首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Infection by the Gram-negative pathogen Burkholderia pseudomallei results in the disease melioidosis, acquired from the environment in parts of southeast Asia and northern Australia. Clinical symptoms of melioidosis range from acute (fever, pneumonia, septicemia, and localized infection) to chronic (abscesses in various organs and tissues, most commonly occurring in the lungs, liver, spleen, kidney, prostate and skeletal muscle), and persistent infections in humans are difficult to cure. Understanding the basic biology and genomics of B. pseudomallei is imperative for the development of new vaccines and therapeutic interventions. This formidable task is becoming more tractable due to the increasing number of B. pseudomallei genomes that are being sequenced and compared.Here, we compared three B. pseudomallei genomes, from strains MSHR668, K96243 and 1106a, to identify features that might explain why MSHR668 is more virulent than K96243 and 1106a in a mouse model of B. pseudomallei infection. Our analyses focused on metabolic, virulence and regulatory genes that were present in MSHR668 but absent from both K96243 and 1106a. We also noted features present in K96243 and 1106a but absent from MSHR668, and identified genomic differences that may contribute to variations in virulence noted among the three B. pseudomallei isolates. While this work contributes to our understanding of B. pseudomallei genomics, more detailed experiments are necessary to characterize the relevance of specific genomic features to B. pseudomallei metabolism and virulence. Functional analyses of metabolic networks, virulence and regulation shows promise for examining the effects of B. pseudomallei on host cell metabolism and will lay a foundation for future prediction of the virulence of emerging strains. Continued emphasis in this area will be critical for protection against melioidosis, as a better understanding of what constitutes a fully virulent Burkholderia isolate may provide for better diagnostic and medical countermeasure strategies.  相似文献   

2.
Burkholderia pseudomallei is the etiologic agent of melioidosis. Many disease manifestations are associated with melioidosis, and the mechanisms causing this variation are unknown; genomic differences among strains offer one explanation. We compared the genome sequences of two strains of B. pseudomallei: the original reference strain K96243 from Thailand and strain MSHR305 from Australia. We identified a variable homologous region between the two strains. This region was previously identified in comparisons of the genome of B. pseudomallei strain K96243 with the genome of strain E264 from the closely related B. thailandensis. In that comparison, K96243 was shown to possess a horizontally acquired Yersinia-like fimbrial (YLF) gene cluster. Here, we show that the homologous genomic region in B. pseudomallei strain 305 is similar to that previously identified in B. thailandensis strain E264. We have named this region in B. pseudomallei strain 305 the B. thailandensis-like flagellum and chemotaxis (BTFC) gene cluster. We screened for these different genomic components across additional genome sequences and 571 B. pseudomallei DNA extracts obtained from regions of endemicity. These alternate genomic states define two distinct groups within B. pseudomallei: all strains contained either the BTFC gene cluster (group BTFC) or the YLF gene cluster (group YLF). These two groups have distinct geographic distributions: group BTFC is dominant in Australia, and group YLF is dominant in Thailand and elsewhere. In addition, clinical isolates are more likely to belong to group YLF, whereas environmental isolates are more likely to belong to group BTFC. These groups should be further characterized in an animal model.  相似文献   

3.
Burkholderia pseudomallei, the etiologic agent of melioidosis, is a gram-negative facultative intracellular bacterium. This bacterium is endemic in Southeast Asia and Northern Australia and can infect humans and animals by several routes. It has also been estimated to present a considerable risk as a potential biothreat agent. There are currently no effective vaccines for B. pseudomallei, and antibiotic treatment can be hampered by nonspecific symptomology, the high incidence of naturally occurring antibiotic resistant strains, and disease chronicity. Accordingly, there is a concerted effort to better characterize B. pseudomallei and its associated disease. Before novel vaccines and therapeutics can be tested in vivo, a well characterized animal model is essential. Previous work has indicated that mice may be a useful animal model. In order to develop standardized animal models of melioidosis, different strains of bacteria must be isolated, propagated, and characterized. Using a murine intraperitoneal (IP) infection model, we tested the virulence of 11 B. pseudomallei strains. The IP route offers a reproducible way to rank virulence that can be readily reproduced by other laboratories. This infection route is also useful in distinguishing significant differences in strain virulence that may be masked by the exquisite susceptibility associated with other routes of infection (e.g., inhalational). Additionally, there were several pathologic lesions observed in mice following IP infection. These included varisized abscesses in the spleen, liver, and haired skin. This model indicated that commonly used laboratory strains of B. pseudomallei (i.e., K96243 and 1026b) were significantly less virulent as compared to more recently acquired clinical isolates. Additionally, we characterized in vitro strain-associated differences in virulence for macrophages and described a potential inverse relationship between virulence in the IP mouse model of some strains and in the macrophage phagocytosis assay. Strains which were more virulent for mice (e.g., HBPU10304a) were often less virulent in the macrophage assays, as determined by several parameters such as intracellular bacterial replication and host cell cytotoxicity.  相似文献   

