首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a mathematical framework that combines extinction-colonization dynamics with the dynamics of patch succession. We draw an analogy between the epidemiological categorization of individuals (infected, susceptible, latent and resistant) and the patch structure of a spatially heterogeneous landscape (occupied-suitable, empty-suitable, occupied-unsuitable and empty-unsuitable). This approach allows one to consider life-history attributes that influence persistence in patchy environments (e.g., longevity, colonization ability) in concert with extrinsic processes (e.g., disturbances, succession) that lead to spatial heterogeneity in patch suitability. It also allows the incorporation of seed banks and other dormant life forms, thus broadening patch occupancy dynamics to include sink habitats. We use the model to investigate how equilibrium patch occupancy is influenced by four critical parameters: colonization rate, extinction rate, disturbance frequency and the rate of habitat succession. This analysis leads to general predictions about how the temporal scaling of patch succession and extinction-colonization dynamics influences long-term persistence. We apply the model to herbaceous, early-successional species that inhabit open patches created by periodic disturbances. We predict the minimum disturbance frequency required for viable management of such species in the Florida scrub ecosystem.  相似文献   

2.
Classical ecological theory has proposed several determinants of food chain length, but the role of metacommunity dynamics has not yet been fully considered. By modelling patchy predator-prey metacommunities with extinction-colonization dynamics, we identify two distinct constraints on food chain length. First, finite colonization rates limit predator occupancy to a subset of prey-occupied sites. Second, intrinsic extinction rates accumulate along trophic chains. We show how both processes concur to decrease maximal and average food chain length in metacommunities. This decrease is mitigated if predators track their prey during colonization (habitat selection) and can be reinforced by top-down control of prey vital rates (especially extinction). Moreover, top-down control of colonization and habitat selection can interact to produce a counterintuitive positive relationship between perturbation rate and food chain length. Our results show how novel limits to food chain length emerge in spatially structured communities. We discuss the connections between these constraints and the ones commonly discussed, and suggest ways to test for metacommunity effects in food webs.  相似文献   

3.
Colonization and extinction are primary drivers of local population dynamics, community structure, and spatial patterns of biological diversity. Existing paradigms of island biogeography, metapopulation biology, and metacommunity ecology, as well as habitat management and conservation biology based on those paradigms, emphasize patch size, number, and isolation as primary characteristics influencing colonization and extinction. Habitat selection theory suggests that patch quality could rival size, number, and isolation in determining rates of colonization and resulting community structure. We used naturally colonized experimental landscapes to address four issues: (a) how do colonizing aquatic beetles respond to variation in patch number, (b) how do they respond to variation in patch quality, (c) does patch context affect colonization dynamics, and (d) at what spatial scales do beetles respond to habitat variation? Increasing patch number had no effect on per patch colonization rates, while patch quality and context were critical in determining colonization rates and resulting patterns of abundance and species richness at multiple spatial scales. We graphically illustrate how variation in immigration rates driven by perceived predation risk (habitat quality) can further modify dynamics of the equilibrium theory of island biogeography beyond predator-driven effects on extinction rates. Our data support the importance of patch quality and context as primary determinants of colonization rate, occupancy, abundance, and resulting patterns of species richness, and reinforce the idea that management of metapopulations for species preservation, and metacommunities for local and regional diversity, should incorporate habitat quality into the predictive equation.  相似文献   

4.
Understanding the regional dynamics of plant communities is crucial for predicting the response of plant diversity to habitat fragmentation. However, for fragmented landscapes the importance of regional processes, such as seed dispersal among isolated habitat patches, has been controversially debated. Due to the stochasticity and rarity of among‐patch dispersal and colonization events, we still lack a quantitative understanding of the consequences of these processes at the landscape‐scale. In this study, we used extensive field data from a fragmented, semi‐arid landscape in Israel to parameterize a multi‐species incidence‐function model. This model simulates species occupancy pattern based on patch areas and habitat configuration and explicitly considers the locations and the shapes of habitat patches for the derivation of patch connectivity. We implemented an approximate Bayesian computation approach for parameter inference and uncertainty assessment. We tested which of the three types of regional dynamics – the metacommunity, the mainland‐island, or the island communities type – best represents the community dynamics in the study area and applied the simulation model to estimate the extinction debt in the investigated landscape. We found that the regional dynamics in the patch‐matrix study landscape is best represented as a system of highly isolated ‘island’ communities with low rates of propagule exchange among habitat patches and consequently low colonization rates in local communities. Accordingly, the extinction rates in the local communities are the main drivers of community dynamics. Our findings indicate that the landscape carries a significant extinction debt and in model projections 33–60% of all species went extinct within 1000 yr. Our study demonstrates that the combination of dynamic simulation models with field data provides a promising approach for understanding regional community dynamics and for projecting community responses to habitat fragmentation. The approach bears the potential for efficient tests of conservation activities aimed at mitigating future losses of biodiversity.  相似文献   

