首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Forest soils store large amounts of carbon (C) and nitrogen (N), yet how predicted shifts in forest composition will impact long‐term C and N persistence remains poorly understood. A recent hypothesis predicts that soils under trees associated with arbuscular mycorrhizas (AM) store less C than soils dominated by trees associated with ectomycorrhizas (ECM), due to slower decomposition in ECM‐dominated forests. However, an incipient hypothesis predicts that systems with rapid decomposition—e.g. most AM‐dominated forests—enhance soil organic matter (SOM) stabilization by accelerating the production of microbial residues. To address these contrasting predictions, we quantified soil C and N to 1 m depth across gradients of ECM‐dominance in three temperate forests. By focusing on sites where AM‐ and ECM‐plants co‐occur, our analysis controls for climatic factors that covary with mycorrhizal dominance across broad scales. We found that while ECM stands contain more SOM in topsoil, AM stands contain more SOM when subsoil to 1 m depth is included. Biomarkers and soil fractionations reveal that these patterns are driven by an accumulation of microbial residues in AM‐dominated soils. Collectively, our results support emerging theory on SOM formation, demonstrate the importance of subsurface soils in mediating plant effects on soil C and N, and indicate that shifts in the mycorrhizal composition of temperate forests may alter the stabilization of SOM.  相似文献   

2.
杨浩  史加勉  郑勇 《生态学报》2024,44(7):2734-2744
森林生态系统在全球碳(C)储量中占据极为重要的地位。菌根真菌广泛存在于森林生态系统中,在森林生态系统C循环过程中发挥重要的作用。阐述了不同菌根类型真菌在森林生态系统C循环过程中的功能,对比了温带/北方森林与热带/亚热带森林中菌根真菌介导的C循环研究方面新近取得的研究结果。发现温带和北方森林的外生菌根(EcM)植物对地上生物量C的贡献相对较小,然而是地下C储量的主要贡献者;以丛枝菌根(AM)共生为主的热带/亚热带森林地表生物量占比较高,表明AM植被对热带/亚热带森林地上生物量C的贡献相对较大。我们还就全球变化背景下,菌根真菌及其介导的森林生态系统C汇功能,以及不同菌根类型树种影响C循环的机制等进行了总结。菌根真菌通过影响凋落物分解、土壤有机质形成及地下根系生物量,进而影响整个森林生态系统的C循环功能。菌根介导的森林C循环过程很大程度上取决于(优势)树木的菌根类型和森林土壤中菌根真菌的群落结构。最后指出了当前研究存在的主要问题以及未来研究展望。本文旨在明确菌根真菌在森林生态系统C循环转化过程中的重要生态功能,有助于准确地评估森林生态系统C汇现状,为应对全球变化等提供重要的依据。  相似文献   

3.
Most tree roots on Earth form a symbiosis with either ecto‐ or arbuscular mycorrhizal fungi. Nitrogen fertilization is hypothesized to favor arbuscular mycorrhizal tree species at the expense of ectomycorrhizal species due to differences in fungal nitrogen acquisition strategies, and this may alter soil carbon balance, as differences in forest mycorrhizal associations are linked to differences in soil carbon pools. Combining nitrogen deposition data with continental‐scale US forest data, we show that nitrogen pollution is spatially associated with a decline in ectomycorrhizal vs. arbuscular mycorrhizal trees. Furthermore, nitrogen deposition has contrasting effects on arbuscular vs. ectomycorrhizal demographic processes, favoring arbuscular mycorrhizal trees at the expense of ectomycorrhizal trees, and is spatially correlated with reduced soil carbon stocks. This implies future changes in nitrogen deposition may alter the capacity of forests to sequester carbon and offset climate change via interactions with the forest microbiome.  相似文献   

4.
Ecosystem carbon (C) balance is hypothesised to be sensitive to the mycorrhizal strategies that plants use to acquire nutrients. To test this idea, we coupled an optimality‐based plant nitrogen (N) acquisition model with a microbe‐focused soil organic matter (SOM) model. The model accurately predicted rhizosphere processes and C–N dynamics across a gradient of stands varying in their relative abundance of arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) trees. When mycorrhizal dominance was switched – ECM trees dominating plots previously occupied by AM trees, and vice versa – legacy effects were apparent, with consequences for both C and N stocks in soil. Under elevated productivity, ECM trees enhanced decomposition more than AM trees via microbial priming of unprotected SOM. Collectively, our results show that ecosystem responses to global change may hinge on the balance between rhizosphere priming and SOM protection, and highlight the importance of dynamically linking plants and microbes in terrestrial biosphere models.  相似文献   

