首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Although land use change is a key driver of biodiversity change, related variables such as habitat area and habitat heterogeneity are seldom considered in modeling approaches at larger extents. To address this knowledge gap we tested the contribution of land use related variables to models describing richness patterns of amphibians, reptiles and passerines in the Iberian Peninsula. We analyzed the relationship between species richness and habitat heterogeneity at two spatial resolutions (i.e., 10 km × 10 km and 50 km × 50 km). Using both ordinary least square and simultaneous autoregressive models, we assessed the relative importance of land use variables, climate variables and topographic variables. We also compare the species–area relationship with a multi-habitat model, the countryside species–area relationship, to assess the role of the area of different types of habitats on species diversity across scales. The association between habitat heterogeneity and species richness varied with the taxa and spatial resolution. A positive relationship was detected for all taxa at a grain size of 10 km × 10 km, but only passerines responded at a grain size of 50 km × 50 km. Species richness patterns were well described by abiotic predictors, but habitat predictors also explained a considerable portion of the variation. Moreover, species richness patterns were better described by a multi-habitat species-area model, incorporating land use variables, than by the classic power model, which only includes area as the single explanatory variable. Our results suggest that the role of land use in shaping species richness patterns goes beyond the local scale and persists at larger spatial scales. These findings call for the need of integrating land use variables in models designed to assess species richness response to large scale environmental changes.  相似文献   

2.
Abstract. I examined a data set of 77 protected areas in the USA (including national and state parks) to determine which of the following variables most strongly influence alien plant species richness: park area, climate (temperature and precipitation), native species richness, visitation rate, local human population size, total road length, park shape and duration of European settlement. Many of these predictor variables are intercorrelated, so I used multiple regression to help separate their effects. In support of previous studies, native species richness was the best single predictor of alien species richness, probably because it was a good estimator of both park area and habitat diversity available for establishment of alien species. Other significant predictors of alien species richness were years of occupation of the area by European settlers and the human population size of adjacent counties. Climate, visitation rate, road length and park shape did not influence alien species richness. The proportion of alien species (alien richness/native richness) is inversely related to park area, in agreement with a previous study. By identifying which variables are most important in determining alien species richness, such findings suggest ways to reduce alien species establishment.  相似文献   

3.
Grasslands are constructed for soil and wildlife conservation in agricultural landscapes across Europe and North America. Constructed grasslands may mitigate habitat loss for grassland-dependent animals and enhance ecosystem services that are important to agriculture. The responses of animal species richness and abundance to grassland habitat quality are often highly variable, however, and monitoring of multiple taxa is often not feasible. We evaluated whether multiple animal taxa responded to variation in constructed grassland habitats of southwest Ohio, USA, in ways that could be predicted from indicators based on quality assessment indices, Simpson diversity, and the species richness of ants and plants. The quality assessment indices included a widely used Floristic Quality Assessment (FQA) index, and a new Ant Quality Assessment (AntQA) index, both based on habitat specificity and species traits. The ant and plant indicators were used as predictor variables in separate general linear models of four target taxa—bees, beetles, butterflies and birds—with response variables of overall species richness and abundance, and subsets of taxa that included the abundance of ecosystem-service providers and grassland-associated species. Plant Simpson diversity was the best-fitting predictor variable in models of overall bee and beetle abundance, and the abundance of bees classified as ecosystem-service (ES) providers. FQA and plant richness were the best predictors of overall butterfly species richness and abundance. Ant species richness was the best predictor of overall bird species richness and abundance as well as the abundance of ES birds, while the AntQA index was the best predictor for the abundance of grassland bird and butterfly species. Thus, plant Simpson diversity and ant species richness were the most effective indicators for complementary components of grassland animal communities, whereas quality assessment indices were less robust as indicators and require more knowledge on the habitat specificity of individual ant and plant species.  相似文献   