5.
Many metacommunities are distributed across habitat patches that are themselves aggregated into groups. Perhaps the clearest example of this nested metacommunity structure comes from multi-species parasite assemblages, which occupy individual hosts that are aggregated into host populations. At both spatial scales, we expect parasite community diversity in a given patch (either individual host or population) to depend on patch characteristics that affect colonization rates and species sorting. But, are these patch effects consistent across spatial scales? Or, do different processes govern the distribution of parasite community diversity among individual hosts, versus among host patches? To answer these questions, we document the distribution of parasite richness among host individuals and among populations in a metapopulation of threespine stickleback Gasterosteus aculeatus. We find some host traits (host size, gape width) are associated with increased parasite richness at both spatial scales. Other patch characteristics affect parasite richness only among individuals (sex), or among populations (lake size, lake area, elevation and population mean heterozygosity). These results demonstrate that some rules governing parasite richness in this metacommunity are shared across scales, while others are scale-specific.  相似文献   

6.
The single-species spatially realistic patch occupancy metapopulation model is, in this study, extended to a metacommunity of many competing species. Competition is assumed to reduce the local carrying capacity (effective patch area), which in turn increases local extinction rates and reduces colonization rates because of smaller population sizes. Each species is described by three parameters: pre-competitive abundance (equilibrium incidence of patch occupancy, which reflects the rate of colonization in relation to extinction rate), the spatial range of migration, and competitive ability. The model ignores spatio–temporal correlations caused by interspecific interactions, because in metacommunities of unequal competitors inhabiting heterogeneous landscapes, correlations in the occurrence of species are driven more by patch heterogeneity than by competition. The model allows the calculation of multispecies equilibria in patchy habitats without simulations. In general, the number of coexisting species in the metacommunity increases with decreasing strength of competition, increasing rate of colonization, and decreasing range of migration. Habitat heterogeneity in the form of spatial variation in patch areas tends to facilitate coexistence. Poor competitors may coexist with superior competitors in the patch network if the former have higher colonization rates (competition–colonization trade-off). When migration distances are short, competition leads to spatial pattern formation: Species tend to have restricted spatial distributions in the network, but contrary to intuitive expectations, often the distributions of many species are nested. Having more dispersive species enhances both local and global diversity, whereas more local migration decreases local but increases global diversity.  相似文献   

