首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
根系分泌物和凋落物为土壤食物网提供了基础的养分资源。然而,不同树种纯林和混交林地下根系和地上凋落物对土壤线虫群落的影响机制尚不清楚。2019年9月在广西凭祥热带林业实验中心选取格木(Erythrophleum fordii Oliv.)纯林、马尾松(Pinus massoniana Lamb.)纯林和格木×马尾松混交林3种林分类型,分别设置对照、阻断乔木根系、去除地上凋落物和阻断乔木根系并去除地上凋落物四组实验处理,于2021年3月对3种林分类型不同处理下的土壤线虫群落和土壤理化性质进行了调查。研究结果表明,无论哪种林分类型,阻断根系改变了土壤线虫群落的营养类群组成,显著降低了食真菌线虫相对多度,增加了植物寄生线虫相对多度;去除凋落物显著降低了土壤线虫密度、类群数、线虫通路比值和结构指数,增加了基础指数,表明去除凋落物降低了土壤食物网的稳定性。无论哪种林分类型,人工林中树木地下根系输入是构建土壤线虫群落营养类群组成的主要驱动因素,地上凋落物在维持土壤食物网稳定性方面发挥着重要的作用。此外,阻断根系和去除凋落物对混交林中土壤线虫群落没有显著的影响,表明含固氮树种的格木×马尾松混交林比人工...  相似文献   

2.
通过在亚热带滨海防护林湿地松、尾巨桉、纹荚相思和木麻黄人工林中设置去除凋落物、去除根系和对照处理,分析改变地上、地下碳输入对沙地人工林土壤微生物生物量、群落结构和功能的影响.2015年9月,在处理设置一年后采集各处理样方0~10 cm土壤样品,分别采用磷脂脂肪酸分析方法和微孔板酶检测技术对土壤样品的微生物群落组成和6种酶活性进行测定.结果表明: 碳输入处理对土壤微生物生物量的影响因树种而异,并主要取决于凋落物和根系的质量.在尾巨桉林中,去除根系使得脂肪酸总量、革兰氏阳性细菌、革兰氏阴性细菌、真菌和放线菌生物量分别显著减少了31%、30%、32%、36%和26%,去除凋落物使得革兰氏阳性细菌、真菌和放线菌生物量显著减少了24%、27%和24%,而其他树种处理对微生物生物量无显著影响.碳输入处理对土壤微生物群落结构的影响主要表现为真菌丰度下降而放线菌丰度上升.不同树种的土壤酶活性对处理的响应表现不一致:湿地松、纹荚相思和木麻黄林分去除凋落物显著降低土壤中纤维素水解酶、β-葡萄糖苷酶、酸性磷酸酶和乙酰氨基葡萄糖苷酶活性,去除根系仅分别降低和提高了湿地松和纹荚相思林β-葡萄糖苷酶的活性;湿地松、木麻黄人工林去除凋落物显著降低了多酚氧化酶和过氧化物酶活性;去除根系对所有树种土壤氧化酶活性影响不显著.不同树种的凋落物、根系特性是影响土壤微生物群落组成和酶活性的重要因子,碳输入处理造成的土壤温度、水分等微环境的改变也是土壤微生物性质变化的重要驱动力.  相似文献   