4.
We measured water quality, recorded physical habitat characteristics and collected aquatic invertebrates from 17 rockface seeps, five springs and five streams in a geologically diverse region of New Zealand's North Island to investigate factors influencing invertebrate distribution and community composition within and among these habitats. A total of 147 aquatic invertebrate taxa was found; 84 taxa occurred in seepage samples and 53% of these were found only in those habitats, including several new species. Where paired stream-seepage comparisons could be made, seeps contributed on average 35% of new species to the total species pool. The invertebrate faunas of all habitats were dominated taxonomically by Trichoptera and Diptera, but seepages were relatively depauperate in Ephemeroptera and richer in Coleoptera taxa compared to streams and springs. Seepage faunas were dominated numerically by Mollusca, and had lower percent abundance of aquatic insects (23% overall) compared to springs (77%) and streams (93%). Seepages underlain by different geologies generally had distinct water quality signatures, with seeps draining greywacke, sandstone and volcanic rocks grouping close to their receiving streams in a Principal Component Analysis. Seepage invertebrate community composition reflected underlying geology and associated differences in water chemistry, as well as seepage size and cover by moss. Incorporation of seepage habitats into conservation planning and aquatic ecosystem protection, and maintenance of their function and connectivity with lotic and groundwater ecosystems are important considerations for freshwater biodiversity management. Maintenance of riparian plant cover over seepages should help sustain supplies of organic matter, moss cover and shade, providing habitat complexity and low water temperatures.  相似文献   

5.
Our knowledge about environmental correlates of the spatial distribution of animal species stems mostly from the study of well known vertebrate and a few invertebrate taxa. The poor spatial resolution of faunistic data and undersampling prohibit detailed spatial modeling for the vast majority of arthropods. However, many such models are necessary for a comparative approach to the impact of environmental factors on the spatial distribution of species of different taxa. Here we use recent compilations of species richness of 35 European countries and larger islands and linear spatial autocorrelation modeling to infer the influence of area and environmental variables on the number of springtail (Collembola) species in Europe. We show that area, winter length and annual temperature difference are major predictors of species richness. We also detected a significant negative longitudinal gradient in the number of springtail species towards Eastern Europe that might be caused by postglacial colonization. In turn, environmental heterogeneity and vascular plant species richness did not significantly contribute to model performance. Contrary to theoretical expectations, climate and longitude corrected species–area relationships of Collembola did not significantly differ between islands and mainlands.  相似文献   

6.
Under a neutral model, the stochastic lineage sorting that leads to gene monophyly proceeds slowly in large populations. Therefore, in many recent species with large population size, the genome will have mixed support for monophyly unless historical bottlenecks have accelerated coalescence. We use genealogical patterns in mitochondrial DNA and in introns of four nuclear loci to test for historical bottlenecks during the speciation and divergence of two temperate Lagenorhynchus dolphin species isolated by tropical Pacific waters (an antitropical distribution). Despite distinct morphologies, foraging behaviors, and mitochondrial DNAs, these dolphin species are polyphyletic at all four nuclear loci. The abundance of shared polymorphisms between these sister taxa is most consistent with the maintenance of large effective population sizes (5.09 x 10(4) to 10.9 x 10(4)) during 0.74-1.05 million years of divergence. A variety of population size histories are possible, however. We used gene tree coalescent probabilities to explore the rejection region for historical bottlenecks of different intensity given best estimates of effective population size under a strict isolation model of divergence. In L. obliquidens the data are incompatible with a colonization propagule of an effective size of 10 or fewer individuals. Although the ability to reject less extreme historical bottlenecks will require data from additional loci, the intermixed genealogical patterns observed between these dolphin sister species are highly probable only under an extended history of large population size. If similar demographic histories are inferred for other marine antitropical taxa, a parsimonious model for the Pleistocene origin of these distributions would not involve rare breaches of a constant dispersal barrier by small colonization propagules. Instead, a history of large population size in L. obliquidens and L. obscurus contributes to growing biological and environmental evidence that the equatorial barrier became permeable during glacial/interglacial cycles, leading to vicariant isolation of antitropical populations.  相似文献   

7.
Several extrinsic factors (area, native species diversity, human population size and latitude) significantly influence the non-native species richness of plants, over several orders of magnitude. Using several data sets, I examine the role of these factors in non-native species richness of several animal groups: birds, mammals and herptiles (amphibians, reptiles). I also examine if non-native species richness is correlated among these groups. I find, in agreement with Sax [2001, Journal of Biogeography 28: 139–150], that latitude is inversely correlated with non-native species richness of many groups. Once latitude is accounted for, area, human population size and native plant species richness are shown to be important extrinsic factors influencing non-native animal species. Of these extrinsic factors, human population size and native plant species richness are the best predictors of non-native animal species richness. Area, human population size and native plant species richness are highly intercorrelated, along with non-native species richness of all taxa. Indeed a factor analysis shows that a single multivariate axis explains over half of the variation for all variables among the groups. One reason for this covariation is that humans tend to most densely occupy the most productive and diverse habitats where native plant species richness is very high. It is thus difficult to disentangle the effects of human population size and native species richness on non-native species richness. However, it seems likely that these two factors may combine to increase non-native species richness in a synergistic way: high native species richness reflects greater habitat variety available for non-native species, and dense human populations (that preferentially occupy areas rich in native species) increase non-native species importation and disturbance of local habitats.  相似文献   

