共查询到16条相似文献,搜索用时 15 毫秒
1.
2.
3.
Altvater B Pscherer S Landmeier S Kailayangiri S Savoldo B Juergens H Rossig C 《Cancer immunology, immunotherapy : CII》2012,61(3):385-396
Specific cellular immunotherapy of cancer requires efficient generation and expansion of cytotoxic T lymphocytes (CTLs) that
recognize tumor-associated self-antigens. Here, we investigated the capacity of human γδ T cells to induce expansion of CD8+
T cells specific for peptides derived from the weakly immunogenic tumor-associated self-antigens PRAME and STEAP1. Coincubation
of aminobisphosphonate-stimulated human peripheral blood-derived γδ T cells (Vγ9+Vδ2+), loaded with HLA-A*02-restricted epitopes
of PRAME, with autologous peripheral blood CD8+ T cells stimulated the expansion of peptide-specific cytolytic effector memory
T cells. Moreover, peptide-loaded γδ T cells efficiently primed antigen-naive CD45RA+ CD8+ T cells against PRAME peptides.
Direct comparisons with mature DCs revealed equal potency of γδ T cells and DCs in inducing primary T-cell responses and peptide-specific
T-cell activation and expansion. Antigen presentation by γδ T-APCs was not able to overcome the limited capacity of peptide-specific
T cells to interact with targets expressing full-length antigen. Importantly, T cells with regulatory phenotype (CD4+CD25hiFoxP3+)
were lower in cocultures with γδ T cells compared to DCs. In summary, bisphosphonate-activated γδ T cells permit generation
of CTLs specific for weakly immunogenic tumor-associated epitopes. Exploiting this strategy for effective immunotherapy of
cancer requires strategies that enhance the avidity of CTL responses to allow for efficient targeting of cancer. 相似文献
4.
5.
Rahman S Magalhaes I Rahman J Ahmed RK Sizemore DR Scanga CA Weichold F Verreck F Kondova I Sadoff J Thorstensson R Spångberg M Svensson M Andersson J Maeurer M Brighenti S 《Molecular medicine (Cambridge, Mass.)》2012,18(1):647-658
To prevent the global spread of tuberculosis (TB) infection, a novel vaccine that triggers potent and long-lived immunity is urgently required. A plasmid-based vaccine has been developed to enhance activation of major histocompatibility complex (MHC) class I–restricted CD8+ cytolytic T cells using a recombinant Bacille Calmette-Guérin (rBCG) expressing a pore-forming toxin and the Mycobacterium tuberculosis (Mtb) antigens Ag85A, 85B and TB10.4 followed by a booster with a nonreplicating adenovirus 35 (rAd35) vaccine vector encoding the same Mtb antigens. Here, the capacity of the rBCG/rAd35 vaccine to induce protective and biologically relevant CD8+ T-cell responses in a nonhuman primate model of TB was investigated. After prime/boost immunizations and challenge with virulent Mtb in rhesus macaques, quantification of immune responses at the single-cell level in cryopreserved tissue specimen from infected organs was performed using in situ computerized image analysis as a technological platform. Significantly elevated levels of CD3+ and CD8+ T cells as well as cells expressing interleukin (IL)-7, perforin and granulysin were found in TB lung lesions and spleen from rBCG/rAd35-vaccinated animals compared with BCG/rAd35-vaccinated or unvaccinated animals. The local increase in CD8+ cytolytic T cells correlated with reduced expression of the Mtb antigen MPT64 and also with prolonged survival after the challenge. Our observations suggest that a protective immune response in rBCG/rAd35-vaccinated nonhuman primates was associated with enhanced MHC class I antigen presentation and activation of CD8+ effector T-cell responses at the local site of infection in Mtb-challenged animals. 相似文献
6.