4.
BackgroundBurkholderia pseudomallei (B. pseudomallei), the causative agent of melioidosis, is a deadly pathogen endemic across parts of tropical South East Asia and Northern Australia. B. pseudomallei can remain latent within the intracellular compartment of the host cell over prolonged periods of time, and cause persistent disease leading to treatment difficulties. Understanding the immunological mechanisms behind persistent infection can result in improved treatment strategies in clinical melioidosis.MethodsTen-day LD50 was determined for the small-colony variant (SCV) and its parental wild-type (WT) via intranasal route in experimental BALB/c mice. Persistent B. pseudomallei infection was generated by administrating sub-lethal dose of the two strains based on previously determined LD50. After two months, peripheral blood mononuclear cells (PBMCs) and plasma were obtained to investigate host immune responses against persistent B. pseudomallei infection. Lungs, livers, and spleens were harvested and bacterial loads in these organs were determined.ResultsBased on the ten-day LD50, the SCV was ~20-fold less virulent than the WT. The SCV caused higher bacterial loads in spleens compared to its WT counterparts with persistent B. pseudomallei infection. We found that the CD4+ T-cell frequencies were decreased, and the expressions of PD-1, but not CTLA-4 were significantly increased on the CD4+ and CD8+ T cells of these mice. Notably, persistent infection with the SCV led to significantly higher levels of PD-1 than the WT B. pseudomallei. Plasma IFN-γ, IL-6, and IL-17A levels were elevated only in SCV-infected mice. In addition, skewed plasma Th1 and Th17 responses were observed in SCV-infected mice relative to WT-infected and uninfected mice.ConclusionB. pseudomallei appears to upregulate the expression of PD-1 on T cells to evade host immune responses, which likely facilitates bacterial persistence in the host. SCVs cause distinct pathology and immune responses in the host as compared to WT B. pseudomallei.  相似文献   

5.
BackgroundBurkholderia pseudomallei is a water and soil bacterium and the causative agent of melioidosis. A characteristic feature of this bacterium is the formation of different colony morphologies which can be isolated from environmental samples as well as from clinical samples, but can also be induced in vitro. Previous studies indicate that morphotypes can differ in a number of characteristics such as resistance to oxidative stress, cellular adhesion and intracellular replication. Yet the metabolic features of B. pseudomallei and its different morphotypes have not been examined in detail so far. Therefore, this study aimed to characterize the exometabolome of B. pseudomallei morphotypes and the impact of acute infection on their metabolic characteristics.ConclusionTo our knowledge, this study provides first insights into the basic metabolism of B. pseudomallei and its colony morphotypes. Furthermore, our data suggest, that acute infection leads to the synchronization of B. pseudomallei colony morphology and metabolism through yet unknown host signals and bacterial mechanisms.  相似文献   

6.
Burkholderia pseudomallei is the causative agent of melioidosis and a potential bioterrorism agent. In the development of medical countermeasures against B. pseudomallei infection, the US Food and Drug Administration (FDA) animal Rule recommends using well-characterized strains in animal challenge studies. In this study, whole genome sequence data were generated for 6 B. pseudomallei isolates previously identified as candidates for animal challenge studies; an additional 5 isolates were sequenced that were associated with human inhalational melioidosis. A core genome single nucleotide polymorphism (SNP) phylogeny inferred from a concatenated SNP alignment from the 11 isolates sequenced in this study and a diverse global collection of isolates demonstrated the diversity of the proposed Animal Rule isolates. To understand the genomic composition of each isolate, a large-scale blast score ratio (LS-BSR) analysis was performed on the entire pan-genome; this demonstrated the variable composition of genes across the panel and also helped to identify genes unique to individual isolates. In addition, a set of ~550 genes associated with pathogenesis in B. pseudomallei were screened against the 11 sequenced genomes with LS-BSR. Differential gene distribution for 54 virulence-associated genes was observed between genomes and three of these genes were correlated with differential virulence observed in animal challenge studies using BALB/c mice. Differentially conserved genes and SNPs associated with disease severity were identified and could be the basis for future studies investigating the pathogenesis of B. pseudomallei. Overall, the genetic characterization of the 11 proposed Animal Rule isolates provides context for future studies involving B. pseudomallei pathogenesis, differential virulence, and efficacy to therapeutics.  相似文献   