8.
Following habitat fragmentation, species are predicted to go locally extinct from remnant patches in a predictable order due to differential extinction vulnerabilities. This selective species loss will result in nested distributions of species such that species found in depauperate patches will also tend to be found in larger, more speciose patches. Therefore, it should be possible to determine the relationship between species-specific characteristics and extinction vulnerability by comparing the order in which species are nested [i.e. nestedness ranking (NR)] with various natural history characteristics available from the literature and/or collected in the field. In this study, we investigate the relationship between the NRs of 41 resident forest-interior bird species inhabiting recently isolated landbridge islands in Lago Guri, Venezuela, with a large number of natural history characteristics collected from the literature (regional abundance, body length, habitat specificity, trophic guild, sensitivity to disturbance, range size) and from the field (local population density). In a comparison of the best regression models generated using just variables available through the literature (i.e. no local population density) with the best model generated using all possible variables, we found that the inclusion of field-based data significantly improved the amount of variation explained. The best overall model ( r 2=0.40, P <0.001) included body size, habitat specificity, zoogeographic distribution (a measure of range size) and local population density as predictors of NR. Understanding the factors that influence extinction vulnerability has important implications for conservation and could be used to help direct management efforts.  相似文献   

9.
Amphibians are globally threatened by habitat loss and fragmentation; species within the order Ambystoma are not the exception, as there are 18 species of mole salamanders in México, of which 16 are endemic and all species are under some national or international status of protection. The mole salamander, Ambystoma altamirani is a microendemic species, which is distributed in central México, within the trans-Mexican volcanic belt, and is one of the most threatened species due to habitat destruction and the introduction of exotic species. Nine microsatellite markers were used to determine the genetic structure, genetic variability, effective population size, presence of bottlenecks and inbreeding coefficient of one population of A. altamirani to generate information which might help to protect and conserve this threatened species. We found two genetic subpopulations with significant level of genetic structure (\(F_{\mathrm{ST}}= 0.005\)) and high levels of genetic variability (\(H_{\mathrm{o}}= 0.883\); \(H_{\mathrm{e}}= 0.621\)); we also found a small population size (\(N_{\mathrm{e}} = 8.8\)), the presence of historical (\(M =\) 0.486) and recent bottlenecks under IAM and TPM models, with a low, but significant coefficient of inbreeding (\(F_{\mathrm{IS}} = -\)0.451). This information will help us to raise conservation strategies of this microendemic mole salamander species.  相似文献   

10.
Craig R. McClain 《Oikos》2021,130(6):863-878
The generality and drivers of rarity, defined along the axes of geographic range, population size and habitat specificity, have received considerable scientific attention for well over a century. Yet, studies that examine rarity holistically among these three attributes are limited, especially among invertebrate and marine taxa. The perceived paradox of deep-sea species, with often low population size but large geographic ranges, remains poorly resolved and understood. Here I assess seven forms of rarity and their drivers in deep-sea bivalves across the Atlantic Ocean. Rarity appears to be a common trait among deep-sea bivalves, with nearly 85% of the species exhibiting some form of rarity. Bivalves also showed a strong bimodal pattern of very common and very rare species. Geographic range, population size and habitat specificity were all heavily right skewed. Taxonomic superfamilies, body size, energy availability, temperature, depth and latitude, all significantly predicted geographic range, population size and habitat specificity. In a few cases, these patterns were counter to theoretical expectations. The drivers of rarity appear to be predictable from knowledge of the intrinsic biological and extrinsic environmental context of the species. These findings have major implications for deep-sea conversation, especially as anthropogenic threats are increasing.  相似文献   

