首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Journal of thermal biology》2001,26(4-5):249-253
(1) Primordial lesioning and stimulation experiments established a thermoregulatory centre in the rostral brain stem at the end of the 19th century. (2) A major landmark in understanding how deep-body temperature (Tc) is sensed, came in 1912 when Barbour found that changing rostral brain stem temperature inversely raised or lowered Tc, ultimately leading to a mono-centric concept of hypothalamic thermoregulation, prevailing for about 50 years. (3) The discovery of extrahypothalamic sites of temperature signal generation in the 1960s led to the multiple-input, multiple-controller concept of thermoregulation. (4) During the last 40 years, concepts concerning thermosensory specificity have radically changed from viewing bimodal peripheral thermoreceptors and hypothalamic thermoreceptors as the only relevant signal generators towards a complex picture including monomodality of peripheral warm and cold thermoreceptors and multimodality of deep-body thermosensors.  相似文献   

2.
3.
4.
Spatial and social behaviour are fundamental aspects of an animal's biology, and their social and spatial environments are indelibly linked through mutual causes and shared consequences. We define the ‘spatial–social interface’ as intersection of social and spatial aspects of individuals' phenotypes and environments. Behavioural variation at the spatial–social interface has implications for ecological and evolutionary processes including pathogen transmission, population dynamics, and the evolution of social systems. We link spatial and social processes through a foundation of shared theory, vocabulary, and methods. We provide examples and future directions for the integration of spatial and social behaviour and environments. We introduce key concepts and approaches that either implicitly or explicitly integrate social and spatial processes, for example, graph theory, density-dependent habitat selection, and niche specialization. Finally, we discuss how movement ecology helps link the spatial–social interface. Our review integrates social and spatial behavioural ecology and identifies testable hypotheses at the spatial–social interface.  相似文献   

5.
6.
7.
The 1918 influenza pandemic was one of the most virulent strains of influenza in history. Phylogenic evidence of the novel H1N1 strain of influenza discovered in Mexico last spring (2009) links it to the 1918 influenza strain. With information gained from analyzing viral genetics, public health records and advances in medical science we can confront the 2009 H1N1 influenza on a global scale. The paper analyses the causes and characteristics of a pandemic, and major issues in controlling the spread of the disease. Wide public vaccination and open communication between government and health sciences professionals will be an essential and vital component in managing the 2009 H1N1 pandemic and any future pandemics.  相似文献   

8.
9.
10.
Electron microscopy and cryoimmunocytochemistry were used to characterize tubular connections in the secretory pathway using rat spermatids as model. Our results support the existence of a complex tubular network enriched in the Golgi matrix protein GM130 that transiently joins the cis-Golgi side and the endoplasmic reticulum. These tubules occasionally contain the endoplasmic reticulum resident protein PDI but not COPII complexes or KDEL receptor. At the lateral edges of the stacks tubules were seen to connect cisternae belonging to the same or adjacent stacks. These connections were observed in all cisternae but preferentially on the cis side. Giantin, Gos28 and Rab6 were detected in the tubules; importantly, we reported the presence of cis-trans heterotypic connections between cisternae. On the trans-Golgi side, we occasionally observed tubules highly immunoreactive for Rab6 connecting the stack with the forming acrosome. Together, our results support the existence of transient continuities throughout the secretory pathways.  相似文献   

11.
12.
Low-molecular-weight (LMW) thiols are an abundant class of cysteine-derived small molecules found in all forms of life that maintain reducing conditions within cells. While their contributions to cellular redox homeostasis are well established, LMW thiols can also mediate other aspects of cellular physiology, including intercellular interactions between microbial and host cells. Here we discuss emerging roles for these redox-active metabolites at the host–microbe interface. We begin by providing an overview of chemical and computational approaches to LMW-thiol discovery. Next, we highlight mechanisms of virulence regulation by LMW thiols in infected cells. Finally, we describe how microbial metabolism of these compounds may influence host physiology.  相似文献   