3.
Rainforest conversion and expansion of plantations in tropical regions are associated with changes in animal communities and biodiversity decline. In soil, Collembola are one of the most numerous invertebrate groups that affect the functioning of microbial communities and support arthropod predators. Despite that, information on the impact of changes in land use in the tropics on species and trait composition of Collembola communities is very limited. We investigated the response of Collembola to the conversion of rainforest into rubber agroforestry (“jungle rubber”), rubber, and oil palm plantations in Jambi Province (Sumatra, Indonesia), a region which experienced one of the strongest recent deforestation globally. Collembola were sampled in 2013 and 2016 from the litter and soil layer using heat extraction, and environmental factors were measured (litter C/N ratio, pH, water content, composition of microbial community and predator abundance). In the litter layer, density and species richness in plantation systems were 25%–38% and 30%–40% lower, respectively, than in rainforest. However, in the soil layer, density, species richness, and trait diversity of Collembola were only slightly affected by land‐use change, contrasting the response of many other animal groups. Species and trait composition of Collembola communities in litter and soil differed between each of the land‐use systems. Water content and pH were identified as main factors related to the differences in species and trait composition in both litter and soil, followed by the density of micro‐ and macropredators. Dominant species of Collembola in rainforest and jungle rubber were characterized by small body size, absence of furca, and absence of intense pigmentation, while in plantations, larger species with long furca and diffuse or patterned pigmentation were more abundant. Overall, land‐use change negatively affected Collembola communities in the litter layer, but its impact was lower in the soil layer. Several pantropical genera of Collembola (i.e., Isotomiella, Pseudosinella, and Folsomides) dominated across land‐use systems, reflecting their high environmental adaptability and/or efficient dispersal, calling for studies on their ecology and genetic diversity. The decline in species richness and density of litter‐dwelling Collembola with the conversion of rainforest into plantation systems calls for management practices mitigating negative effects of the deterioration of the litter layer in rubber plantations, but even more in oil palm plantations.  相似文献   

4.
为了明确热带天然林转变为橡胶林和槟榔后土壤质量变化,揭示土地利用变化下植物群落功能性状对土壤质量影响。在海南中部山区,以原始林(PF)、次生林(SF)、槟榔(Areca catechu)林(AP)、纯橡胶(Hevea brasiliensis)林(RP)和橡胶益智(Alpinia oxyphylla)林(RAP)为对象,探索天然林退化后土壤性质和质量变化,分析了植物群落功能性状(凋落物量、郁闭度、根长密度、细根密度和比根长)对土壤质量影响。结果表明:1)与原始林相比,其他土地利用类型凋落物量、根长密度、细根密度、土壤总孔隙度、最大持水量、土壤有机碳和总氮显著降低,土壤容重显著增加。人工林土壤碱解氮明显降低,但总磷、总钾和缓效钾明显升高(P0.05)。2)与原始林相比,次生林、槟榔林、纯橡胶林和橡胶益智林土壤质量指数分别降低63.4%、85.8%、81.2%和84.1%,随原始林、次生林和人工林梯度土地利用强度的增加,土壤质量显著降低(P0.05),但人工林间土壤质量无显著差异。3)凋落物量、郁闭度、根长密度和细根密度均与土壤质量指数显著正相关(P0.05),细根密度对土壤质量的直接影响效应最大,凋落物间接影响效应最大。天然林转变为橡胶和槟榔林显著改变土壤性质和质量,群落性状细根密度和凋落物可较好解释土壤质量变化,强化人工林林下植被和凋落物管理有利于土壤质量改善。  相似文献   