NLRC5 potentiates anti-tumor CD8+ T cells responses by activating interferon-β in endometrial cancer
ObjectivesNLR family CARD domain containing 5 (NLRC5) could promote major histocompatibility complex class I (MHC-I)-dependent CD8+ T cell-mediated anticancer immunity. In this study, the immunosurveillance role and underlying mechanisms of NLRC5 in endometrial cancer (EC) were characterized.MethodsCD8+ T cells were separated from healthy women's peripheral blood by using magnetic beads. The effect of NLRC5 and interferon-β (IFN-β) on immunosurveillance of EC were examined through a mouse tumor model and a CD8+ T cell-EC cell coculture system after NLRC5 overexpression and IFN-β overexpression or depletion. The effect of NLRC5 on IFN-β expression was examined with gain- and loss-of-function experiments.ResultsNLRC5 overexpression in the EC cell and CD8+ T cell coculture system inhibited EC cell proliferation and migration and promoted EC cell apoptosis and CD8+ T cell proliferation. In vivo, NLRC5 overexpression increased the proportion of CD8+ T cells and inhibited EC progression. Furthermore, IFN-β overexpression in the EC cell and CD8+ T cell coculture system activated CD8+ T cell proliferation; however, genetic depletion of IFN-β exerted the opposite effects. In addition, NLRC5 could negatively regulate IFN-β expression in EC cells. Mechanistically, NLRC5 potentiated the antitumor responses of CD8+ T cells to EC by activating IFN-β.ConclusionsTaken together, our findings demonstrated that NLRC5 potentiates anti-tumor CD8+ T cells responses by activating interferon-β in EC, suggesting that genetically escalated NLRC5 and IFN-β may act as potential candidates for the clinical translation of adjuvant immunotherapies to patients with EC. 相似文献
7.
8.
Proliferation responses of naïve CD4+ T cells to T-cell receptor and interleukin-7 (IL-7) stimulation were evaluated by using cells from human immunodeficiency virus-positive (HIV+) donors. IL-7 enhanced responses to T-cell receptor stimulation, and the magnitude of this enhancement was similar in cells from healthy controls and from HIV+ subjects. The overall response to T-cell receptor stimulation alone or in combination with IL-7, however, was diminished among viremic HIV+ donors and occurred independent of antigen-presenting cells. Frequencies of CD127+ cells were related to the magnitudes of proliferation enhancement that were mediated by IL-7. Thus, IL-7 enhances but does not fully restore the function of naïve CD4+ T cells from HIV-infected persons.Interleukin-7 (IL-7) plays an important role in T-cell homeostasis by modulating thymic output (1, 16, 22) and by enhancing the peripheral expansion and survival of both naïve and memory T-cell subsets (12, 18, 20, 25, 26, 31, 32). Under normal circumstances, the homeostatic maintenance of naïve CD4+ T cells is regulated by at least two types of signals that include T-cell receptor (TCR) engagement and IL-7 (10, 26, 30). In addition, IL-7 may play an important role in the conversion of effector T cells into long-term memory cells (12, 14).Homeostasis of T cells is dysregulated in human immunodeficiency virus (HIV) infection such that there is a marked depletion of CD4+ cells and a progressive loss of naïve CD4 and CD8+ T cells (24). Although the mechanisms for these deficiencies are not fully understood, it is possible that impairments in T-cell proliferation and responsiveness to immunomodulatory cytokines could play a role. In HIV disease, IL-7 is increased in plasma (2, 5, 11, 15, 19, 21, 23) and the alpha chain of the IL-7 receptor, CD127, is less frequently expressed among T lymphocytes (2, 5, 11, 21, 23). The ability of patient T cells to respond to IL-7 stimulation may be diminished in HIV disease but may not be related to the density of CD127 expression as it is in T cells from healthy controls (4). Moreover, the responsiveness of T cells, including naïve CD4+ lymphocytes, to TCR stimulation is diminished in HIV disease (27-29). Thus, defects in responsiveness to cytokines or TCR stimulation could contribute to the perturbations in T-cell proliferation and survival in HIV disease.In these studies, we examined the responsiveness of naïve CD4+ T cells from viremic HIV-positive (HIV+) donors (median plasma HIV RNA level, 25,200 copies/ml [range, 1,015 to 1,000,000 