7.
BackgroundMelioidosis is a neglected tropical disease with rising global public health and clinical importance. Melioidosis is endemic in Southeast Asia and Northern Australia and is of increasing concern in Malaysia. Despite a number of reported studies from Malaysia, these reports are limited to certain parts of the country and do not provide a cohesive link between epidemiology of melioidosis cases and the nation-wide distribution of the causative agent Burkholderia pseudomallei.Methodology/principle findingsHere we report on the distribution of B. pseudomallei sequence types (STs) in Malaysia and how the STs are related to STs globally. We obtained 84 culture-confirmed B. pseudomallei from confirmed septicaemic melioidosis patients from all over Malaysia. Prior to performing Multi Locus Sequence Typing, the isolates were subjected to antimicrobial susceptibility testing and detection of the YLF/BTFC genes and BimA allele. Up to 90.5% of the isolates were sensitive to all antimicrobials tested while resistance was observed for antimicrobials typically administered during the eradication stage of treatment. YLF gene cluster and bimABp allele variant were detected in all the isolates. The epidemiological distribution patterns of the Malaysian B. pseudomallei isolates were analysed in silico using phylogenetic tools and compared to Southeast Asian and world-wide isolates. Genotyping of the 84 Malaysian B. pseudomallei isolates revealed 29 different STs of which 6 (7.1%) were novel. ST50 was identified as the group founder followed by subgroup founders ST376, ST211 and ST84. A low-level diversity is noted for the B. pseudomallei isolates described in this study while phylogenetic analysis associated the Malaysian STs to Southeast Asian isolates especially isolates from Thailand. Further analysis also showed a strong association that implicates agriculture and domestication activities as high-risk routes of infection.Conclusions/significanceIn conclusion, MLST analysis of B. pseudomallei clinical isolates from all states in Malaysia revealed low diversity and a close association to Southeast Asian isolates.  相似文献   

8.
Burkholderia pseudomallei causes melioidosis. Sequence typing this pathogen can reveal geographical origin and uncover epidemiological associations. Here, we describe B. pseudomallei genes encoding putative penicillin binding proteins (PBPs) and investigate their utility for determining phylogeography and differentiating closely related species. We performed in silico analysis to characterize 10 PBP homologs in B. pseudomallei 1026b. As PBP active site mutations can confer β-lactam resistance in Gram-negative bacteria, PBP sequences in two resistant B. pseudomallei strains were examined for similar alterations. Sequence alignments revealed single amino acid polymorphisms (SAAPs) unique to the multidrug resistant strain Bp1651 in the transpeptidase domains of two PBPs, but not directly within the active sites. Using BLASTn analyses of complete assembled genomes in the NCBI database, we determined genes encoding PBPs were conserved among B. pseudomallei (n = 101) and Burkholderia mallei (n = 26) strains. Within these genes, single nucleotide polymorphisms (SNPs) useful for predicting geographic origin of B. pseudomallei were uncovered. SNPs unique to B. mallei were also identified. Based on 11 SNPs identified in two genes encoding predicted PBP-3s, a dual-locus sequence typing (DLST) scheme was developed. The robustness of this typing scheme was assessed using 1,523 RefSeq genomes from B. pseudomallei (n = 1,442) and B. mallei (n = 81) strains, resulting in 32 sequence types (STs). Compared to multi-locus sequence typing (MLST), the DLST scheme demonstrated less resolution to support the continental separation of Australian B. pseudomallei strains. However, several STs were unique to strains originating from a specific country or region. The phylogeography of Western Hemisphere B. pseudomallei strains was more highly resolved by DLST compared to internal transcribed spacer (ITS) typing, and all B. mallei strains formed a single ST. Conserved genes encoding PBPs in B. pseudomallei are useful for strain typing, can enhance predictions of geographic origin, and differentiate strains of closely related Burkholderia species.  相似文献   