5.
The widespread use of forest litter as animal bedding in central Europe for many centuries gave rise to the first litter manipulation studies, and their results demonstrated that litter and its decomposition are a vital part of ecosystem function. Litter plays two major roles in forest ecosystems: firstly, litterfall is an inherent part of nutrient and carbon cycling, and secondly, litter forms a protective layer on the soil surface that also regulates microclimatic conditions. By reviewing 152 years of litter manipulation experiments, I show that the effects of manipulating litter stem from changes in one, or both, of these two functions, and interactions between the variables influenced by the accumulation of litter can result in feedback mechanisms that may intensify treatment effects or mask responses, making the interpretation of results difficult.Long-term litter removal increased soil bulk density, overland flow, erosion, and temperature fluctuations and upset the soil water balance, causing lower soil water content during dry periods. Soil pH increased or decreased in response to manipulation treatments depending on forest type and initial soil pH, but it is unclear why there was no uniform response. Long-term litter harvesting severely depleted the forests of nutrients. Decreases in the concentrations of available P, Ca, Mg, and K in the soil occurred after only three to five years. The decline in soil N occurred over longer periods of time, and the relative loss was greater in soils with high initial nitrogen concentration. Tree growth declined with long-term litter removal, probably due to lower nutrient availability. Litter manipulation also added or removed large amounts of carbon thereby affecting microbial communities and altering soil respiration rates.Litter manipulation experiments have shown that litter cover acts as a physical barrier to the shoot emergence of small-seeded species; further, the microclimate maintained by the litter layer may be favourable to herbivores and pathogens and is important in determining later seedling survival and performance. Litter manipulation altered the competitive outcomes between tree seedlings and forbs, thereby influencing species composition and diversity; changes in the species composition of understorey vegetation following treatments occurred fairly rapidly. By decreasing substrate availability and altering the microclimate, litter removal changed fungal species composition and diversity and led to a decline in populations of soil fauna. However, litter addition did not provoke a corresponding increase in the abundance or diversity of fungi or soil fauna.Large-scale long-term studies are still needed in order to investigate the interactions between the many variables affected by litter, especially in tropical and boreal forests, which have received little attention. Litter manipulation treatments present an opportunity to assess the effects of increasing primary production in forest ecosystems; specific research aims include assessing the effects of changes in litter inputs on the carbon and nutrient cycles, decomposition processes, and the turnover of organic matter.  相似文献   

6.

Deforestation, plantation expansion and other human activities in tropical ecosystems are often associated with biological invasions. These processes have been studied for above-ground organisms, but associated changes below the ground have received little attention. We surveyed rainforest and plantation systems in Jambi province, Sumatra, Indonesia, to investigate effects of land-use change on the diversity and abundance of earthworms—a major group of soil-ecosystem engineers that often is associated with human activities. Density and biomass of earthworms increased 4—30-fold in oil palm and rubber monoculture plantations compared to rainforest. Despite much higher abundance, earthworm communities in plantations were less diverse and dominated by the peregrine morphospecies Pontoscolex corethrurus, often recorded as invasive. Considering the high deforestation rate in Indonesia, invasive earthworms are expected to dominate soil communities across the region in the near future, in lieu of native soil biodiversity. Ecologically-friendly management approaches, increasing structural habitat complexity and plant diversity, may foster beneficial effects of invasive earthworms on plant growth while mitigating negative effects on below-ground biodiversity and the functioning of the native soil animal community.

  相似文献   

7.
通过在亚热带杉木(Cunninghamia lanceolata)和米老排(Mytilaria laosensis)人工林中设置互换凋落物、去除凋落物、去除凋落物+去除根系和对照处理来分析改变地上、地下碳输入对人工林土壤微生物生物量和群落组成的影响。结果显示,改变地上、地下碳输入对土壤微生物生物量碳、氮的影响因树种而异。在米老排林中,土壤微生物生物量不受碳源的限制。而在杉木林中,加入米老排凋落物、去除凋落物和去除凋落物+去除根系3种处理中土壤微生物生物量碳、氮具有明显增加的趋势。磷脂脂肪酸分析结果显示,杉木林中,添加高质量的米老排凋落物后,革兰氏阳性细菌、阴性细菌、丛枝菌根真菌、放线菌和真菌群落生物量分别显著增加了24%、24%、53%、25%、28%,革兰氏阴性细菌和丛枝菌根真菌的相对丰度均有显著增加。与对照相比,杉木林中去除凋落物后革兰氏阳性细菌、阴性细菌、丛枝菌根真菌、放线菌和真菌群落生物量分别显著增加了22%、29%、44%、25%、52%,真菌与细菌比值显著增加了21%。但是,去除凋落物+去除根系处理对两个树种人工林土壤微生物群落组成均无显著影响。米老排和杉木林土壤微生物生物量碳、氮的季节变化格局不同,土壤养分有效性可能是驱动土壤微生物生物量季节变化的主要因子。未来研究需要关注凋落物和根系在不同树种人工林中对土壤微生物群落的相对贡献。  相似文献   

