there is little understanding of the patterns of species diversity across latitudinal and altitudinal gradients. In this paper, we examine the diversity of small mammals along the South Central Dry Andes (SCDA) within the framework of two contrasting hypotheses: (a) species richness decreases with increasing elevation and latitude; and (b) species richness peaks at altitudinal midpoints (mid‐domain). We explore the composition of the species pool, the impact of species–area relationships and the Rapoport effect (i.e. size of geographic ranges) along latitudinal and elevational gradients. First, we constructed a database of SCDA small mammals. Then, species richness patterns were analysed through generalized models, and species–area relationships were assessed by log–log regressions; the curvilinear method (c = S/Az) was use to compute richness corrected by area size. Lastly, the Rapoport effect was evaluated using the midpoint method. Our results show: (1) a richness of 67 small mammals along the SCDA, of which 36 are endemic; (2) a hump‐shaped pattern in species richness along elevation and latitudinal gradients; (3) a species–area relationship for both gradients; (4) endemic species corrected by area present a strong and positive relationship with elevation; (5) a Rapoport effect for the latitudinal ranges, but no effect across the elevational gradient; and (6) a major species turnover between 28° and 30° south latitude. This is the first study quantifying the diversity of small mammals encompassing the central Andean region. Overall, our macrogeographic analysis supports the previously postulated role of the Andes in the diversification of small mammals (i.e. in situ cladogenesis) and highlights some basic attributes (i.e. anatomy of geographic ranges; species–area relationships) when considering the consequences of climate change on biodiversity conservation of mountain ecosystems.  相似文献   

12.

Background

Thermal gradients along changes in elevation in mountainous environments are reflected by different biotas. Although there have been studies of elevation variation in bat assemblages in summer, winter changes in the same gradients remain unknown.

Methodology/Principal Findings

The objective of this study was to document changes in the species composition of bats hibernating in caves along a temperate elevational gradient. We studied 70 caves between from 300 m to 1,930 m altitude along a slope of the Carpathian Mountains in southern Poland. We recorded changes in bats, including species richness, abundance, altitudinal distribution and dominance during consecutive winters between 2003 and 2009. Similarity of dominance of faunal structure was assessed by using the Bray-Curtis similarity index. We used the generalised additive model and rarefaction to study the variation in species richness, and generalized additive mixed models to examine the effect of abiotic factors on the qualitative and quantitative structure of bat assemblages. During 351 surveys we recorded 13,856 hibernating bats from 15 species. Species richness peaked around mid-elevation (1,100–1,400 m a.s.l.) with richness declining at both higher and lower elevations. Based on the results of a cluster analysis, we could distinguish among four altitudinal zones that differed in species richness and dominance structure.

Conclusions/Significance

This is the first study documenting changes in species richness and variation of structure of bats hibernating in caves along an elevational gradient. The most surprising and key finding is the fact that changes in the structure of assemblages of hibernating bats along the altitudinal gradient occurred in jumps, forming zones similar to those observed in the vegetation zones. Moreover, species richness and dominance structure of assemblages of hibernating bats in the mountains depended not only on location above sea level, but also on local geomorphologic conditions which strongly affected the microclimate of the caves.  相似文献   

13.
ABSTRACT

Background: Several studies have documented the variation in species diversity patterns along elevational gradients in the Himalaya, but few have reported the evolutionary and biogeographic processes behind these patterns.

Aims: To understand whether evolutionary history and phylogeny have any role in structuring plant species communities along an elevational gradient in the Sikkim Himalaya.

Methods: We used data on endemic plant species occurrence from primary and secondary sources to construct family-level phylogenetic supertrees for different growth forms with the help of Phylomatic tool of Phylocom. These phylogenetic supertrees were used as a base for testing phylogenetic diversity (PD), niche conservatism, diversification time patterns and phylogenetic structure of various plant growth forms along an elevational gradient.

Results: PD was the highest at mid-elevations for all growth forms and PD had a significant positive correlation with endemic species richness. Species at mid-elevations were dominated by the ancestral/primitive taxa. There was phylogenetic clustering at higher elevations and phylogenetic overdispersion at lower and mid-elevations for the majority of the growth forms.