5.
We examined potential large-scale controls over the distribution of arbuscular mycorrhizal (AM) fungi and their host plants. Specifically, we tested the hypothesis that AM fungi should be more prevalent in biomes where nutrients are primarily present in mineral, and not organic, forms. Values of percentage root length colonized (%RLC) by AM fungi, AM abundance, and host plant availability were compiled or calculated from published studies to determine biome-level means. Altogether, 151 geographic locations and nine biomes were represented. Percent RLC differed marginally significantly among biomes and was greatest in savannas. AM abundance (defined as total standing root length colonized by AM fungi) varied 63-fold, with lowest values in boreal forests and highest values in temperate grasslands. Biomes did not differ significantly in the percentage of plant species that host AM fungi, averaging 75%. Contrary to the hypothesis, %RLC, AM abundance, and host plant availability were not related to the size, influx, or turnover rate of soil organic matter pools. Instead, AM abundance was positively correlated with standing stocks of fine roots. The global pool of AM biomass within roots might approach 1.4 Pg dry weight. We note that regions harboring the largest stocks of AM fungi are also particularly vulnerable to anthropogenic nitrogen deposition, which could potentially alter global distributions of AM fungi in the near future.  相似文献   

6.
Several fast‐growing and multipurpose trees such as exotic and valuable native species have been widely used in West Africa to reverse the tendency of massive degradation of plant cover and restore soil productivity. Although benefic effects have been reported on soil stabilization, a lack of information about their impact on soil symbiotic microorganisms still remains. This investigation has been carried out in field trees of 28 years old in a forest reserve at Bandia. To determine the mycorrhizal inoculum potential (MIP) of soils, a mycorrhizal bioassay was conducted using seedlings of Zea mays L. Spores concentration, arbuscular mycorrhizal (AM) fungi morphotypes and mycorrhizal colonization of field plants were examined. Results showed that fungal communities were dominated in all samples by the genus Glomus. Nevertheless, the others genera Gigaspora and Scutellospora occurred preferentially out of the plantations. The number and richness of spores as well as the MIP of soils were decreased in the tree plantations. Accordingly, the amount of annual herbaceous plants kept out of the tree plantations was much greater than those under the tree plantations. The colonization was higher in field root systems of herb plants in comparison with that of the tree plants. Comparisons allowed us to conclude that vegetation type modifies the AM fungal communities, and the results suggest further adoption of management practices that could improve or sustain the development of herbaceous layers and thus promote the AM fungal communities.  相似文献   

7.
中国盐碱土壤中AM菌的生态分布   总被引:14,自引:0,他引:14  
对我国盐碱土壤中丛枝菌根(Arbuscular Mycorrhiza,AM) 菌的种属构成、生态分布状况进行了研究.结果表明,不同地区AM 菌种属构成不同,其种属组成、分布与土壤类型、碱化度和土壤有机质含量有关.盐渍化砂土、壤土和粘土中,Glomus 属的真菌数量最多,Acaulospora 属次之,而Glomus 属中的G.mosseae 则是分布最为广泛的菌种.随土壤碱化度的增加,Glomus mosseae 出现频率随之相对增加.在一定范围内有机质含量越高,土壤中AM 菌种和属的种类就越多.AM 菌的种属组成因不同寄主植物而异,其中豆科植物根围中AM 菌分布的种属数量最多.  相似文献   

8.
Changes in soil carbon, the largest terrestrial carbon pool, are critical for the global carbon cycle, atmospheric CO2 levels and climate. Climate warming is predicted to be most pronounced in the northern regions and therefore the large soil carbon pool residing in boreal forests will be subject to larger global warming impact than soil carbon pools in the temperate or the tropical forest. A major uncertainty in current estimates of the terrestrial carbon balance is related to decomposition of soil organic matter (SOM). We hypothesized that when soils are exposed to warmer climate the structure of the ground vegetation will change much more rapidly than the dominant tree species. This change will alter the quality and amount of litter input to the soil and induce changes in microbial communities, thus possibly altering the temperature sensitivity of SOM decomposition. We transferred organic surface soil sections from the northern borders of the boreal forest zone to corresponding forest sites in the southern borders of the boreal forest zone and studied the effects of warmer climate after an adaptation period of 2 years. The results showed that initially ground vegetation and soil microbial community structure and community functions were different in northern and southern forest sites and that 2 years of exposure to warmer climate was long enough to cause changes in these ecological indicators. The rate of SOM decomposition was approximately equally sensitive to temperature irrespective of changes in vegetation or microbial communities in the studied forest sites. However, as temperature sensitivity of the decomposition increases with decreasing temperature regime, the proportional increase in the decomposition rate in northern latitudes could lead to significant carbon losses from the soils.  相似文献   