8.
植被凋落物和根系输入在调节森林土壤元素生物地球化学循环中扮演着关键作用。目前仍然不清楚凋落物和根系输入对热带原始林土壤主要元素含量的调控作用。针对该研究现状,以中国南亚热带季风常绿阔叶林为研究对象,通过开展凋落物与根系输入改变的控制试验(6个处理,每处理4次重复:对照、凋落物加倍、凋落物去除、断根、断根+凋落物加倍、断根+去除凋落物),探讨了凋落物和断根处理对土壤可溶性离子、土壤酸中和能力(ANC)和阳离子交换量(CEC)的短期影响。凋落物与根系处理半年后的结果显示:(1)凋落物去除与加倍处理都显著增加了0-40 cm土壤NO3-含量,并且凋落物去除效应大于添加效应;去除凋落物增加了表层土壤(0-20 cm) Ca2+、Mg2+、Na+的含量。(2)断根处理显著增加0-40 cm土壤NO3-和表层土壤Ca2+、Mg2+含量。(3)断根和去除凋落物交互处理显著增加了0-40 cm土壤NO3-和表层土壤Ca2+、Mg2+、K+含量,产生了叠加效应。(4)凋落物和断根处理并没有改变土壤pH,但降低了土壤酸中和能力(除凋落物加倍外),其降低的原因主要与阳离子交换量的降低和NO3-含量的增加有关。这些结果表明,土壤养分离子的可利用性(尤其是NO3-和Ca2+、Mg2+)和酸缓冲能力对凋落物和根系输入改变响应敏感,森林植物及其凋落物对土壤养分保留和缓冲性能具有重要调节作用。在人为干扰和气候变化加剧背景下,该研究可为森林生态系统可持续管理提供重要的理论参考。此外,植被凋落物和根系输入改变引起的长期生态学效应仍值得进一步关注。  相似文献   

9.
In the last decades, lowland tropical rainforest has been converted in large into plantation systems. Despite the evident changes above ground, the effect of rainforest conversion on the channeling of energy in soil food webs was not studied. Here, we investigated community‐level neutral lipid fatty acid profiles in dominant soil fauna to track energy channels in rainforest, rubber, and oil palm plantations in Sumatra, Indonesia. Abundant macrofauna including Araneae, Chilopoda, and Diplopoda contained high amounts of plant and fungal biomarker fatty acids (FAs). Lumbricina had the lowest amount of plant, but the highest amount of animal‐synthesized C20 polyunsaturated FAs as compared to other soil taxa. Mesofauna detritivores (Collembola and Oribatida) contained high amounts of algal biomarker FAs. The differences in FA profiles between taxa were evident if data were analyzed across land‐use systems, suggesting that soil fauna of different size (macro‐ and mesofauna) are associated with different energy channels. Despite that, rainforest conversion changed the biomarker FA composition of soil fauna at the community level. Conversion of rainforest into oil palm plantations enhanced the plant energy channel in soil food webs and reduced the bacterial energy channel; conversion into rubber plantations reduced the AMF‐based energy channel. The changes in energy distribution within soil food webs may have significant implications for the functioning of tropical ecosystems and their response to environmental changes. At present, these responses are hard to predict considering the poor knowledge on structure and functioning of tropical soil food webs.  相似文献   