9.
Melioidosis results from an infection with the soil-borne pathogen Burkholderia pseudomallei, and cases of melioidosis usually cluster after rains or a typhoon. In an endemic area of Taiwan, B. pseudomallei is primarily geographically distributed in cropped fields in the northwest of this area, whereas melioidosis cases are distributed in a densely populated district in the southeast. We hypothesized that contaminated cropped fields generated aerosols contaminated with B. pseudomallei, which were carried by a northwesterly wind to the densely populated southeastern district. We collected soil and aerosol samples from a 72 km2 area of land, including the melioidosis-clustered area and its surroundings. Aerosols that contained B. pseudomallei-specific TTSS (type III secretion system) ORF2 DNA were well distributed in the endemic area but were rare in the surrounding areas during the rainy season. The concentration of this specific DNA in aerosols was positively correlated with the incidence of melioidosis and the appearance of a northwesterly wind. Moreover, the isolation rate in the superficial layers of the contaminated cropped field in the northwest was correlated with PCR positivity for aerosols collected from the southeast over a 2-year period. According to pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) analyses, PFGE Type Ia (ST58) was the predominant pattern linking the molecular association among soil, aerosol and human isolates. Thus, the airborne transmission of melioidosis moves from the contaminated soil to aerosols and/or to humans in this endemic area.  相似文献   

10.

Background

Melioidosis is an increasingly recognised cause of sepsis and death across South East Asia and Northern Australia, caused by the bacterium Burkholderia pseudomallei. Risk factors include diabetes, alcoholism and renal disease, and a vaccine targeting at-risk populations is urgently required. A better understanding of the protective immune response in naturally infected patients is essential for vaccine design.

Methods

We conducted a longitudinal clinical and immunological study of 200 patients with melioidosis on admission, 12 weeks (n = 113) and 52 weeks (n = 65) later. Responses to whole killed B. pseudomallei were measured in peripheral blood mononuclear cells (PBMC) by interferon-gamma (IFN-γ) ELIspot assay and flow cytometry and compared to those of control subjects in the region with diabetes (n = 45) and without diabetes (n = 43).

Results

We demonstrated strong CD4+ and CD8+ responses to B. pseudomallei during acute disease, 12 weeks and 52 weeks later. 28-day mortality was 26% for melioidosis patients, and B. pseudomallei-specific cellular responses in fatal cases (mean 98 IFN-γ cells per million PBMC) were significantly lower than those in the survivors (mean 142 IFN-γ cells per million PBMC) in a multivariable logistic regression model (P = 0.01). A J-shaped curve association between circulating neutrophil count and mortality was seen with an optimal count of 4000 to 8000 neutrophils/μl.Melioidosis patients with known diabetes had poor diabetic control (median glycated haemoglobin HbA1c 10.2%, interquartile range 9.2–13.1) and showed a stunted B. pseudomallei-specific cellular response during acute illness compared to those without diabetes.

Conclusions

The results demonstrate the role of both CD4+ and CD8+ T-cells in protection against melioidosis, and an interaction between diabetes and cellular responses. This supports development of vaccine strategies that induce strong T-cell responses for the control of intracellular pathogens such as B. pseudomallei.  相似文献   

11.
Melioidosis is a disease of humans and animals that is caused by the saprophytic bacterium Burkholderia pseudomallei. Once thought to be confined to certain locations, the known presence of B. pseudomallei is expanding as more regions of endemicity are uncovered. There is no vaccine for melioidosis, and even with antibiotic administration, the mortality rate is as high as 40% in some regions that are endemic for the infection. Despite high levels of recombination, phylogenetic reconstruction of B. pseudomallei populations using whole-genome sequencing (WGS) has revealed surprisingly robust biogeographic separation between isolates from Australia and Asia. To date, there have been no confirmed autochthonous melioidosis cases in Australia caused by an Asian isolate; likewise, no autochthonous cases in Asia have been identified as Australian in origin. Here, we used comparative genomic analysis of 455 B. pseudomallei genomes to confirm the unprecedented presence of an Asian clone, sequence type 562 (ST-562), in Darwin, northern Australia. First observed in Darwin in 2005, the incidence of melioidosis cases attributable to ST-562 infection has steadily risen, and it is now a common strain in Darwin. Intriguingly, the Australian ST-562 appears to be geographically restricted to a single locale and is genetically less diverse than other common STs from this region, indicating a recent introduction of this clone into northern Australia. Detailed genomic and epidemiological investigations of new clinical and environmental B. pseudomallei isolates in the Darwin region and ST-562 isolates from Asia will be critical for understanding the origin, distribution, and dissemination of this emerging clone in northern Australia.  相似文献   