11.
A simple habitat assessment score (HAS) was designed to assess habitat complexity across several different shallow tropical marine habitats including sandy patches, algal beds, seagrass beds and reefs. It measured rugosity, variety of growth forms, height, refuge size categories, percentage live cover and percentage hard substratum. Multiple regression models using HAS variables as predictors accounted for 71 and 22% of the variation in observed species richness and total fish abundance respectively. The two most important predictors of observed species richness were rugosity and variety of growth forms, while height was the most important predictor of total fish abundance. The HAS method worked consistently across a variety of habitat types and the complexity map closely mirrored the map of observed species richness, reflecting the patchy habitat mosaic of shallow tropical marine areas. Stations at the mouth of an enclosed lagoon, however, had a higher number of species than might have been expected judging from the habitat complexity scores. It is possible that this was linked to the preferential settling of pelagic fish larvae in this area as tidal water exchanges between the bay and the reef were funnelled through one small gap. This study highlights the need for fish biodiversity studies to take habitat complexity into account.  相似文献   

12.
Studies concerning different habitat configurations can provide insights into the complex interactions between species’ life‐history traits and the environment and can help to predict patterns in population genetics. In this study, we compared patterns of genetic variation in two Mediterranean shrub species (Myrtus communis and Pistacia lentiscus) that co‐occur in populations within three contrasting landscape contexts: continuous, fragmented‐connected and fragmented‐isolated populations. Analysing variation at microsatellites loci, our results revealed weak responses to the landscape contexts. We rather found a population‐specific response in both study species. However, despite both study species sharing similar levels of genetic diversity, Myrtus displayed higher levels of homozygosity and genetic differentiation among populations, stronger patterns of within‐population spatial genetic structure, lower values of mutation‐scaled effective population size and stronger evidence for recent genetic bottlenecks than Pistacia. This result highlights the influence of past events (e.g. historical connectivity, fluctuations in population size) and local factors (e.g. microhabitat availability for recruitment, habitat quality, plant density, native fauna) and that the landscape configuration per se (i.e. fragment size and/or isolation) might not completely determine the species’ genetic patterns.  相似文献   

13.
Aim I examine the relationship between geographical range size and three variables (body size, an index of habitat breadth, and an index of local abundance) within a phylogenetic framework in North American species of suckers and sunfishes. Location North America Methods Regressions after independent contrasts of geographical range size, body size, habitat breadth, and local abundance. Results Species with large range sizes tend to be larger-bodied, be more locally abundant, and have higher habitat breadths. Character reconstructions support the prediction that variables associated with rarity (small geographical range size, low local abundance, low niche breadth, and large body size) evolve in unison, although large body size was associated with the opposite traits in these taxa. Gaston & Blackburn (1996a) suggested using visual identification of the lower boundary of the geographical range-body size relationship to identify extinction-prone species; this resulted in thirteen species that are potentially extinction-prone. Main conclusions Similar evolutionary mechanisms appear to operate on body size and other variables related to rarity, even in distantly related taxa.  相似文献   

14.
Studying the pattern of species richness is crucial in understanding the diversity and distribution of organisms in the earth. Climate and human influences are the major driving factors that directly influence the large‐scale distributions of plant species, including gymnosperms. Understanding how gymnosperms respond to climate, topography, and human‐induced changes is useful in predicting the impacts of global change. Here, we attempt to evaluate how climatic and human‐induced processes could affect the spatial richness patterns of gymnosperms in China. Initially, we divided a map of the country into grid cells of 50 × 50 km2 spatial resolution and plotted the geographical coordinate distribution occurrence of 236 native gymnosperm taxa. The gymnosperm taxa were separated into three response variables: (a) all species, (b) endemic species, and (c) nonendemic species, based on their distribution. The species richness patterns of these response variables to four predictor sets were also evaluated: (a) energy–water, (b) climatic seasonality, (c) habitat heterogeneity, and (d) human influences. We performed generalized linear models (GLMs) and variation partitioning analyses to determine the effect of predictors on spatial richness patterns. The results showed that the distribution pattern of species richness was highest in the southwestern mountainous area and Taiwan in China. We found a significant relationship between the predictor variable set and species richness pattern. Further, our findings provide evidence that climatic seasonality is the most important factor in explaining distinct fractions of variations in the species richness patterns of all studied response variables. Moreover, it was found that energy–water was the best predictor set to determine the richness pattern of all species and endemic species, while habitat heterogeneity has a better influence on nonendemic species. Therefore, we conclude that with the current climate fluctuations as a result of climate change and increasing human activities, gymnosperms might face a high risk of extinction.  相似文献   