10.
Global changes such as variations in plant net primary production are likely to drive shifts in leaf litterfall inputs to forest soils, but the effects of such changes on soil carbon (C) cycling and storage remain largely unknown, especially in C‐rich tropical forest ecosystems. We initiated a leaf litterfall manipulation experiment in a tropical rain forest in Costa Rica to test the sensitivity of surface soil C pools and fluxes to different litter inputs. After only 2 years of treatment, doubling litterfall inputs increased surface soil C concentrations by 31%, removing litter from the forest floor drove a 26% reduction over the same time period, and these changes in soil C concentrations were associated with variations in dissolved organic matter fluxes, fine root biomass, microbial biomass, soil moisture, and nutrient fluxes. However, the litter manipulations had only small effects on soil organic C (SOC) chemistry, suggesting that changes in C cycling, nutrient cycling, and microbial processes in response to litter manipulation reflect shifts in the quantity rather than quality of SOC. The manipulation also affected soil CO 2 fluxes; the relative decline in CO 2 production was greater in the litter removal plots (?22%) than the increase in the litter addition plots (+15%). Our analysis showed that variations in CO 2 fluxes were strongly correlated with microbial biomass pools, soil C and nitrogen (N) pools, soil inorganic P fluxes, dissolved organic C fluxes, and fine root biomass. Together, our data suggest that shifts in leaf litter inputs in response to localized human disturbances and global environmental change could have rapid and important consequences for belowground C storage and fluxes in tropical rain forests, and highlight differences between tropical and temperate ecosystems, where belowground C cycling responses to changes in litterfall are generally slower and more subtle.  相似文献   

11.
根系与凋落物有机碳输入变化对土壤生物群落的影响研究是目前学术界关注的热点问题,但冻融季不同有机碳输入方式将对土壤真菌群落结构及功能类群产生何种影响尚不明确。土壤真菌群落是调节森林生态系统稳定性的重要因素,有助于维持生态系统生产力时间尺度的稳定性。为了探索冻融季温带森林土壤真菌群落对控制根系和凋落物有机碳输入方式的响应特征,通过在帽儿山生态站设置4种碳源输入控制处理植物残体添加去除(DIRT):去除凋落物仅根系输入处理、去除根系仅凋落物输入处理、无碳源输入处理和同时进行根系与凋落物输入处理,采用ITS rDNA高通量测序技术和FUNGuild功能预测平台,来分析控制根系和凋落物有机碳输入方式对温带森林土壤真菌群落结构和功能类群的影响。研究结果显示:(1)不同有机碳输入方式改变了土壤真菌类群的多度:与自然生长状态下有机碳输入方式相比,根系有机碳输入比凋落物有机碳输入对土壤真菌类群多度影响更明显,去除根系碳源输入处理使真菌群落中子囊菌门含量升高19.52%,担子菌门含量下降16.77%。(2)有机碳输入方式对土壤真菌群落功能类群产生影响:与自然生长状态下有机碳输入方式相比,去除根系碳源输入处...  相似文献   

12.
Sayer EJ  Powers JS  Tanner EV 《PloS one》2007,2(12):e1299
Aboveground litter production in forests is likely to increase as a consequence of elevated atmospheric carbon dioxide (CO(2)) concentrations, rising temperatures, and shifting rainfall patterns. As litterfall represents a major flux of carbon from vegetation to soil, changes in litter inputs are likely to have wide-reaching consequences for soil carbon dynamics. Such disturbances to the carbon balance may be particularly important in the tropics because tropical forests store almost 30% of the global soil carbon, making them a critical component of the global carbon cycle; nevertheless, the effects of increasing aboveground litter production on belowground carbon dynamics are poorly understood. We used long-term, large-scale monthly litter removal and addition treatments in a lowland tropical forest to assess the consequences of increased litterfall on belowground CO(2) production. Over the second to the fifth year of treatments, litter addition increased soil respiration more than litter removal decreased it; soil respiration was on average 20% lower in the litter removal and 43% higher in the litter addition treatment compared to the controls but litter addition did not change microbial biomass. We predicted a 9% increase in soil respiration in the litter addition plots, based on the 20% decrease in the litter removal plots and an 11% reduction due to lower fine root biomass in the litter addition plots. The 43% measured increase in soil respiration was therefore 34% higher than predicted and it is possible that this 'extra' CO(2) was a result of priming effects, i.e. stimulation of the decomposition of older soil organic matter by the addition of fresh organic matter. Our results show that increases in aboveground litter production as a result of global change have the potential to cause considerable losses of soil carbon to the atmosphere in tropical forests.  相似文献   