12.
Identification and characterization of near-neighbor species are critical to the development of robust molecular diagnostic tools for biothreat agents. One such agent, Burkholderia pseudomallei, a soil bacterium and the causative agent of melioidosis, is lacking in this area because of its genomic diversity and widespread geographic distribution. The Burkholderia genus contains over 60 species and occupies a large range of environments including soil, plants, rhizospheres, water, animals and humans. The identification of novel species in new locations necessitates the need to identify the true global distribution of Burkholderia species, especially the members that are closely related to B. pseudomallei. In our current study, we used the Burkholderia-specific recA sequencing assay to analyze environmental samples from the Darwin region in the Northern Territory of Australia where melioidosis is endemic. Burkholderia recA PCR negative samples were further characterized using 16s rRNA sequencing for species identification. Phylogenetic analysis demonstrated that over 70% of the bacterial isolates were identified as B. ubonensis indicating that this species is common in the soil where B. pseudomallei is endemic. Bayesian phylogenetic analysis reveals many novel branches within the B. cepacia complex, one novel B. oklahomensis-like species, and one novel branch containing one isolate that is distinct from all other samples on the phylogenetic tree. During the analysis with recA sequencing, we discovered 2 single nucleotide polymorphisms in the reverse priming region of B. oklahomensis. A degenerate primer was developed and is proposed for future use. We conclude that the recA sequencing technique is an effective tool to classify Burkholderia and identify soil organisms in a melioidosis endemic area.  相似文献   

13.
BackgroundMelioidosis is an endemic disease in southeast Asia and northern Australia caused by the saprophytic bacteria Burkholderia pseudomallei, with a high mortality rate. The clinical presentation is multifaceted, with symptoms ranging from acute septicemia to multiple chronic abscesses. Here, we report a chronic case of melioidosis in a patient who lived in Malaysia in the 70s and was suspected of contracting tuberculosis. Approximately 40 years later, in 2014, he was diagnosed with pauci-symptomatic melioidosis during a routine examination. Four strains were isolated from a single sample. They showed divergent morphotypes and divergent antibiotic susceptibility, with some strains showing resistance to trimethoprim-sulfamethoxazole and fluoroquinolones. In 2016, clinical samples were still positive for B. pseudomallei, and only one type of strain, showing atypical resistance to meropenem, was isolated.Principal findingsWe performed whole genome sequencing and RT-qPCR analysis on the strains isolated during this study to gain further insights into their differences. We thus identified two types of resistance mechanisms in these clinical strains. The first one was an adaptive and transient mechanism that disappeared during the course of laboratory sub-cultures; the second was a mutation in the efflux pump regulator amrR, associated with the overexpression of the related transporter.ConclusionThe development of such mechanisms may have a clinical impact on antibiotic treatment. Indeed, their transient nature could lead to an undiagnosed resistance. Efflux overexpression due to mutation leads to an important multiple resistance, reducing the effectiveness of antibiotics during treatment.  相似文献   