13.
Human trophoblast progenitor cells differentiate via two distinct pathways, to become the highly invasive extravillous cytotrophoblast (CTB) cells (EVT) or fuse to form syncytiotrophoblast. Inadequate trophoblast differentiation results in poor placenta perfusion, or even complications such as pre-eclampsia (PE). Cullin1 (CUL1), a scaffold protein in cullin-based ubiquitin ligases, plays an important role in early embryonic development. However, the role of CUL1 in trophoblast differentiation during placenta development has not been examined. Here we show that CUL1 was expressed in CTB cells and EVT in the first trimester human placentas by immunohistochemistry. CUL1 siRNA significantly inhibited outgrowth of extravillous explants in vitro, as well as invasion and migration of HTR8/SVneo cells of EVT origin. This inhibition was accompanied by decreased gelatinolytic activities of matrix metalloproteinase (MMP)-9 and increased expression of tissue inhibitors of MMPs (TIMP-1 and -2). Consistently, exogenous CUL1 promoted invasion and migration of HTR8/SVneo cells. Notably, CUL1 was gradually decreased during trophoblast syncytialization and CUL1 siRNA significantly enhanced forskolin-induced fusion of choriocarcinoma BeWo cells. CUL1 protein levels in human pre-eclamptic placental villi were significantly lower as compared to their matched control placentas. Taken together, our results suggest that CUL1 promotes human trophoblast cell invasion and dysregulation of CUL1 expression may be associated with PE.  相似文献   

14.
Dramatic advances in phosphoproteomics and the development of a selective chemical probe have presented new opportunities for revealing the cellular landscape of substrates for CSNK2 (formerly known as CK2 or casein kinase II). In addition to deciphering the role(s) of CSNK2 in physiology and pathophysiology, the CSNK2 phosphoproteome offers the promise of instructing the development of CSNK2-targeted therapy.  相似文献   

15.
The loss of organic and inorganic carbon from roots into soil underpins nearly all the major changes that occur in the rhizosphere. In this review we explore the mechanistic basis of organic carbon and nitrogen flow in the rhizosphere. It is clear that C and N flow in the rhizosphere is extremely complex, being highly plant and environment dependent and varying both spatially and temporally along the root. Consequently, the amount and type of rhizodeposits (e.g. exudates, border cells, mucilage) remains highly context specific. This has severely limited our capacity to quantify and model the amount of rhizodeposition in ecosystem processes such as C sequestration and nutrient acquisition. It is now evident that C and N flow at the soil–root interface is bidirectional with C and N being lost from roots and taken up from the soil simultaneously. Here we present four alternative hypotheses to explain why high and low molecular weight organic compounds are actively cycled in the rhizosphere. These include: (1) indirect, fortuitous root exudate recapture as part of the root’s C and N distribution network, (2) direct re-uptake to enhance the plant’s C efficiency and to reduce rhizosphere microbial growth and pathogen attack, (3) direct uptake to recapture organic nutrients released from soil organic matter, and (4) for inter-root and root–microbial signal exchange. Due to severe flaws in the interpretation of commonly used isotopic labelling techniques, there is still great uncertainty surrounding the importance of these individual fluxes in the rhizosphere. Due to the importance of rhizodeposition in regulating ecosystem functioning, it is critical that future research focuses on resolving the quantitative importance of the different C and N fluxes operating in the rhizosphere and the ways in which these vary spatially and temporally.  相似文献   

16.
Listeria monocytogenes is the causative agent of the foodborne illness listeriosis, which can result in severe symptoms and death in susceptible humans and other animals. L. monocytogenes is ubiquitous in the environment and isolates from food and food processing, and clinical sources have been extensively characterized. However, limited information is available on L. monocytogenes from wildlife, especially from urban or suburban settings. As urban and suburban areas are expanding worldwide, humans are increasingly encroaching into wildlife habitats, enhancing the frequency of human–wildlife contacts and associated pathogen transfer events. We investigated the prevalence and characteristics of L. monocytogenes in 231 wild black bear capture events between 2014 and 2017 in urban and suburban sites in North Carolina, Georgia, Virginia and United States, with samples derived from 183 different bears. Of the 231 captures, 105 (45%) yielded L. monocytogenes either alone or together with other Listeria. Analysis of 501 samples, primarily faeces, rectal and nasal swabs for Listeria spp., yielded 777 isolates, of which 537 (70%) were L. monocytogenes. Most L. monocytogenes isolates exhibited serotypes commonly associated with human disease: serotype 1/2a or 3a (57%), followed by the serotype 4b complex (33%). Interestingly, approximately 50% of the serotype 4b isolates had the IVb-v1 profile, associated with emerging clones of L. monocytogenes. Thus, black bears may serve as novel vehicles for L. monocytogenes, including potentially emerging clones. Our results have significant public health implications as they suggest that the ursine host may preferentially select for L. monocytogenes of clinically relevant lineages over the diverse listerial populations in the environment. These findings also help to elucidate the ecology of Lmonocytogenes and highlight the public health significance of the human–wildlife interface.  相似文献   