7.
  1. Aquatic ecosystems are biodiversity hot spots across many landscapes; therefore, the degradation of these habitats can lead to decreases in biodiversity across multiple scales. Salinisation is a global issue that threatens freshwater ecosystems by reducing water quality and local biodiversity. The effects of salinity on local processes have been studied extensively; however, the effects of salinisation or similar environmental stressors within a metacommunity (a dispersal network of several distinct communities) have not been explored.
  2. We tested how the spatial heterogeneity and the environmental contrast between freshwater and saline habitat patches influenced cladoceran biodiversity and species composition at local and regional scales in a metacommunity mesocosm experiment. We defined spatial heterogeneity as the proportion of freshwater to saltwater patches within the metacommunity, ranging from a freshwater-dominated metacommunity to a saltwater-dominated metacommunity. Environmental contrast was defined as the environmental distance between habitat patches along the salinity gradient in which low-contrast metacommunities consisted of freshwater and low-salinity patches and high-contrast metacommunities consisted of freshwater and high-salinity patches.
  3. We hypothesised that the α-richness of freshwater patches and metacommunity γ-richness would decrease as freshwater patches became less abundant along the spatial heterogeneity gradient in both low- and high-contrast metacommunities, because there would be fewer freshwater patches that could serve as source populations for declining populations. We hypothesised that low-contrast metacommunities would support more species across the spatial heterogeneity gradient than high-contrast metacommunities, because, via dispersal, low-salinity patches can support halotolerant freshwater species that can mitigate population declines in neighbouring freshwater patches, whereas` high-salinity patches will mostly support halophilic species, providing fewer potential colonisers to freshwater patches.
  4. We found that α-richness of freshwater mesocosms and metacommunity γ-richness declined in saline-dominated metacommunities regardless of the environmental contrast between the freshwater and saline mesocosms. We found that environmental contrast influenced freshwater and saline community composition in low-contrast metacommunities by increasing the abundances of species that could tolerate low-salinity environments through dispersal, whereas freshwater and high-salinity communities showed limited interactions through dispersal.
  5. Freshwater mesocosms had a disproportionate effect on the local and regional biodiversity in these experimental metacommunities, indicating that habitat identity may be more important than habitat diversity for maintaining biodiversity in some metacommunities. This study further emphasises the importance in maintaining multiple species-rich habitat patches across landscapes, particularly those experiencing landscape-wide habitat degradation.
  相似文献   

8.
Although metacommunity ecology has been a major field of research in the last decades, with both conceptual and empirical outputs, the analysis of the temporal dynamics of metacommunities has only emerged recently and consists mostly of repeated static analyses. Here we propose a novel analytical framework to assess metacommunity processes using path analyses of spatial and temporal diversity turnovers. We detail the principles and practical aspects of this framework and apply it to simulated datasets to illustrate its ability to decipher the respective contributions of entangled drivers of metacommunity dynamics. We then apply it to four empirical datasets. Empirical results support the view that metacommunity dynamics may be generally shaped by multiple ecological processes acting in concert, with environmental filtering being variable across both space and time. These results reinforce our call to go beyond static analyses of metacommunities that are blind to the temporal part of environmental variability.  相似文献   

9.
叶曦  方笛熙  张锋 《生态学报》2024,44(1):246-255
高阶作用通常指一个物种对另外两个物种之间相互作用强度的影响,对物种共存、群落构建及生物多样性具有重要影响。在集合种群水平上考虑了植食动物对动植物传粉关系造成的高阶作用,以及植食动物对传粉者的间接作用。通过分析基本生态过程,建立植物-传粉者-植食动物的集合群落模型,模型清楚地展示高阶作用和间接作用,可以用来研究它们对集合群落稳定性和续存的影响。结果表明:(1)互惠关系在集合群落尺度上会引起双稳态现象,说明了群落动态对初始条件的依赖性;(2)正高阶作用能够扩大集合群落双稳态的参数范围,负高阶作用和间接作用缩小它的参数范围,但都不会从本质上改变双稳态现象;(3)正高阶作用能够降低集合群落的灭绝阈值,增加集合群落稳定时的占有率,有利于集合群落续存,而负高阶作用和间接作用不利于续存。研究结果说明高阶和间接作用对调节多物种系统动态和物种共存具有重要作用。  相似文献   

10.
The metapopulation framework considers that the spatiotemporal distribution of organisms results from a balance between the colonization and extinction of populations in a suitable and discrete habitat network. Recent spatially realistic metapopulation models have allowed patch dynamics to be investigated in natural populations but such models have rarely been applied to plants. Using a simple urban fragmented population system in which favourable habitat can be easily mapped, we studied patch dynamics in the annual plant Crepis sancta (Asteraceae). Using stochastic patch occupancy models (SPOMs) and multi‐year occupancy data we dissected extinction and colonization patterns in our system. Overall, our data were consistent with two distinct metapopulation scenarios. A metapopulation (sensu stricto) dynamic in which colonization occurs over a short distance and extinction is lowered by nearby occupied patches (rescue effect) was found in a set of patches close to the city centre, while a propagule rain model in which colonization occurs from a large external population was most consistent with data from other networks. Overall, the study highlights the importance of external seed sources in urban patch dynamics. Our analysis emphasizes the fact that plant distributions are governed not only by habitat properties but also by the intrinsic properties of colonization and dispersal of species. The metapopulation approach provides a valuable tool for understanding how colonization and extinction shape occupancy patterns in highly fragmented plant populations. Finally, this study points to the potential utility of more complex plant metapopulation models than traditionally used for analysing ecological and evolutionary processes in natural metapopulations.  相似文献   