copies/ml]; median CD4 cell count, 429 cells/μl [range, 41 to 950 cells/μl]; median age, 38 years [range, 22 to 64 years]; n = 25) and aviremic, highly active antiretroviral therapy (HAART)-treated HIV+ donors (plasma HIV RNA level, <400 copies/ml; median CD4 cell count, 309 cells/μl [range, 74 to 918 cells/μl]; median age, 48 years [range, 37 to 55 years]; n = 12) to the combined stimulus of recombinant IL-7 (Cytheris) plus agonistic anti-CD3 antibody. Peripheral blood mononuclear cells (PBMC) were depleted of CD45RO+ cells by magnetic bead depletion (>90% purity) and were incubated in medium alone or were stimulated with anti-CD3 antibody, IL-7, or anti-CD3 antibody plus IL-7. CD4+CD45RO−CD28+CD27+ cells were assessed for the expression of Ki67 2 days poststimulation by flow cytometric analyses. The addition of IL-7 to anti-CD3 antibody enhanced the induction of Ki67 expression in cells from both HIV+ and HIV-negative (HIV−) donors (Fig. (Fig.11 and Fig. Fig.2).2). A diminished response to anti-CD3 antibody was observed among naïve CD4+ T cells from viremic HIV+ donors. In contrast, cells from aviremic HIV+ donors (all receiving antiretroviral therapy) had normal responses to anti-CD3 antibody compared to cells from healthy donors (Fig. (Fig.2).2). Importantly, the addition of IL-7 to the cultures significantly improved the responses to above those observed with anti-CD3 alone in HIV− and HIV+ donors, regardless of viremia (Wilcoxon signed ranks test; for each comparison, P was <0.04), and the magnitude of that enhancement, although slightly diminished in cells from HIV+ donors, was not significantly different between groups of subjects when measured as either the enhancement (n-fold; not shown) or as the change in percent Ki67+ cells above the background observed for cells stimulated with anti-CD3 alone (Fig. (Fig.3).3). Although IL-7 enhanced responses to TCR stimulation in HIV− subjects, the overall magnitude of the responses among cells from HIV viremic subjects did not reach the levels seen with cells from healthy donors, even in the presence of IL-7 (Fig. (Fig.2).2). It should be noted, however, that these functional readouts were not related to clinical indices of plasma HIV RNA level, CD4 cell count, or age when considered as continuous variables, suggesting that the functional perturbations in naïve CD4+ T cells are probably undermined by complexities extending beyond HIV replication (not shown). Together, these results suggest that TCR responsiveness is diminished in naïve CD4+ T cells from viremic HIV+ subjects, whereas responsiveness to IL-7 stimulation is relatively preserved.Open in a separate windowFIG. 1.IL-7 enhances the induction of Ki67 expression in naïve CD4+ T cells from healthy controls and HIV+ donors. CD45RO-depleted PBMC were incubated with anti-CD3 antibody (100 ng/ml), IL-7 (50 ng/ml), anti-CD3 antibody plus IL-7, or medium alone (RPMI with 10% fetal bovine serum). Cells were gated on CD4+CD27+CD28+ lymphocytes and examined for Ki67 expression by intracellular flow cytometry.Open in a separate windowFIG. 2.IL-7 responsiveness in cells from viremic and aviremic HIV+ donors. Plotted values represent the percentages of CD4+CD27+CD28+CD45RO− T cells that expressed Ki67 after a 2-day incubation with anti-CD3 or with anti-CD3 plus IL-7. Percentages of Ki67+ cells in cultures without stimulation or with IL-7 only were subtracted from the values shown. Responses of cells from healthy controls (n = 9), HIV+ subjects with plasma HIV RNA levels of >400 copies/ml (n = 25), and HIV+ subjects on HAART with suppressed viral replication (<400 copies/ml; n = 12) are shown. Statistically significant differences between cells from controls and HIV+ donors are indicated. Analyses included Kruskal-Wallis test (P = 0.002) for multigroup comparisons and Mann-Whitney U test for comparison of two groups (*, P < 0.05).Open in a separate windowFIG. 