Conclusions: Time-for-speciation effect and niche conservatism along elevation (retention of niche-related ancestral elevational distribution over evolutionary time scale by species) together determine plant species diversity patterns in the Himalaya.  相似文献   

14.
1  Distribution data were assembled for non-volant small mammals along elevational gradients on mountain ranges in the western U.S.A. Elevational distributions in the species-rich Uinta Mountains were compared to those on smaller mountain ranges with varying degrees of historical isolation from the Uintas.
2  For mountain ranges supporting the richest faunas, species richness is highest over a broad low- to mid-elevation zone and declines at both lower and higher elevations. Patterns on other mountain ranges are similar but reflect lower overall species richness.
3  A basic relationship between elevational and geographical distribution is apparent in the occurrence patterns of mammals on regional mountains. Faunas on mountains that have had low levels of historical isolation appear to be influenced by immigration rather than extinction. Species restricted to high elevations in the Uintas are poorly represented on historically isolated mountains and form a portion of local faunas shaped by extinction. Species occurring at lower elevations in the Uintas have better representation on isolated mountains and apparently maintain populations through immigration.
4  Several widespread species show substantial variation in maximum elevation records on different mountain ranges. This involves (1) an upward shift in habitat zones on small, isolated mountain ranges, allowing greater access by low-elevation species, and (2) expansion of certain low- and mid-elevation species into habitats normally occupied by absent high-elevation taxa.
5  Results indicate that montane mammal faunas of the intermountain region have been shaped by broad-scale historical processes, unique regional geography and local ecological dynamics. Parallel examples among mammals of the Philippine Islands suggest that such patterns may characterize many insular faunas.  相似文献   

15.
Tropical mountains contain some of the world’s richest animal communities as a result of high turnover of species along elevational gradients. We describe an approach to study the roles of biotic and abiotic factors in establishing elevational ranges, and to improve our ability to predict the effects of climate change on these communities. As a framework we use Hutchinson’s concept of the fundamental niche (determined by the match between the physical environment and the organism’s physiological and biophysical characteristics) and realized niche (the subset of the fundamental niche determined by biotic interactions). Using tropical birds as an example, we propose a method for estimating fundamental niches and discuss five biotic interactions that we expect to influence distributions of tropical montane animals: predation, competition, parasites and pathogens, mutualisms, and habitat associations. The effects of biotic factors on elevational ranges have been studied to some extent, but there is little information on physiological responses of tropical montane animals. It will be necessary to understand all of these ecological constraints in concert to predict current and future elevational ranges and potential threats to montane species. Given the importance of tropical mountains as global biodiversity hotspots, we argue that this area of research requires urgent attention.  相似文献   

16.
Ascertaining which niche processes allow coexistence between closely related species is of special interest in ecology. We quantified variations in the environmental niches and densities of two congeneric species, the pin-tailed and the black-bellied sandgrouse (Pterocles alchata and Pterocles orientalis) in allopatry and sympatry under similar abiotic, habitat and dispersal contexts to understand their coexistence. Using principal component analysis, we defined environmental gradients (niche dimensions) including abiotic, habitat and anthropogenic variables, and calculated niche breadth, position and overlap of both species in sympatry and allopatry. Additionally, sandgrouse density was modelled as a function of the niche dimensions and the density of the other species. We found evidence that each species occupies distinct environmental niches in sympatry and in allopatry. The black-bellied sandgrouse exploits a broader range of environmental conditions (wider niche breadth) while the pin-tailed sandgrouse reaches high densities where conditions seem to match its optimum. In sympatry, both species shift their niches to intermediate positions, indicating the importance of abiotic factors in setting coexistence areas. Environmental conditions determine regional densities of pin-tailed sandgrouse whereas biotic interactions explain the density of the black-bellied sandgrouse in areas with abiotic conditions similarly conducive for both species. Highly suitable areas for the pin-tailed sandgrouse fall beyond the upper thermal limit of the black-bellied sandgrouse, leading to niche segregation and low densities for the latter. Finally, local niche shift and expansion plus possible heterospecific aggregation allow the pin-tailed sandgrouse to thrive in a priori less favourable environments. This work provides insight into how different mechanisms allow species coexistence and how species densities vary in sympatry compared to allopatry as a result of environmental filtering and biotic interactions.  相似文献   

17.
Over the past decades, elevational gradients have become a powerful tool with which to understand the underlying cause(s) of biodiversity. The Mt. Wilhelm elevational transect is one such example, having been used to study the birds, insects, and plants of Papua New Guinea (PNG). However, a survey of mammals from this forest elevational transect was lacking. We thus aimed to investigate patterns in the community structure and species richness of bats (Chiroptera) along the transect, link the species to available regional data, and explain the observed patterns by including environmental characteristics. Bat assemblages were surveyed between 200 m and a timberline at 3700 m a.s.l. at eight study sites separated by 500 m in elevation. We conducted mist-netting and acoustic surveys to detect and identify species at each site. Regional data were compiled to compare local with regional diversity. Finally, biotic (i.e., food availability, habitat features) and abiotic (i.e., mean daily temperature) factors were included in our analyses to disentangle the ecological drivers underlying bat diversity. Results revealed that species richness decreases with ascending elevation and was best explained by a corresponding decrease in temperature. We observed both turnover and nestedness of the species composition at regional scale whereas turnover was dominant at local scale. Extensions and shifts of bat elevational ranges were also found in Mt. Wilhelm. Consequently, despite that the study was restricted to one mountain in PNG, it demonstrates how basic inventory surveys can be used to address ecological questions in other similar and undisturbed tropical mountains.  相似文献   