15.
Freshwater organisms face numerous stressors, such as nutrient enrichment, contaminant pollution, sedimentation and alterations in stream hydrology and habitat structure. One of the most significant and widespread stressors in European freshwaters is expected to be water pollution from intensive land use. However, the information on critical threshold concentrations at which taxa decline or increase in frequency and abundance is missing for the large majority of river benthic invertebrate taxa. The main aim was to determine ecological change points for benthic invertebrate taxa at which rapid alterations in species frequency and abundance occur as a consequence of relatively small changes in the environmental gradient. These change points can be interpreted as critical threshold concentrations. A total of 468 river benthic invertebrate taxa and nine physico-chemical variables describing the daytime dissolved oxygen, chloride, nutrient concentrations and organic load were analyzed. We selected 751 river sites from a nationwide range of locations in Germany for this investigation. Depending on the physico-chemical variable, between 20.6% and 48.8% of the total number of tested taxa were assigned with a valid change point. All taxa were assigned to negative or positive response groups depending on the response direction. Except for daytime dissolved oxygen, negative responding taxa are referred to as decreasers and positive responding taxa as increasers, respectively. In total, 25.8–100% of the decreasers’ change points were below (and above in the case of daytime dissolved oxygen) the background values defined as quality criteria for German rivers by the water authorities. This indicates that stricter quality criteria may need to be set to reach the good ecological status according to the European Water Framework Directive. The calculated daytime dissolved oxygen change points were essentially in line with the species saprobic values and taxon-specific change points for physico-chemical variables fit well with the data provided in other international studies. We deliver valuable knowledge about the sensitivities and response schemes of river benthic invertebrate species. This information is especially useful for the development of efficient management and policy tools to predict the likelihood of occurrence of individual species under different levels of anthropogenic impact.  相似文献   

16.
Aquatic ecosystems are amongst the most heavily altered ecosystems and exhibit a disproportional loss of biodiversity. Numerous stressors, such as nutrient enrichment, contaminant pollution, sedimentation and alterations in stream hydrology and habitat structure, account for these losses. Understanding these forces is of utmost importance to prevent riverine ecosystems from further deterioration and to provide helpful insights for restoration practices. In the present study, we analyse the response of biological indicators to a large number of environmental factors. For this, benthic invertebrate assemblages from 83 sites in Germany were described based on 25 metrics from four different metric types. The condition of the sites was described using 27 environmental factors: 13 for water quality, 4 for land use in the catchment and 10 for local scale habitat structure. The relative importance of single environmental predictors or predictor combinations for benthic invertebrate assemblages was analysed with single and multiple linear regression models. The results for the latter models were statistically supported via a bootstrap approach. The models revealed the importance of water quality and catchment-scale land use in explaining benthic invertebrate assemblages; in particular, chloride, oxygen, total organic carbon and the amounts of artificial surfaces and arable land were the most important predictors. Models including solely structural variables such as plan form, bank structures and substrate diversity had lower goodness of fit values than those for other variables. Regarding the four different assemblage metric types, functional metrics had on average lower goodness of fit values than composition/abundance, richness/diversity and sensitivity/tolerance metrics. Among the richness/diversity metrics, however, the model results for the Shannon–Wiener and Simpson diversity indices and evenness were poor. Our results show that catchment-related factors and water quality were of overriding importance in shaping biodiversity patterns and causing species loss. In contrast, structural degradation at a local scale was not the most significant stressor. This finding might explain why structural restoration at a reach scale often yields a low benefit–cost ratio and may be considered to represent inappropriate investment prioritisation.  相似文献   