14.
BackgroundBurkholderia pseudomallei is a Gram-negative bacterium found in soil and water in many tropical countries. It causes melioidosis, a potentially fatal infection first described in 1911 in Myanmar. Melioidosis is a common cause of sepsis and death in South and South-east Asia, but it is rarely diagnosed in Myanmar. We conducted a nationwide soil study to identify areas where B. pseudomallei is present.Methodology/Principal findingsWe collected soil samples from 387 locations in all 15 states and regions of Myanmar between September 2017 and June 2019. At each site, three samples were taken at each of three different depths (30, 60 and 90 cm) and were cultured for B. pseudomallei separately, along with a pooled sample from each site (i.e. 10 cultures per site). We used a negative binomial regression model to assess associations between isolation of B. pseudomallei and environmental factors (season, soil depth, soil type, land use and climate zones). B. pseudomallei was isolated in 7 of 15 states and regions. Of the 387 sites, 31 (8%) had one or more positive samples and of the 3,870 samples cultured, 103 (2.7%) tested positive for B. pseudomallei. B. pseudomallei was isolated more frequently during the monsoon season [RR-2.28 (95% CI: 0.70–7.38)] and less in the hot dry season [RR-0.70 (95% CI: 0.19–2.56)] compared to the cool dry season, and in the tropical monsoon climate zone [RR-2.26; 95% CI (0.21–6.21)] compared to the tropical dry winter climate zone. However, these associations were not statistically significant. B. pseudomallei was detected at all three depths and from various soil types (clay, silt and sand). Isolation was higher in agricultural land (2.2%), pasture land (8.5%) and disused land (5.8%) than in residential land (0.4%), but these differences were also not significant.Conclusion/SignificanceThis study confirms a widespread distribution of B. pseudomallei in Myanmar. Clinical studies should follow to obtain a better picture of the burden of melioidosis in Myanmar.  相似文献   

15.

Background

The facultative, intracellular bacterium Burkholderia pseudomallei is the causative agent of melioidosis, a serious infectious disease of humans and animals. We identified and categorized tandem repeat arrays and their distribution throughout the genome of B. pseudomallei strain K96243 in order to develop a genetic typing method for B. pseudomallei. We then screened 104 of the potentially polymorphic loci across a diverse panel of 31 isolates including B. pseudomallei, B. mallei and B. thailandensis in order to identify loci with varying degrees of polymorphism. A subset of these tandem repeat arrays were subsequently developed into a multiple-locus VNTR analysis to examine 66 B. pseudomallei and 21 B. mallei isolates from around the world, as well as 95 lineages from a serial transfer experiment encompassing ~18,000 generations.

Results

B. pseudomallei contains a preponderance of tandem repeat loci throughout its genome, many of which are duplicated elsewhere in the genome. The majority of these loci are composed of repeat motif lengths of 6 to 9 bp with 4 to 10 repeat units and are predominately located in intergenic regions of the genome. Across geographically diverse B. pseudomallei and B.mallei isolates, the 32 VNTR loci displayed between 7 and 28 alleles, with Nei's diversity values ranging from 0.47 and 0.94. Mutation rates for these loci are comparable (>10-5 per locus per generation) to that of the most diverse tandemly repeated regions found in other less diverse bacteria.

Conclusion

The frequency, location and duplicate nature of tandemly repeated regions within the B. pseudomallei genome indicate that these tandem repeat regions may play a role in generating and maintaining adaptive genomic variation. Multiple-locus VNTR analysis revealed extensive diversity within the global isolate set containing B. pseudomallei and B. mallei, and it detected genotypic differences within clonal lineages of both species that were identical using previous typing methods. Given the health threat to humans and livestock and the potential for B. pseudomallei to be released intentionally, MLVA could prove to be an important tool for fine-scale epidemiological or forensic tracking of this increasingly important environmental pathogen.  相似文献   

16.
17.

Background

Burkholderia pseudomallei is the causative agent of melioidosis, a frequently occurring disease in northeastern Thailand, where soil and water high in salt content are common. Using microarray analysis, we previously showed that B. pseudomallei up-regulated a short-chain dehydrogenase/oxidoreductase (SDO) under salt stress. However, the importance of SDO in B. pseudomallei infection is unknown. This study aimed to explore the function of B. pseudomallei SDO, and to investigate its role in interactions between B. pseudomallei and host cells.

Results

Bioinformatics analysis of B. pseudomallei SDO structure, based on homology modeling, revealed a NAD+ cofactor domain and a catalytic triad containing Ser149, Tyr162, and Lys166. This is similar to Bacillus megaterium glucose 1-dehydrogenase. To investigate the role of this protein, we constructed a B. pseudomallei SDO defective mutant, measured glucose dehydrogenase (GDH) activity, and tested the interactions with host cells. The B. pseudomallei K96243 wild type exhibited potent GDH activity under condition containing 300 mM NaCl, while the mutant showed activity levels 15 times lower. Both invasion into the A549 cell line and early intracellular survival within the J774A.1 macrophage cell were impaired in the mutant. Complementation of SDO was able to restore the mutant ability to produce GDH activity, invade epithelial cells, and survive in macrophages.