13.
Proper estimates of decomposition are essential for tropical forests, given their key role in the global carbon (C) cycle. However, the current paradigm for litter decomposition is insufficient to account for recent observations and may limit model predictions for highly diverse tropical ecosystems. In light of recent findings from a nutrient-poor Amazonian rainforest, we revisit the commonly held views that: litter traits are a mere legacy of live leaf traits; nitrogen (N) and lignin are the key litter traits controlling decomposition; and favourable climatic conditions result in rapid decomposition in tropical forests. Substantial interspecific variation in litter phosphorus (P) was found to be unrelated to variation in green leaves. Litter nutrients explained no variation in decomposition, which instead was controlled primarily by non-lignin litter C compounds at low concentrations with important soil fauna effects. Despite near-optimal climatic conditions, tropical litter decomposition proceeded more slowly than in a climatically less favourable temperate forest. We suggest that slow decomposition in the studied rainforest results from a syndrome of poor litter C quality beyond a simple lignin control, enforcing energy starvation of decomposers.We hypothesize that the litter trait syndrome in nutrient-poor tropical rainforests may have evolved to increase plant access to limiting nutrients via mycorrhizal associations.  相似文献   

14.
不同演替阶段热带森林地表凋落物和土壤节肢动物群落特征   总被引:16,自引:0,他引:16  
为了解不同演替阶段热带森林土壤节肢动物群落结构特征及其与地表凋落物的关系, 2001年9月采用样线调查法对西双版纳23年次生林、35年次生林、季节雨林地表凋落物及其中的土壤节肢动物进行了调查。所获数据表明, 地表凋落物数量(现存量干重)和质量(N和C/N)总体上表现为35年次生林最好, 23年次生林次之; 蜱螨目和弹尾目为3林地地表凋落物土壤节肢动物群落优势类群, 膜翅目蚂蚁、马陆目、鞘翅目、双翅目和半翅目为常见类群。土壤节肢动物个体密度和个体相对密度均表现为35年次生林>季节雨林>23年次生林。群落的丰富度指数以季节雨林最高, 多样性和均匀度指数显示为23年次生林最高, 35年次生林的优势度指数最高, 3林地土壤节肢动物群落类群组成相似性达到较好水平。相关分析表明, 3种不同演替阶段热带森林土壤节肢动物个体密度与林地地表凋落物现存量呈正相关, 而现存凋落物N元素储量与土壤节肢动物的相关性仅表现在23年次生林和季节雨林。研究认为, 热带森林土壤节肢动物群落的发展与森林植被演替密切相关, 其群落个体数量和多样性受森林地表凋落物数量、质量的调控, 但其他环境因素如捕食效应、人为干扰等影响亦不可忽视。  相似文献   

15.
We studied the effects of mycorrhizal pitch pine (Pinus rigida) roots on litter decomposition, microbial biomass, nematode abundance and inorganic nutrients in the E horizon material of a spodosolic soil, using field microcosms created in a regenerating pitch pine stand in the New Jersey Pinelands. Pine roots stimulated litter decomposition by 18.7% by the end of the 29 month study. Both mass loss and N and P release from the litter were always higher in the presence of roots than in their absence. Nutrient concentrations in decomposing litter were similar, however, in the presence and absence of roots, which suggests that the roots present in the with-root treatment did not withdraw nutrients directly from the litter. The soil was slightly drier in the presence of roots, but there was no discernible effect on soil microbial biomass. The effects of roots on soil extractable inorganic nutrients were inconsistent. Roots, however, were consistently associated with higher numbers of soil nematodes. These results suggest that, in soils with low total C and N contents, roots stimulate greater activity of the soil biota, which contribute, in turn, to faster litter decomposition and nutrient release.Contribution No. 95-22 from the Institute of Marine and Coastal Sciences.Contribution No. 95-22 from the Institute of Marine and Coastal Sciences.  相似文献   