9.
AM真菌对采煤沉陷区黄花菜生长及根际土壤养分的影响   总被引:1,自引:0,他引:1  
于陕北黄土沟壑采煤沉陷区内布设试验小区,对黄花菜(Hemerocallis citrina Baroni)接种丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)—摩西管柄囊霉菌,通过测定黄花菜光合性能、植株生长、抗逆性、土壤养分含量、根际微生物数量等,揭示AM真菌对黄花菜生长和土壤养分的影响。结果表明,黄花菜种植3—5个月后,接种AM真菌显著提高了黄花菜株高、冠幅及其根系菌根侵染率、菌丝密度。与不接种对照区相比,接种AM真菌后黄花菜叶片的光合速率、可溶性糖含量和过氧化氢酶活性分别提高了51%、12%、79%。接种AM真菌处理区黄花菜根际土壤的电导率、有机质、碱解氮和速效钾含量等均显著高于对照区,细菌数量和磷酸酶活性的菌根贡献率分别达77%和24%。表明采煤沉陷区扰动土壤接种AM真菌具有增强土壤微生物活性、改善土壤肥力和提高黄花菜植株抗逆性的作用,对促进陕北黄土沟壑采煤沉陷区经济作物生长和提高土壤质量具有重要现实生态意义。  相似文献   

10.
盐渍化土壤根际微生物群落及土壤因子对AM真菌的影响   总被引:6,自引:2,他引:4  
卢鑫萍  杜茜  闫永利  马琨  王占军  蒋齐 《生态学报》2012,32(13):4071-4078
为探明盐渍化土壤影响下AM真菌与根际土壤间的关系,试验选取宁夏碱化龟裂土、草甸盐土、盐化灌淤土3种类型4个样地上典型植被群落,测定了植物根际土壤养分含量、微生物群落结构、AM真菌侵染率以及孢子密度。结果显示:盐渍化土壤根际微生物碳源利用类型显著不同,对芳香类化合物的代谢能力整体较弱;红寺堡草甸盐土上微生物优势群落为氨基酸代谢类群,惠农盐化灌淤土为多聚化合物代谢群,西大滩碱化龟裂土为碳水化合物代谢群。AM真菌孢子密度与微生物碳源代谢群间的关系比较复杂。其中,惠农样点根际土壤孢子密度与多聚化合物微生物代谢群呈显著正相关,西大滩地区孢子密度与碳水化合物微生物代谢群呈显著正相关。土壤有机质、全盐、全氮、碱解氮等土壤肥力因子及土壤中的HCO-3、Na+、Cl-等盐基离子含量能解释AM真菌孢子密度与土壤环境因子之间相互关系的大部分信息。较高的HCO-3浓度促进了AM真菌侵染率的提高,但高盐浓度下Na+和Cl-降低了菌根侵染率。土壤对AM真菌孢子密度、侵染率的影响因土壤盐分组成类型的不同而异。研究结果为深入了解AM真菌多样性,促进宁夏盐碱地的合理开发与利用提供了理论依据。  相似文献   

11.
Atmospheric pollution containing soil-nitrifying ammonium sulfate ((NH₄)₂SO₄) affects semi-natural ecosystems worldwide. Long-term additions of (NH₄)₂SO₄ to nitrogen (N)-limited habitats, including heathlands, increase climate stress affecting recovery from wildfires. Although heathland vegetation largely depends on ericoid mycorrhizal fungi (ErM) to access soil N, we lack detailed understanding of how prolonged exposure to (NH₄)₂SO₄ may alter ErM community composition and host plants' reliance on fungal partners following wildfire and affect recovery. Simulation of atmospheric pollution ((NH₄)₂SO₄) occurred bi-weekly for 5 years after a 2006 wildfire in a UK heathland. Ten years after treatments ceased, we measured vegetation structure, lichen and lichen photobiont composition, soil characteristics, ErM colonization, ErM diversity in roots and soil, and assessed ErM potential as novel recovery indicators. Heather height and density, and moss groundcover, were greater in N-enriched plots. Lichen community indices showed significant treatment effects, but without differences in photobionts. Soil pH and Mg were significantly lower in treated plots while soil cation exchange capacity was significantly higher. There were no detectable differences in ErM composition and keystone ErM taxa between control and treated plots. Soil carbon stock measures were variable. Our results indicate atmospheric pollution following fire can have significant lingering effects above- and belowground. ErM diversity and root colonization were not assessed in the original N-addition experiment; we advocate for their inclusion in future studies as an integral part of the recovery assessment toolkit. We show that mycorrhizal fungi diversity is a viable ecological tool and summarize key steps for ErM identification.  相似文献   