Conclusions

Our data suggest that induced SDO activity during salt stress may facilitate B. pseudomallei invasion and affect initiation of successful intracellular infection. Identifying the role of B. pseudomallei SDO provides a better understanding of the association between bacterial adaptation and pathogenesis in melioidosis.  相似文献   

18.
Factors responsible for the spatial and temporal clustering of Burkholderia pseudomallei in the environment remain to be elucidated. Whilst laboratory based experiments have been performed to analyse survival of the organism in various soil types, such approaches are strongly influenced by alterations to the soil micro ecology during soil sanitisation and translocation. During the monsoonal season in Townsville, Australia, B. pseudomallei is discharged from Castle Hill (an area with a very high soil prevalence of the organism) by groundwater seeps and is washed through a nearby area where intensive sampling in the dry season has been unable to detect the organism. We undertook environmental sampling and soil and plant characterisation in both areas to ascertain physiochemical and macro-floral differences between the two sites that may affect the prevalence of B. pseudomallei. In contrast to previous studies, the presence of B. pseudomallei was correlated with a low gravimetric water content and low nutrient availability (nitrogen and sulphur) and higher exchangeable potassium in soils favouring recovery. Relatively low levels of copper, iron and zinc favoured survival. The prevalence of the organism was found to be highest under the grasses Aristida sp. and Heteropogon contortus and to a lesser extent under Melinis repens. The findings of this study indicate that a greater variety of factors influence the endemicity of melioidosis than has previously been reported, and suggest that biogeographical boundaries to the organisms’ distribution involve complex interactions.  相似文献   

19.

Background

Macrophage migration inhibitory factor (MIF) has emerged as a pivotal mediator of innate immunity and has been shown to be an important effector molecule in severe sepsis. Melioidosis, caused by Burkholderia pseudomallei, is an important cause of community-acquired sepsis in Southeast-Asia. We aimed to characterize the expression and function of MIF in melioidosis.

Methodology and Principal Findings

MIF expression was determined in leukocytes and plasma from 34 melioidosis patients and 32 controls, and in mice infected with B. pseudomallei. MIF function was investigated in experimental murine melioidosis using anti-MIF antibodies and recombinant MIF. Patients demonstrated markedly increased MIF mRNA leukocyte and MIF plasma concentrations. Elevated MIF concentrations were associated with mortality. Mice inoculated intranasally with B. pseudomallei displayed a robust increase in pulmonary and systemic MIF expression. Anti-MIF treated mice showed lower bacterial loads in their lungs upon infection with a low inoculum. Conversely, mice treated with recombinant MIF displayed a modestly impaired clearance of B. pseudomallei. MIF exerted no direct effects on bacterial outgrowth or phagocytosis of B. pseudomallei.

Conclusions

MIF concentrations are markedly elevated during clinical melioidosis and correlate with patients'' outcomes. In experimental melioidosis MIF impaired antibacterial defense.  相似文献   

20.
Burkholderia pseudomallei is a Gram-negative soil bacillus that is the etiological agent of melioidosis and a biothreat agent. Little is known about the biogeography of this bacterium in Australia, despite its hyperendemicity in the northern region of this continent. The population structure of 953 Australian B. pseudomallei strains representing 779 and 174 isolates of clinical and environmental origins, respectively, was analyzed using multilocus sequence typing (MLST). Bayesian population structure and network SplitsTree analyses were performed on concatenated MLST loci, and sequence type (ST) diversity and evenness were examined using Simpson''s and Pielou''s indices and a multivariate dissimilarity matrix. Bayesian analysis found two B. pseudomallei populations in Australia that were geographically distinct; isolates from the Northern Territory were grouped mainly into the first population, whereas the majority of isolates from Queensland were grouped in a second population. Differences in ST evenness were observed between sampling areas, confirming that B. pseudomallei is widespread and established across northern Australia, with a large number of fragmented habitats. ST analysis showed that B. pseudomallei populations diversified as the sampling area increased. This observation was in contrast to smaller sampling areas where a few STs predominated, suggesting that B. pseudomallei populations are ecologically established and not frequently dispersed. Interestingly, there was no identifiable ST bias between clinical and environmental isolates, suggesting the potential for all culturable B. pseudomallei isolates to cause disease. Our findings have important implications for understanding the ecology of B. pseudomallei in Australia and for potential source attribution of this bacterium in the event of unexpected cases of melioidosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号