3.IL-7 enhances responses to anti-CD3 antibody stimulation to a similar degree in cells from HIV+ and HIV− donors. Naïve CD4+ T cells were incubated with IL-7, anti-CD3, anti-CD3 plus IL-7, or medium alone for 2 days. Background division (percent Ki67+ cells) in medium alone or IL-7 alone was first subtracted from the responses observed with cells stimulated with anti-CD3 alone or with anti-CD3 plus IL-7, respectively. The magnitude of IL-7 enhancement was then calculated by subtracting the percentage of naïve CD4+ cells that expressed Ki67+ after anti-CD3 antibody stimulation from the percentage of naïve CD4+ cells that expressed Ki67 after stimulation with anti-CD3 plus IL-7. n = 9, 25, and 12 for healthy controls, viremic subjects, and aviremic subjects, respectively.Previous studies indicate that the frequency of CD127+ T cells, particularly memory T-cell subsets, is reduced in patients with HIV disease (5, 11, 21, 23). This could, in part, result from the modulation of receptor expression through increased exposure to IL-7 in vivo and also may reflect accumulation of CD127− effector memory cells (21). We assessed the expression of CD127 in naïve CD4+CD45RA+CD28+CD27+ and memory CD4+CD45RO+ T cells in a subset of patients and asked if the frequencies of CD127+ cells were related to the induction of Ki67 expression by anti-CD3 or by anti-CD3 plus IL-7 among naïve CD4+ T cells. We reasoned that the ability of IL-7 to enhance responses to TCR stimulation might be limited if CD127 expression was diminished among naïve CD4+ T cells from HIV+ donors. Alternatively, a defect in functional responses also could be related to increased exposure to IL-7 in vivo, as may be reflected by the absence of CD127 receptor expression on memory T-cell subsets.In agreement with previous studies, our results suggest that CD127 expression is relatively preserved in naïve CD4+ T cells from HIV+ donors (representative histograms in Fig. Fig.4)4) (mean percentage of CD127+ cells, 87 and 83 for HIV− donors [n = 5] and HIV+ donors [n = 17], respectively; P = 0.96) but is diminished in memory CD4+ T cells from HIV+ donors (mean percentage of CD127+ cells, 83 and 59 for HIV− and HIV+ donors, respectively; P = 0.01). The frequencies of CD127+ naïve T cells were directly related to the frequencies of CD127+ memory T cells (Spearman''s correlations; r = 0.711, P = 0.001; n = 18) in HIV+ subjects. This result suggests that a similar mechanism modulates the expression of CD127 in these T-cell subsets, even though the loss of CD127 expression is clearly greater among the memory T cells in HIV disease. Neither CD127 expression among naïve CD4+ T cells nor CD127 expression among memory CD4+ T cells was related to the functional response of naïve CD4+ T cells to anti-CD3 (r = 0.238 and P = 0.36 for naïve CD127 expression; r = 0.293 and P = 0.25 for memory CD127 expression) or to anti-CD3 plus IL-7 (r = 0.32 and P = 0.21 for naïve CD127 expression; r = 0.31 and P = 0.22 for memory CD127 expression). There was a relationship between the percentage of CD127+ naïve T cells and the delta Ki67 expression that resulted from the addition of IL-7 to anti-CD3-treated cultures (percentage of Ki67+ cells in cultures treated with anti-CD3 plus IL-7 minus the percentage of Ki67+ cells in cultures treated with anti-CD3 alone) (Fig. (Fig.4).4). This relationship was statistically significant by Pearson''s correlation (r = 0.5, P = 0.041), the use of which was justified based on the normal distribution of the data. Spearman''s analysis, which is independent of data distribution, indicated a similar trend that was not statistically significant (r = 0.41, P = 0.1). The mean fluorescence intensity of CD127 expression on CD4+CD45RA+CD27+CD28+ T cells was not significantly related to the delta Ki67 expression induced by IL-7 but also suggested a trend consistent with a direct relationship between these indices (r = 0.45 and P = 0.07 by Pearson''s correlation; r = 0.34 and P = 0.18 by Spearman''s correlation). Despite the relative preservation of IL-7 receptor in naïve CD4+ T cells from HIV+ donors, the association between the frequencies of CD127+ cells and CD4+ T-cell proliferation responses to TCR plus IL-7 suggests that subtle IL-7 receptor perturbations might contribute to functional defects of naïve CD4+ T cells in HIV-infected persons.Open in a separate windowFIG. 