12.
胥娇  李强 《微生物学报》2023,63(6):2153-2172
碳酸盐岩经风化作用并在地形、植被、气候、时间及生物等因素的影响下逐渐演替出黑色石灰土、棕色石灰土、黄色石灰土和红色石灰土。【目的】研究不同演替阶段石灰土颗粒态有机质(particulate organic matter, POM)和矿物结合态有机质(mineral-associated organic matter, MAOM)的微生物群落特征,为岩溶土壤有机质稳定机制研究提供理论依据。【方法】以广西弄岗国家级自然保护区的黑色石灰土、棕色石灰土、黄色石灰土和红色石灰土为研究对象,运用湿筛法将土壤有机质(soil organic matter, SOM)分为POM和MAOM,分析其理化性质以及微生物群落特征。【结果】石灰土演替过程中POM和MAOM的有机碳、总氮、交换性钙含量均呈下降趋势,且MAOM的C/N均大于POM,POM的C/P均大于MAOM。细菌α多样性在黑色石灰土POM和MAOM中最高,且四类石灰土MAOM的真菌多样性比POM要高。Acidobacteria、Proteobacteria、Ascomycota均为石灰土演替过程中POM和MAOM的优势菌门。总磷是影响石灰土演替过...  相似文献   

13.
Partitioning of soil phosphorus (P) pools has been proposed as a key mechanism maintaining plant diversity, but experimental support is lacking. Here, we provided different chemical forms of P to 15 tree species with contrasting root symbiotic relationships to investigate plant P acquisition in both tropical and subtropical forests. Both ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) trees responded positively to addition of inorganic P, but strikingly, ECM trees acquired more P from a complex organic form (phytic acid). Most ECM tree species and all AM tree species also showed some capacity to take up simple organic P (monophosphate). Mycorrhizal colonisation was negatively correlated with soil extractable P concentration, suggesting that mycorrhizal fungi may regulate organic P acquisition among tree species. Our results support the hypothesis that ECM and AM plants partition soil P sources, which may play an ecologically important role in promoting species coexistence in tropical and subtropical forests.  相似文献   

14.
Atmospheric nitrogen (N) deposition is enriching soils with N across biomes. Soil N enrichment can increase plant productivity and affect microbial activity, thereby increasing soil organic carbon (SOC), but such responses vary across biomes. Drylands cover ~45% of Earth's land area and store ~33% of global SOC contained in the top 1 m of soil. Nitrogen fertilization could, therefore, disproportionately impact carbon (C) cycling, yet whether dryland SOC storage increases with N remains unclear. To understand how N enrichment may change SOC storage, we separated SOC into plant-derived, particulate organic C (POC), and largely microbially derived, mineral-associated organic C (MAOC) at four N deposition experimental sites in Southern California. Theory suggests that N enrichment increases the efficiency by which microbes build MAOC (C stabilization efficiency) if soil pH stays constant. But if soils acidify, a common response to N enrichment, then microbial biomass and enzymatic organic matter decay may decrease, increasing POC but not MAOC. We found that N enrichment had no effect on C fractions except for a decrease in MAOC at one site. Specifically, despite reported increases in plant biomass in three sites and decreases in microbial biomass and extracellular enzyme activities in two sites that acidified, POC did not increase. Furthermore, microbial C use and stabilization efficiency increased in a non-acidified site, but without increasing MAOC. Instead, MAOC decreased by 16% at one of the sites that acidified, likely because it lost 47% of the exchangeable calcium (Ca) relative to controls. Indeed, MAOC was strongly and positively affected by Ca, which directly and, through its positive effect on microbial biomass, explained 58% of variation in MAOC. Long-term effects of N fertilization on dryland SOC storage appear abiotic in nature, such that drylands where Ca-stabilization of SOC is prevalent and soils acidify, are most at risk for significant C loss.  相似文献   