17.
M. Jocque  R. Field 《Hydrobiologia》2014,730(1):153-166
Tank bromeliads (Bromeliaceae) often occur in high densities in the Neotropics and represent a key freshwater habitat in montane forests, housing quite complex invertebrate communities. We tested the extent to which there are species richness–altitude, richness–environment, richness–size, richness–habitat complexity and richness–isolation relationships for the aquatic invertebrate communities from 157 bromeliads in Cusuco National Park, Honduras. We found that invertebrate species richness and abundance correlated most strongly, and positively, with habitat size, which accounted for about a third of the variance in both. Apart from bromeliad size (equivalent of the species–area relationship), we found remarkably little evidence of classic biogeographic and ecological relationships with species richness in this system. Community composition correlated with altitude, bromeliad size and position, though less than 20% of the variation was accounted for by the tested variables. The turnover component of dissimilarity between the communities correlated with altitude, while the nestedness-resultant component was related to bromeliad size. The unexplained variance could reflect a large stochastic component in the system, associated with the ephemerality of the habitat patches (both the plants themselves and the fluctuations in their water content) and stochasticity due to the dispersal dynamics in the system. We conclude that there is a small contribution of classic biogeographic factors to the diversity and community composition of aquatic invertebrates communities in bromeliads. This may be due to the highly dynamic nature of this system, with small patch sizes and high emigration rates. The patterns may mostly be driven by factors affecting colonisation success.  相似文献   

18.
Paul Humphries 《Hydrobiologia》1996,321(3):219-233
Aquatic macrophytes are a common habitat for macroinvertebrates and may occupy depth zones in the littoral region of lowland rivers. Studies have indicated that different species of macrophyte typically support different assemblages, abundances and numbers of species of macroinvertebrates. This has often been attributed to differences in the dissectedness of stems and leaves of the macrophytes, resulting in differences in the surface area and/or the number of microhabitats available to invertebrates. I set out to measure the abundance and taxonomic richness and to describe the macroinvertebrate assemblages associated with three species of aquatic macrophyte in a pool in the Macquarie River, Tasmania and to examine responses of these variables to changes in water levels over summer. The macrophyte species sampled wereMyriophyllum simulans/variifolium, Triglochin procera} and Eleocharis sphacelata, each one differing in the dissectedness of its stems and leaves and its location in the littoral zone. Whereas the greatest abundance of macroinvertebrates was found associated in all months (i.e. at all water levels) with the structurally complex and shallowest macrophyte species, Myriophyllum, the number of taxa associated with this species was in several cases lower than for the structurally simpler and deeper water Triglochin and Eleocharis. While water depth and total plant biomass of samples were often correlated with invertebrate abundance and richness, these relationships were different for each macrophyte species. Of the nine most common invertebrate taxa collected from all samples, the abundances of more than half showed consistent differences among macrophyte species across months, two showed differences among macrophytes, but with an interaction with month and two showed no differences among macrophytes. There were major differences in the invertebrate assemblages associated with each macrophyte species in any one month, however, there was also a large turnover of taxa associated with the species of macrophytes from one month to the next. Changes in water level and concomitant changes in environmental variables are suggested as factors influencing the invertebrate fauna in the littoral zone of the pool of the Macquarie River. It is thus important for river managers to be aware that species of macroinvertebrates are not evenly distributed across species of macrophyte and that water levels and their influence on macrophytes as invertebrate habitat may play an integral part in determining the abundance, richness and assemblage of invertebrates in rivers.  相似文献   

19.
Avian Use of Wetlands in Reclaimed Minelands in Southwestern Indiana   总被引:1,自引:0,他引:1  
We studied the use of mineland wetlands by birds and the relationship between avian communities and wetland characteristics. Data were collected from 20 wetlands in Pike County, Indiana, and included wetland size, depth, water conductivity and salinity, aquatic macroinvertebrate abundance, vegetation, and bird use. Principal component analysis showed that physical variables could be explained by two principal component scores and that wetlands could be grouped on the basis of size and conductivity. Principal component analysis could not reduce vegetation variables to fewer principal component scores, meaning that wetland vegetation characteristics were independent of one another and did not show any trend. Most wetlands had low invertebrate density, and wetlands with higher invertebrate density had low invertebrate diversity. Wetlands with similar habitat characteristics (physical, vegetative, and invertebrate) did not necessarily show similarities in bird assemblages. Bird similarity index values ranged from 0 to 59%, implying that each wetland has its own bird community. Stepwise multiple regression analysis (α= 0.05) relating bird use and habitat characteristics showed that bird species richness increased with the species richness of submergent vegetation and was correlated negatively with the species richness of emergent vegetation. There was no significant relationship between bird species richness or bird species diversity and wetland size. The number of species within different avian guilds correlated with different habitat characteristics. The species richness of submergent plants was a factor that correlated positively with the number of species of several guilds (dabblers, wading birds, and plunge divers). Wetland age was not a factor that determined bird use.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号