4.CD127 receptor expression is related to enhancement of proliferation by IL-7. (A) Whole blood from a healthy control and an HIV-infected person was examined by flow cytometry for expression of CD127 on CD4+CD45RA+CD27+CD28+ (naïve) T cells. The gating strategy for identifying naïve cells involved an initial gate for lymphocyte forward and side scatter (SSC) characteristics (not shown) and then sequential gates for CD4 positive, CD45RA positive and, finally, CD28+CD27+ double-positive cells. (B) Plotted values indicating the relationship between the delta Ki67 expression in naïve CD4+ T cells and the percentage of CD127+ naïve T cells that was determined by using freshly isolated whole blood. The delta Ki67 expression was calculated by subtracting the percentage of naïve CD4+ cells that expressed Ki67+ after anti-CD3 antibody stimulation from the percentage of naïve CD4+ cells that expressed Ki67 after stimulation with anti-CD3 plus IL-7.To consider the possibility that antigen-presenting cells could contribute to the diminished response of T-cells to stimulation with TCR plus IL-7, we next asked if defects in TCR-plus-IL-7 stimulation could be detected in purified naïve CD4+ T-cell populations. CD4+CD45RO− cells were negatively selected by magnetic bead depletion, achieving a purity of >90% as determined by flow cytometric analyses. Purified naïve CD4+ T cells were labeled with carboxy fluorescein succinimidyl ester (CFSE) tracking dye and incubated with IL-7, anti-CD3 antibody that was immobilized on a plate, anti-CD3 plus IL-7, or medium alone. The induction of proliferation was measured 7 days later by the dilution of CFSE tracking dye among CD4+CD27+ cells by calculating the division index (average number of cell divisions of all CD4+CD27+ cells) and the proliferation index (average number of divisions of CD4+CD27+ cells that had diluted tracking dye; Flow-Jo analysis software). These purified CD4+ T cells proliferated poorly in response to anti-CD3 antibody stimulation alone, providing functional evidence that the samples were free of antigen-presenting cell contamination (Fig. (Fig.5A).5A). The combined treatment of anti-CD3 and IL-7 induced cellular expansion, whereas alone, neither stimulus induced cellular proliferation during the 7-day period (Fig. (Fig.5A).5A). Responses of cells from HIV+ donors were reduced compared to those of cells from healthy donors, confirming that the defects in naïve CD4+ T-cell expansion are independent of antigen-presenting cells and not fully corrected by IL-7 (Fig. (Fig.5B5B).Open in a separate windowFIG. 5.Diminished responses to TCR plus IL-7 in purified naïve CD4+ T cells from HIV+ donors. CD4+CD45RO− cells were purified from PBMC by negative selection. Cells from HIV+ donors (n = 7) and healthy controls (n = 7) were labeled with CSFE and incubated with anti-CD3 immobilized on a plate (5 μg/ml, overnight at 4°C) plus IL-7 (10 ng/ml). CFSE dye dilution was measured among the CD4+CD27+ cells. (A) Representative histograms showing the dilution of CFSE and CD27 expression among cells incubated with anti-CD3 antibody alone, IL-7 alone, or the combination of anti-CD3 plus IL-7. Placements of quadrant gates were based on an isotype control antibody stain (for CD27 expression) and on cells that had been incubated in medium alone (for CFSE dye dilution). (B) Division indices (average number of cell divisions among CD4+CD27+ cells) and proliferation indices (average number of cell divisions among CD4+CD27+ cells that had diluted tracking dye) are shown.IL-7 is a promising candidate for therapeutic and vaccine adjuvant applications in HIV disease. This cytokine may be especially beneficial in circumstances of immune reconstitution, since it normally plays an essential role in T-cell proliferation and survival. Here, we demonstrate that IL-7 efficiently enhances TCR-triggered naïve CD4+ T-cell expansion in cells from healthy individuals and from HIV+ donors. The mechanism of IL-7 activity is not discerned in these experiments but may involve effects on survival, such as the induction of Bcl-2 (9), or may involve the enhancement of IL-2 or IL-2 receptor expression (6, 8). In any case, our studies provide evidence that IL-7 should provide an effective therapy for the regulation of naïve CD4+ T-cell homeostasis and may be useful for vaccine adjuvant applications in HIV disease. The potential of this approach has been illustrated by recent human trials of IL-7 that demonstrated the expansion of naïve T cells in vivo after IL-7 administration to HIV-infected persons (13) and by animal studies, wherein IL-7 administration enhanced T-cell responses to immunization in mice (17).Notably, the