11.
The spatial insurance hypothesis predicts that intermediate rates of dispersal between patches in a metacommunity allow species to track favourable conditions, preserving diversity and stabilizing biomass at local and regional scales. However, theory is unclear as to whether dispersal will provide spatial insurance when environmental conditions are changing directionally. In particular, increased temperatures as a result of climate change are expected to cause synchronous growth or decline across species and communities, and this has the potential to erode the stabilizing compensatory dynamics facilitated by dispersal. Here we report on an experimental test of how dispersal affects the diversity and stability of metacommunities under warming using replicate two‐patch pond zooplankton metacommunities. Initial differences in local community composition and abiotic conditions were established by seeding each patch in the metacommunities with plankton and sediment from one of two natural ponds that differed in water chemistry and species composition. We exposed metacommunities to a 2°C increase in average ambient temperature, crossed with three rates of dispersal (none, intermediate, high). In ambient conditions, intermediate dispersal rates preserved diversity and stabilized metacommunities by promoting spatially asynchronous fluctuations in biomass, especially between local populations of the dominant genus, Ceriodaphnia. However, warming synchronized their populations so that these effects of dispersal were lost. Furthermore, because the stabilizing effect of dispersal was primarily due to asynchronous fluctuations between populations of a single genus, metacommunity biomass was stabilized, but dispersal did not stabilize local community biomass. Our results show that dispersal can preserve diversity and provide stability to metacommunities, but also show that this benefit can be eroded when warming is directional and synchronous across patches of a metacommunity, as is expected with climate warming.  相似文献   

12.
Animals can modify their environment by consumptive and physical activities such as herbivory and soil disturbance. Engineering species may create structures that long outlive them and have lasting impacts on local communities of plants and animals. Water voles, Arvicola amphibious, are rodents that visibly impact riparian plant communities by grazing on surface and root vegetation and excavating long-lasting burrow systems. This species has a metapopulation structure and occurs across patches which are subject to frequent extinction and colonization events, causing spatially heterogeneous disturbances across the landscape. Using a chronosequence of water vole occupancy in the Highlands of Scotland, we show that heterogeneity in plant community composition and structure—both within and between colony patches—was related to cumulative measures of past physical impact: burrow density and time since a patch was last occupied by voles, rather than to current indices of vole occupancy. In our sample of 107 patches monitored over 5 years, no fewer than 31 unique patch occupancy histories were found, each with potentially subtle differences in the accumulated influence of water vole herbivory and engineering. As a result, a patchwork of different plant successional stages occurs across the riparian landscape which is both created and maintained by water vole extinction-colonization dynamics. We propose that the water vole-vegetation system can be described as a metacommunity where dispersal by a higher tropic agent at the landscape scale influences the spatial dynamics of plants at the patch level.  相似文献   

13.
Pathogen persistence in host communities is influenced by processes operating at the individual host to landscape‐level scale, but isolating the relative contributions of these processes is challenging. We developed theory to partition the influence of host species, habitat patches and landscape connectivity on pathogen persistence within metacommunities of hosts and pathogens. We used this framework to quantify the contributions of host species composition and habitat patch identity on the persistence of an amphibian pathogen across the landscape. By sampling over 11 000 hosts of six amphibian species, we found that a single host species could maintain the pathogen in 91% of observed metacommunities. Moreover, this dominant maintenance species contributed, on average, twice as much to landscape‐level pathogen persistence compared to the most influential source patch in a metacommunity. Our analysis demonstrates substantial inequality in how species and patches contribute to pathogen persistence, with important implications for targeted disease management.  相似文献   