17.
18.
We investigate the role of obstacle avoidance in visually guided reaching and grasping movements. We report on a human study in which subjects performed prehensile motion with obstacle avoidance where the position of the obstacle was systematically varied across trials. These experiments suggest that reaching with obstacle avoidance is organized in a sequential manner, where the obstacle acts as an intermediary target. Furthermore, we demonstrate that the notion of workspace travelled by the hand is embedded explicitly in a forward planning scheme, which is actively involved in detecting obstacles on the way when performing reaching. We find that the gaze proactively coordinates the pattern of eye–arm motion during obstacle avoidance. This study provides also a quantitative assessment of the coupling between the eye–arm–hand motion. We show that the coupling follows regular phase dependencies and is unaltered during obstacle avoidance. These observations provide a basis for the design of a computational model. Our controller extends the coupled dynamical systems framework and provides fast and synchronous control of the eyes, the arm and the hand within a single and compact framework, mimicking similar control system found in humans. We validate our model for visuomotor control of a humanoid robot.  相似文献   

19.
In soft-bottom sediments, consumers may influence ecosystem function more via engineering that alters abiotic resources than through trophic influences. Understanding the influence of bioturbation on physical, chemical, and biological processes of the water–sediment interface requires investigating top-down (consumer) and bottom-up (resource) forces. The objective of the present study was to determine how consumer bioturbation mode and sediment properties interact to dictate the hydrologic function of experimental filtration systems clogged by the deposition of fine sediments. Three fine-grained sediments characterized by different organic matter (OM) and pollutant content were used to assess the influence of resource type: sediment of urban origin highly loaded with OM and pollutants, river sediments rich in OM, and river sediments poor in OM content. The effects of consumer bioturbation (chironomid larvae vs. tubificid worms) on sediment reworking, changes in hydraulic head and hydraulic conductivity, and water fluxes through the water–sediment interface were measured. Invertebrate influences in reducing the clogging process depended not only on the mode of bioturbation (construction of biogenic structures, burrowing and feeding activities, etc.) but also on the interaction between the bioturbation process and the sediments of the clogging layer. We present a conceptual model that highlights the importance of sediment influences on bioturbation and argues for the integration of bottom-up influence on consumer engineering activities. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
《Autophagy》2013,9(12):2173-2174
Mechanisms to protect against viral infections are crucial during pregnancy as maternal-fetal transmission can have serious pathological outcomes, including fetal infection and its sequelae, such as growth restriction, birth defects, and/or fetal death. The trophoblast forms the interface between the feto-placental unit and the maternal blood, and is therefore a critical physical and immunological barrier to restrict the spread of pathogens into the fetal microenvironment. Recently, we found that primary human placental trophoblast (PHT) cells are highly resistant to infection by diverse viruses. In this study, we also found that conditioned medium from PHT cell cultures transferred viral resistance to nonplacental recipient cells, suggesting that a component secreted by trophoblasts and present within the conditioned medium is responsible for this antiviral effect. We found that specific miRNAs from a unique primate- and placental-specific locus—the C19MC (chromosome 19 miRNA cluster)—are packaged within exosomes produced by PHT cells and confer viral resistance in nonplacental recipient cells. In addition to conveying viral resistance, we found that PHT-derived exosomes and select miRNA members of the C19MC family strongly induce autophagy, which is involved in recipient cell viral resistance. Our findings establish an exciting and novel mechanism by which placental trophoblasts exploit exosome-dependent transfer of placental-specific miRNAs to influence autophagic induction and antiviral immunity at the maternal–fetal interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号