depletion studies and purification methods employed here did not necessarily eliminate terminally differentiated effector memory CD4+ T cells from our cultures; however, studies of CMV-specific terminally differentiated cells suggested that these cells are primarily CD27− (3), and the use of three markers to identify naïve CD4+ T cells, including the ones used here (CD27, CD28, and CD45RO) is estimated to provide 98% assurance that the cells being examined are truly naïve (7). Thus, it is likely that terminally differentiated cells were largely removed from our analyses.Our observations provide confirmation of a significant defect in the responses of naïve CD4+ T cells to TCR triggering in HIV disease, and this defect is not fully corrected by IL-7, as shown here, or by IL-2, as we demonstrated previously (27). These deficiencies are reproduced even among naïve CD4+ T cells that are purified from professional antigen-presenting cells, indicating that the defects are intrinsic to the T cells and not a consequence of dysfunctional antigen-presenting cells. We propose that functional defects in naïve CD4+ T cells from HIV+ donors stem primarily from deficiencies in TCR signaling. Further studies that define the nature of naïve CD4+ T-cell defects in HIV disease will be required to address the underlying mechanisms. 相似文献
9.
Functional CD8 T cell effector and memory responses are generated and maintained during murine γ-herpesvirus 68 (γHV68) persistent infection despite continuous presentation of viral lytic Ags. However, the identity of the CD8 T cell subpopulations that mediate effective recall responses and that can participate in the generation of protective memory to a γ-herpesvirus infection remains unknown. During γHV68 persistence, ~75% of γHV68-specific CD8 T cells coexpress the NK receptors killer cell lectin-like receptor G1 (KLRG1) and NKG2A. In this study, we take advantage of this unique phenotype to analyze the capacity of CD8 T cells expressing or not expressing KLRG1 and NKG2A to mediate effector and memory responses. Our results show that γHV68-specific KLRG1(+)NKG2A(+) CD8 T cells have an effector memory phenotype as well as characteristics of polyfunctional effector cells such us IFN-γ and TNF-α production, killing capacity, and are more efficient at protecting against a γHV68 challenge than their NKG2A(-)KLRG1(-) counterparts. Nevertheless, γHV68-specific NKG2A(+)KLRG1(+) CD8 T cells express IL-7 and IL-15 receptors, can survive long-term without cognate Ag, and subsequently mount a protective response during antigenic recall. These results highlight the plasticity of the immune system to generate protective effector and proliferative memory responses during virus persistence from a pool of KLRG1(+)NKG2A(+) effector memory CD8 T cells. 相似文献
10.
During the course of a microbial infection, different antigen presenting cells (APCs) are exposed and contribute to the ensuing immune response. CD8α(+) dendritic cells (DCs) are an important coordinator of early immune responses to the intracellular bacteria Listeria monocytogenes (Lm) and are crucial for CD8(+) T cell immunity. In this study, we examine the contribution of different primary APCs to inducing immune responses against Lm. We find that CD8α(+) DCs are the most susceptible to infection while plasmacytoid DCs are not infected. Moreover, CD8α(+) DCs are the only DC subset capable of priming an immune response to Lm in vitro and are also the only APC studied that do so when transferred into β2 microglobulin deficient mice which lack endogenous cross-presentation. Upon infection, CD11b(+) DCs primarily secrete low levels of TNFα while CD8α(+) DCs secrete IL-12 p70. Infected monocytes secrete high levels of TNFα and IL-12p70, cytokines associated with activated inflammatory macrophages. Furthermore, co-culture of infected CD8α(+) DCs and CD11b+ DCs with monocytes enhances production of IL-12 p70 and TNFα. However, the presence of monocytes in DC/T cell co-cultures attenuates T cell priming against Lm-derived antigens in vitro and in vivo. This suppressive activity of spleen-derived monocytes is mediated in part by both TNFα and inducible nitric oxide synthase (iNOS). Thus these monocytes enhance IL-12 production to Lm infection, but concurrently abrogate DC-mediated T cell priming. 相似文献
11.