14.
Species distribution in a metacommunity varies according to their traits, the distribution of environmental conditions and connectivity among localities. These ingredients contribute to coexistence across spatial scales via species sorting, patch dynamics, mass effects and neutral dynamics. These mechanisms however seldom act in isolation and the impact of landscape configuration on their relative importance remains poorly understood. We present a new model of metacommunity dynamics that simultaneously considers these four possible mechanisms over spatially explicit landscapes and propose a statistical approach to partition their contribution to species distribution. We find that landscape configuration can induce dispersal limitations that have negative consequences for local species richness. This result was more pronounced with neutral dynamics and mass effect than with species sorting or patch dynamics. We also find that the relative importance of the four mechanisms varies not only among landscape configurations, but also among species, with some species being mostly constrained by dispersal and/or drift and others by sorting. Changes in landscape properties might lead to a shift in coexistence mechanisms and, by extension, to a change in community composition. This confirms the importance of considering landscape properties for conservation and management. Our results illustrate the idea that ecological communities are the results of multiple mechanisms acting at the same time and complete our understanding of spatial processes in competitive metacommunities.  相似文献   

15.
The metacommunity approach is an adequate framework to study coexistence between interacting species at different spatial scales. However, empirical evidence from natural metacommunities necessary to evaluate the predictive power of theoretical models of species coexistence remains sparse. We use two African ant species, Cataulacus mckeyi and Petalomyrmex phylax , symbiotically associated with the myrmecophyte Leonardoxa africana africana , to examine spatio-temporal dynamics of species coexistence and to investigate which environmental and life-history parameters may contribute to the maintenance of species diversity in this guild of symbiotic ants. Using environmental niche partitioning as a conceptual framework, we combined data on habitat variation, social structure of colonies, and population genetics with data from a colonisation experiment and from observation of temporal dynamics. We propose that the dynamics of ant species colonisation and replacement at local and regional scales can be explained by a set of life history traits for which the two ants exhibit hierarchies, coupled with strong environmental differences between the different patches in the level of environmental disturbances. The role of the competition–colonisation tradeoff is discussed and we propose that interspecific tradeoffs for traits related to dispersal and to reproduction are also determinant for species coexistence. We therefore suggest that species-sorting mechanisms are predominant in the dynamics of this metacommunity, but we also emphasise that there may be many ways for two symbionts in competition for the same host to coexist. The results speak in favour of a more complete integration of the various metacommunity models in a single theoretical framework.  相似文献   

16.
Simple patch-occupancy models of competitive metacommunities have shown that coexistence is possible as long as there is a competition-colonization tradeoff such as that of superior competitors and dispersers. In this paper, we present a model of competition between three species in a dynamic landscape, where patches are being created and destroyed at a different rate. In our model, species interact according to a linear non-transitive hierarchy, such that species Y(3) outcompetes and can invade patches occupied by species Y(2) and this species in turn can outcompete and invade patches occupied by the inferior competitor Y(1). In this hierarchy, inferior competitors cannot invade patches of species with higher competitive ability. Analytical results show that there are regions in the parameter space where coexistence can occur, as well as regions where each of the species exists in isolation depending on species' life-history traits associated with their colonization abilities and extinction proneness as well as with the dynamics of habitat patches. In our model, the condition for coexistence depends explicitly on patch dynamics, which in turn modulate the limiting similarity for species coexistence. Coexistence in metacommunities inhabiting dynamic landscapes although possible is harder to attain than in static ones.  相似文献   

17.
A 5‐year time series of annual censuses was collected from a large floodplain lake to determine how dynamics of the local fish community were affected by changes in hydrological connectivity with the surrounding metacommunity. The lake was disconnected from the metacommunity for 1 year prior to our study and remained disconnected until 3 months before our third annual census, when a flood reconnected the lake to the metacommunity. We determined how changes in connectivity affected temporal dynamics of (1) local community composition and (2) the population composition, condition, and growth of catfish, to shed light on how immigration of other species might affect local population dynamics. Before reconnection, the community was likely shaped by interactions between the local environment and species traits. The reconnection caused significant immigration and change in community composition and correlated with a significant and abrupt decline in catfish condition, growth, and abundance; effects likely due to the immigration of a competitor with a similar trophic niche: carp. The community was slow to return to its preconnection state, which may be due to dispersal traits of the fishes, and a time‐lag in the recovery of the local catfish population following transient intensification of species interactions. The dynamics observed were concordant with the species sorting and mass‐effects perspectives of metacommunity theory. Floods cause episodic dispersal in floodplain fish metacommunities, and so, flood frequency determines the relative importance of regional and local processes. Local processes may be particularly important to certain species, but these species may need sufficient time between floods for population increase, before the next flood‐induced dispersal episode brings competitors and predators that might cause population decline. Accordingly, species coexistence in these metacommunities may be facilitated by spatiotemporal storage effects, which may in turn be regulated by flood frequency.  相似文献   