16.
The availability of phosphorus (P) can limit net primary production (NPP) in tropical rainforests growing on highly weathered soils. Although it is well known that plant roots release organic acids to acquire P from P-deficient soils, the importance of organic acid exudation in P-limited tropical rainforests has rarely been verified. Study sites were located in two tropical montane rainforests (a P-deficient older soil and a P-rich younger soil) and a tropical lowland rainforest on Mt. Kinabalu, Borneo to analyze environmental control of organic acid exudation with respect to soil P availability, tree genus, and NPP. We quantified root exudation of oxalic, citric, and malic acids using in situ methods in which live fine roots were placed in syringes containing nutrient solution. Exudation rates of organic acids were greatest in the P-deficient soil in the tropical montane rainforest. The carbon (C) fluxes of organic acid exudation in the P-deficient soil (0.7?mol?C?m?2?month?1) represented 16.6% of the aboveground NPP, which was greater than those in the P-rich soil (3.1%) and in the lowland rainforest (4.7%), which exhibited higher NPP. The exudation rates of organic acids increased with increasing root surface area and tip number. A shift in vegetation composition toward dominance by tree species exhibiting a larger root surface area might contribute to the higher organic acid exudation observed in P-deficient soil. Our results quantitatively showed that tree roots can release greater quantities of organic acids in response to P deficiency in tropical rainforests.  相似文献   

17.
Soil mono- and disaccharides (SS) and total free amino acids (AA) can influence soil microbial activities, whether they are derived from decomposition of organic materials or from plant root exudates. To quantify the relative importance of aboveground plant litter input and belowground inputs of root exudates and root debris on SS and AA, we conducted litter removal, root trenching and tree girdling experiments in a subtropical moist forest of southwest China. We found that concentrations of SS and AA had pronounced seasonal fluctuations. Litter removal markedly reduced SS concentrations, but it had no effect on AA concentrations. Concentrations of SS were significantly correlated with litterfall that had occurred 2 months earlier in the control plots, but that correlation was not observed in the litter removal plots. Multiple-linear regressions of soil respiration and soil temperature on AA concentrations were significant in both control and litter removal plots, but not in the root trenching or tree girdling plots. These results suggest that SS levels are likely to be regulated by aboveground plant litter input, and concentrations of AA are affected by microbial activity that fluctuates with soil temperature and belowground carbon input.  相似文献   

18.
凋落物是植物在其生长发育过程中新陈代谢的产物,是土壤有机质输入的重要途径,凋落物分解是生态系统养分循环的关键过程之一。在全球气候变化背景下,热带地区干旱事件发生的频率和强度均在增加,同时,普遍认为热带地区受磷(P)限制,所以探讨干旱胁迫和土壤磷可用性对热带地区叶凋落物分解的影响及两者是否存在交互效应十分必要,有助于了解干旱对该区叶凋落物分解的影响机制以及是否受土壤磷调控。依据植物多度、碳固持类型、叶质地,以海南三亚甘什岭热带低地雨林的4个树种叶凋落物(铁凌 Hopea exalata、白茶树 Koilodepas bainanense、黑叶谷木 Memecylon nigrescens、山油柑 Acronychia pedunculata)为实验材料,依托2019年在该区建成的热带低地雨林模拟穿透雨减少、磷(P)添加双因素交互控制实验平台,包括干旱(D -50%穿透雨)、P添加(P +50Kg P hm-2a-1)、模拟干旱×P添加(DP -50%穿透雨×+50Kg P hm-2a-1)、对照(CK)4个处理,且4种处理随机分布于3个区组,即设置了3个重复。使用常规的凋落物分解袋法探究实验处理对4个树种叶凋落物的分解系数、碳(C)、氮(N)元素动态变化的影响。结果表明:不同树种的叶凋落物因基质质量不同分解存在差异。模拟干旱处理对叶凋落物C、N损失产生抑制作用,但是对不同树种叶凋落物的抑制作用不同,原因是干旱处理通过抑制土壤分解者活动、减弱凋落物的物理破碎作用,间接抑制凋落物分解,并且由于高质量(含N量高)凋落物受微生物分解者影响较大,所以该凋落物分解受干旱抑制程度较大;P添加处理对叶凋落物C损失存在促进作用、N损失存在抑制作用,原因是土壤中P含量的升高,提高了微生物分解高C物质的能力,以及当土壤中P含量较高时,间接抑制微生物通过分解凋落物获取养分或者促进微生物优先完成自身生长代谢需要而不是合成分解凋落物所需要的酶,导致叶凋落物N损失下降;模拟干旱与P添加处理存在显著交互效应,P添加处理缓解或反转了干旱胁迫对叶凋落物分解的抑制作用。以上结果表明,不同基质质量的凋落物分解存在差异,对干旱胁迫的响应不同;在叶凋落物分解过程中,P添加促进C损失、抑制N损失;此外,在热带低地雨林,土壤中P可用性变化可调节干旱对凋落物分解的影响。  相似文献   