Zou Q Yao X Feng J Yin Z Flavell R Hu Y Zheng G Jin J Kang Y Wu B Liang X Feng C Liu H Li W Wang X Wen Y Wang B 《PloS one》2011,6(10):e25525
Background
CD8+ cytotoxic T lymphocytes (CTLs) are crucial for eliminating hepatitis B virus (HBV) infected cells. DNA vaccination, a novel therapeutic strategy for chronic virus infection, has been shown to induce CTL responses. However, accumulated data have shown that CTLs could not be effectively induced by HBV DNA vaccination.Methodology/Principal Findings
Here, we report that praziquantel (PZQ), an anti-schistoma drug, could act as an adjuvant to overcome the lack of potent CTL responses by HBV DNA vaccination in mice. PZQ in combination with HBV DNA vaccination augmented the induction of CD8+ T cell-dependent and HBV-specific delayed hypersensitivity responses (DTH) in C57BL/6 mice. Furthermore, the induced CD8+ T cells consisted of both Tc1 and Tc17 subtypes. By using IFN-γ knockout (KO) mice and IL-17 KO mice, both cytokines were found to be involved in the DTH. The relevance of these findings to HBV immunization was established in HBsAg transgenic mice, in which PZQ also augmented the induction of HBV-specific Tc1 and Tc17 cells and resulted in reduction of HBsAg positive hepatocytes. Adoptive transfer experiments further showed that PZQ-primed CD8+ T cells from wild type mice, but not the counterpart from IFN-γ KO or IL-17 KO mice, resulted in elimination of HBsAg positive hepatocytes.Conclusions/Significance
Our results suggest that PZQ is an effective adjuvant to facilitate Tc1 and Tc17 responses to HBV DNA vaccination, inducing broad CD8+ T cell-based immunotherapy that breaks tolerance to HBsAg. 相似文献12.
Persistent viruses have mechanisms for modulating the host immune responses that are essential for achieving a lifelong virus–host balance while minimizing the viral pathogenicity. Here we review some of the immune-modulating mechanisms evolved by the ubiquitous but potentially oncogenic Epstein–Barr virus, with particular emphasis on the molecular mechanisms of genes interfering with HLA class I antigen presentation. 相似文献
13.
Zhang HG Chen HS Peng JR Shang XY Zhang J Xing Q Pang XW Qin LL Fei R Mei MH Leng XS Chen WF 《Cancer immunology, immunotherapy : CII》2007,56(12):1945-1954
The MAGE-A3 protein, one of the promising tumor antigens for immunotherapy, is highly expressed in human hepatocellular carcinoma
(HCC). In this study, we estimated the specific CD8+ T cell immune response to MAGE-A3 p271–279 peptide (M3271) in the peripheral blood of HCC patients without antigen vaccination in order to evaluate its immunotherapeutic potential
in these patients. After expansion in vitro, the functional IFN-γ producing M3271 specific CD8+ T cells were detected in 30.8% (8/26) of HLA-A2+MAGE-A3+ HCC patients. The effector CD8+ T cells could release cytotoxic molecules of granzyme B and perforin after restimulation with natural HLA-A2+MAGE-A3+ HCC cell lines in the samples tested. The functional supertype of HLA-A2 in the presentation of HLA-A*0201 restricted M3271 peptide has been identified in the Chinese HCC patients of Han ethnicity, that widely expanded the applicability of this
tumor peptide vaccine in Chinese HCC patients. Thus, the functionally detectable pre-existence of M3271-specific CD8+ T cells in HCC patients makes M3271 a potential target for immunotherapy in these patients. The responsive CD8+ T cells to both NY-ESO-1 and MAGE-A3 antigens provide a rationale for the application of a bivalent vaccine in HCC patients
with tumors expressing both antigens.
H-G Zhang, H-S Chen, and J-R Peng are contributed equally to this paper. 相似文献
14.