18.
We investigate a mutualistic metacommunity where the strength of the mutualistic interaction between species is measured by the extent to which the presence of one species on a patch either reduces the extinction rate of the others present on the same patch or increases their ability to colonize other patches. In both cases, a strong enough mutualism enables all species to persist at habitat densities where they would all be extinct in the absence of the interaction. However, a mutualistic interaction that enhances colonization enables the species to persist at lower habitat density than one that suppresses extinction. All species abruptly go extinct (catastrophe) when the habitat density is decreased infinitesimally below a critical value. A comparison of the mean field or spatially implicit case with unrestricted dispersal and colonization to all patches in the system with a spatially explicit case where dispersal is restricted to the immediate neighbours of the original patch leads to the intriguing conclusion that restricted dispersal can be favourable for species that have a beneficial effect on each other when habitat conditions are adverse. When the mutualistic interaction is strong enough, the extinction threshold or critical amount of habitat required for the persistence of all species is lower when the dispersal is locally restricted than when unrestricted ! The persistence advantage for all species created by the mutualistic interaction increases substantially with the number of species in the metacommunity, as does the advantage for restricted dispersal over global dispersal.  相似文献   

19.
Metacommunity theory provides a framework to understand how ecological communities vary in space and time. However, few studies have investigated metacommunity processes in a context of long term changes. Environmental changes can impact species distribution and therefore the structure of metacommunities. Using two complementary methods, this study evaluated the temporal variability of bird metacommunity processes in an agricultural landscape after 25 years of changes in land-cover. Bird and landscape data were recorded in the same locations using a series of 256 point counts in 1982 and 2007. First, variance partitioning was applied to quantify the roles of environmental filtering (i.e. landscape composition variables) and spatial variables to organize bird metacommunities each year. Second, changes in the structure of the bird metacommunity were examined by quantifying three of its components: coherence, species turnover and species range boundary clumping. Our results demonstrate that landscape variables explained slightly more bird metacommunity patterns than spatial variation of unknown origin each year. The bird metacommunity had a Clementsian structure (i.e. grouped distribution of species along environmental gradients) which was correlated with a landscape gradient ranging from open farmland to wooded sites. This structure was similar each year. To conclude, the study shows that environmental filtering with specializations to different habitats is a major process in determining bird metacommunities in landscapes. Moreover, our results suggest that metacommunity structure can remain constant over time despite demographic and environmental changes.  相似文献   

20.
Structure and dynamics of an amphibian metacommunity in two regions   总被引:1,自引:0,他引:1  
1. The concept of metacommunity is based on the hypothesis that species occurrence depends on species dynamics and interactions on local and regional scales via the movements of individuals between localities. Metacommunity approaches are currently being applied to pond breeding taxa such as amphibians. 2. Given that animal movement is also influenced by the physical quality of the matrix to be crossed to reach a breeding habitat and by the affinity of the species for specific terrestrial habitats, matrix characteristics may enhance or hinder dispersal success. These characteristics would, in turn, affect the composition of larval assemblages at local level and, consequently, determine metacommunity structure and dynamics. 3. Here we compared the structures and dynamics of two metacommunities with the same pool of anurans along similar freshwater gradients in two regions that are well differentiated in terms of their respective terrestrial matrix. 4. Abundance of tadpole species and species assemblage in the two regions were determined principally by local processes (at pond level); however, the structure and dynamics of the communities differed. In one region species abundance was explained in part by landscape factors and consequently showed lower co-occurrence and lower colonization rates (species sorting models) indicating that terrestrial habitat could restrict animal movements, whereas in the other region higher co-occurrence and higher colonization rates (mass effect models) indicated low dispersal limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号