18.
We investigated elevational richness patterns of three moth groups (Erebidae, Geometridae, and Noctuidae) along four elevational gradients located on one northern and three southern mountains in South Korea, as well as the effects of plants and climatic factors on the diversity patterns of moths. Moths were collected with an ultraviolet light trap at 32 sites from May through October, 2013. Plant species richness and mean temperatures for January and June were acquired. Observed and estimated moth species richness was calculated and the diversity patterns with null models were compared. Species richness along four elevational gradients peaked at mid-elevations, whereas deviations occurred at elevations below mid-peak in the southern mountains and elevations higher than mid-peak on the northern mountain. Species richness curves of three moth groups also peaked at mid-elevations throughout South Korea. However, the species richness curves for Erebidae were positively skewed, indicating that a preference for lowlands, whereas curves of the Geometridae were negatively skewed, indicating a preference for highlands. The mid-peak diversity pattern between plants and moths on the Korean mountains showed an elevational breadth that overlapped between 800 and 900 m. Multiple regression analysis revealed that plant species richness and January mean temperature significantly influenced moth species richness and abundance. The rapid increase in mean annual temperature in the Korean peninsula and the unimodal elevational gradients of moths across the country suggest that an uphill shift in peak optimum elevation and changes in the highest peak of the curve will occur in the future.  相似文献   

19.
Aim Elevational gradients distributed across the globe are a powerful test system for understanding biodiversity. Here I use a comprehensive set of bird elevational gradients to test the main drivers of diversity, including sampling, area, mid‐domain effect, temperature, temperature and water availability, and hypotheses of evolutionary history. Location Seventy‐eight elevational gradients of bird diversity from mountains in both hemispheres spanning 24.5° S to 48.2° N, including gradients from various climates, biogeographical regions and habitat types. Methods Data on bird elevational diversity were taken from the literature. Of the 150 datasets found or compiled, only those with a high, unbiased sampling effort were used in analyses. Datasets sampled all birds, all breeding birds or all forest birds; a few studies detailed seasonal, elevational shifts. Eighteen predictions of diversity theory were tested, including three sets of interactions. Results Birds display four distinct diversity patterns in nearly equal frequency on mountains: decreasing diversity, low‐elevation plateaus, low‐elevation plateaus with mid‐peaks, and unimodal mid‐elevational peaks. Bird elevational diversity strongly supports current climate as the main driver of diversity, particularly combined trends in temperature and water availability. Bird diversity on humid mountains is either decreasing or shows a low‐elevation plateau in diversity, while on dry mountains it is unimodal or a broad, low‐elevation plateau usually with a mid‐elevation maximum. The predictions of sampling, area and mid‐domain effect were not consistently supported globally. The only evolutionary hypothesis with preliminary support was niche conservatism. Main conclusions Both water and temperature variables are needed to comprehensively predict elevational diversity patterns for birds. This result is consistent for breeding and forest birds, for both hemispheres, and for local‐ or regional‐scale montane gradients. More analyses are needed to discern whether the mechanism underlying these relationships is ecological, based on direct physiological limitations or indirect food resource limitations, or historical, based on phylogenetic niche conservation or other evolutionary trends related to climate. The species–area and mid‐domain effects are not supported as primary drivers of elevational diversity in birds.  相似文献   

20.
Coexistence often involves niche differentiation either as the result of environmental divergence, or in response to competition. Disentangling the causes of such divergence requires that environmental variation across space is taken into account, which is rarely done in empirical studies. We address the role of environmental variation versus competition in coexistence between two rodent species: Rhabdomys bechuanae (bechuanae) and Rhabdomys dilectus dilectus (dilectus) comparing their habitat preference and home range (HR) size in areas with similar climates, where their distributions abut (allopatry) or overlap (sympatry). Using Outlying Mean Index analyses, we test whether habitat characteristics of the species deviate significantly from a random sample of available habitats. In allopatry, results suggest habitat selection: dilectus preferring grasslands with little bare soil while bechuanae occurring in open shrublands. In sympatry, shrubland type habitats dominate and differences are less marked, yet dilectus selects habitats with more cover than bechuanae. Interestingly, bechuanae shows larger HRs than dilectus, and both species display larger HRs in sympatry. Further, HR overlaps between species are lower than expected. We discuss our results in light of data on the phylogeography of the genus and propose that evolution in allopatry resulted in adaptation leading to different habitat preferences, even at their distribution margins, a divergence expected to facilitate coexistence. However, since sympatry occurs in sites where environmental characteristics do not allow complete species separation, competition may explain reduced inter-species overlap and character displacement in HR size. This study reveals that both environmental variation and competition may shape species coexistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号