Raquel Ferraz Clarissa Ferreira Cunha Maria Inês Pimentel Marcelo Rosandiski Lyra Armando Oliveira Schubach Sérgio Coutinho Furtado de Mendon?a Alda Maria Da-Cruz Alvaro Luiz Bertho 《Memórias do Instituto Oswaldo Cruz》2015,110(5):596-605
In human cutaneous leishmaniasis (CL), the immune response is mainly mediated byT-cells. The role of CD8+ T-lymphocytes, which are related to healing ordeleterious functions, in affecting clinical outcome is controversial. The aim ofthis study was to evaluate T-cell receptor diversity in late-differentiated effector(LDE) and memory CD8+ T-cell subsets in order to create a profile ofspecific clones engaged in deleterious or protective CL immune responses. Healthysubjects, patients with active disease (PAD) and clinically cured patients wereenrolled in the study. Total CD8+ T-lymphocytes showed a disturbance inthe expression of the Vβ2, Vβ9, Vβ13.2, Vβ18 and Vβ23 families. The analyses ofCD8+T-lymphocyte subsets showed high frequencies of LDECD8+T-lymphocytes expressing Vβ12 and Vβ22 in PAD, as well aseffector-memory CD8+ T-cells expressing Vβ22. We also observed lowfrequencies of effector and central-memory CD8+ T-cells expressing Vβ2 inPAD, which correlated with a greater lesion size. Particular Vβ expansions point toCD8+ T-cell clones that are selected during CL immune responses,suggesting that CD8+ T-lymphocytes expressing Vβ12 or Vβ22 are involved ina LDE response and that Vβ2 contractions in memory CD8+T-cells areassociated with larger lesions. 相似文献
15.
Trakatelli M Toungouz M Blocklet D Dodoo Y Gordower L Laporte M Vereecken P Sales F Mortier L Mazouz N Lambermont M Goldman S Coulie P Goldman M Velu T 《Cancer immunology, immunotherapy : CII》2006,55(4):469-474
Dendritic cells derived from monocytes cultured in the presence of type I interferon were found to induce efficient T cell
responses against tumor antigens in vitro. We vaccinated eight stage III or IV melanoma patients with dendritic cells generated
with interferon-β and interleukin-3, activated by poly I: C, and pulsed with the tumor-specific antigen NA17.A2. This dendritic
cell vaccine was well-tolerated with only minor and transient flu-like symptoms and inflammatory reactions at the injection
sites. In most patients, isotopic imaging documented dendritic cells (DC) migration from the intradermal injection site to
the draining lymph nodes. Finally, mixed lymphocyte-peptide culture under limiting dilution conditions followed by tetramer
labeling indicated that three out of eight patients mounted a CD8 T cell response against the NA17.A2 antigenic peptide. We
conclude that DC generated in type I-IFN represent an interesting alternative to DC generated in IL-4 and GM-CSF for cancer
immunotherapy. 相似文献
16.
《Microbes and infection / Institut Pasteur》2020,22(9):474-480
The identification of inflammatory markers in HIV+ individuals on ART is fundamental since chronic ART-controlled HIV infection is linked to an increased inflammatory state. In this context, we assessed plasma levels of pro-inflammatory cytokines (IL-1β, IL-8, and IL-12p70) of HIV+ individuals who initiated ART after immunosuppression (CD4+ T cell counts <350 cells/mm3). HIV+ individuals were stratified according to two extreme phenotypes: Slow Progressors (SPs; individuals with at least 8 years of infection before ART initiation) and Rapid Progressors (RPs; individuals who needed to initiate ART within 1–4 years after infection). A control group was composed of HIV-uninfected individuals. We found increased IL-8 levels (median: 5.13 pg/mL; SPs and RPs together) in HIV-infected individuals on ART as compared to controls (median: 3.2 pg/mL; p = 0.04), although no association with the progression profile (slow or rapid progressors) or CD4+ T cell counts at sampling was observed. This result indicates that IL-8 is a general marker of chronic inflammation in HIV+ individuals on ART, independently of CD4+ T cell counts at the beginning of the treatment or of the potential progression profile of the patient. In this sense, IL-8 may be considered a possible target for novel therapies focused on reducing inflammation in chronic HIV infection. 相似文献