19.
土壤动物是凋落物分解、养分转化过程的重要调节者,全球变化驱动的氮沉降与降雨变化通过改变其分解环境和土壤动物群落结构,进而影响凋落物分解进程。为了探究中小型土壤动物对凋落物分解的贡献受氮沉降和降雨变化的影响,本研究利用不同网孔(2 mm和0.01 mm)的凋落物分解网袋法,以建群种短花针茅为研究对象进行野外分解试验。试验采用裂区设计,主区为自然降雨(CK)、增雨30%(W)和减雨30%(R)3个水分处理,副区为0(N0)、30(N30)、50(N50)和100(N100) kg·hm-2·a-1 4个氮素处理。结果表明: 1)降雨变化显著影响了凋落物的分解速率,增雨处理中凋落物的分解速率加快,且随着氮添加浓度的升高,凋落物重量残留率逐渐降低,100 kg·hm-2·a-1时分解速度最快;在减雨处理与对自然降雨处理中凋落物的分解速率则呈先降低后升高的趋势,在50 kg·hm-2·a-1时分解速度最快。氮沉降和降雨变化对凋落物分解无显著的交互作用。2)在整个分解过程中,共捕获中小型土壤动物1577只,隶属于1门3纲13目(含亚目)49科,优势类群为蜱螨目、鞘翅目幼虫和弹尾目;增雨施氮提升了中小型土壤动物群落的类群数和个体数。3)凋落物重量残留率与中小型土壤动物类群数、个体数均呈极显著负相关,增雨处理整体提高了中小型土壤动物对凋落物分解的贡献率。综上,荒漠草原上中小型土壤动物对凋落物的分解具有积极作用,且水分和氮素输入的增加提高了中小型土壤动物的类群数及个体数,增加了其对凋落物分解的贡献;在水分不足时,过量的氮素会抑制中小型土壤动物群落的发展,导致中小型土壤动物对凋落物分解的贡献降低。  相似文献   

20.
Invasive plants affect soil biota through litter and rhizosphere inputs, but the direction and magnitude of these effects are variable. We conducted a meta‐analysis to examine the different effects of litter and rhizosphere of invasive plants on soil communities and nutrient cycling. Our results showed that invasive plants increased bacterial biomass by 16%, detritivore abundance by 119% and microbivore abundance by 89% through litter pathway. In the rhizosphere, invasive plants reduced bacterial biomass by 12%, herbivore abundance by 55% and predator abundance by 52%, but increased AM fungal biomass by 36%. Moreover, CO2 efflux, N mineralisation rate and enzyme activities were all higher in invasive than native rhizosphere soils. These findings indicate that invasive plants may support more decomposers that in turn stimulate nutrient release via litter effect, and enhance nutrient uptake by reducing root grazing but forming more symbioses in the rhizosphere. Thus, we hypothesise that litter‐ and root‐based loops are probably linked to generate positive feedback of invaders on soil systems through stimulating nutrient cycling, consequently facilitating plant invasion. Our findings from limited cases with diverse contexts suggest that more studies are needed to differentiate litter and rhizosphere effects within single systems to better understand invasive plant‐soil interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号