15.
The terrestrial biosphere sequesters up to a third of annual anthropogenic carbon dioxide emissions, offsetting a substantial portion of greenhouse gas forcing of the climate system. Although a number of factors are responsible for this terrestrial carbon sink, atmospheric nitrogen deposition contributes by enhancing tree productivity and promoting carbon storage in tree biomass. Forest soils also represent an important, but understudied carbon sink. Here, we examine the contribution of trees versus soil to total ecosystem carbon storage in a temperate forest and investigate the mechanisms by which soils accumulate carbon in response to two decades of elevated nitrogen inputs. We find that nitrogen-induced soil carbon accumulation is of equal or greater magnitude to carbon stored in trees, with the degree of response being dependent on stand type (hardwood versus pine) and level of N addition. Nitrogen enrichment resulted in a shift in organic matter chemistry and the microbial community such that unfertilized soils had a higher relative abundance of fungi and lipid, phenolic, and N-bearing compounds; whereas, N-amended plots were associated with reduced fungal biomass and activity and higher rates of lignin accumulation. We conclude that soil carbon accumulation in response to N enrichment was largely due to a suppression of organic matter decomposition rather than enhanced carbon inputs to soil via litter fall and root production.  相似文献   

16.
Fu  Shenglei  Cheng  Weixin  Susfalk  Rick 《Plant and Soil》2002,239(1):133-140
Assessment of particulate (>53-m) and mineral-associated (<53-m) soil organic matter (SOM) fractions is a useful approach to understand the dynamic of organic matter in soils. This study aimed to compare the long-term (9-yr) effects of no-tillage (NT) and conventional tillage (CT) on C and N stocks in the two above mentioned organic fractions in a Brazilian Acrisol. The degree of SOM humification, which has been associated with the concentration of semiquinone-type free radicals (`spin') determined by electron spin resonance (ESR), was also evaluated. Soil under no-tillage had 7.55 Mg ha–1 (25%) more C and 741 kg ha–1 (29%) more N than conventionally tilled soil in the 0–175-mm depth. Both particulate and mineral-associated SOM increased in the no-tilled soil. The increase of C and N stocks in the mineral-associated SOM accounted for 75% and 91% of the difference in total soil C and N stocks between NT and CT, respectively. Averaged across tillage systems, C and N stocks were respectively 4.6 and 16.8 times higher in the mineral-associated SOM than in particulate SOM. The higher C and N stocks were associated with greater recalcitrance of mineral-associated SOM to biological decomposition, resulting, probably, from its interaction with variable charge minerals. This is corroborated by a positive relationship between concentrations of C and iron oxides and kaolinite in the 53–20, 20–2 and <2-m particle size classes, of the 0–25-mm soil layer. The degree of SOM humification, assessed by ESR, decreased in both the 53–20 and 20–2-m fractions under NT. However, it was unaffected by tillage in the <2-m fraction, which normally presented the lowest `spin' concentration. Since quality as well as quantity of SOM improved in the no-tillage soil, adoption of this system is highly recommended for amelioration of degraded tropical and subtropical soils.  相似文献   

17.
氮添加会引起土壤理化性质和养分有效性的改变。受此影响,森林植物的地上碳同化能力和地下碳分配格局也会相应地发生变化,总体表现为促进植物生长固碳,增加凋落物和植物根系沉积碳输入土壤,并改变上述植物源有机质的数量和化学成分。与此同时,土壤微生物的群落结构和生态功能也会受到氮添加的影响,由于土壤中的有机碳分解、转化和稳定等过程均受到微生物的驱动,因此,氮添加所引起的底物供应差异和微生物响应会影响森林土壤有机碳的矿化,并最终影响森林土壤有机碳库固存、稳定和CO2排放。但目前关于氮添加对森林土壤有机碳库固存能力和CO2排放特征的影响机制仍不清楚,为此,以森林土壤的碳循环过程为线索,综述了氮添加对底物供应、土壤有机碳激发效应、微生物碳代谢等过程的影响,并尝试梳理在氮添加影响下森林土壤有机碳分解、转化和稳定的微生物驱动机制。这有助于预测氮添加对森林土壤"氮促碳汇"的实际效果,以便研究人员在未来氮沉降日益严重背景下更好地预测森林土壤的碳循环特征,寻找提高森林土壤有机碳库固存能力和降低CO2排放相关途径提供参考。同时,还分析了目前相关研究中存在的问题,并对该领域未来的研究热点进行了展望。  相似文献   

18.
《Global Change Biology》2018,24(6):2721-2734
Atmospheric nitrogen (N) deposition has enhanced soil carbon (C) stocks in temperate forests. Most research has posited that these soil C gains are driven primarily by shifts in fungal community composition with elevated N leading to declines in lignin degrading Basidiomycetes. Recent research, however, suggests that plants and soil microbes are dynamically intertwined, whereby plants send C subsidies to rhizosphere microbes to enhance enzyme production and the mobilization of N. Thus, under elevated N, trees may reduce belowground C allocation leading to cascading impacts on the ability of microbes to degrade soil organic matter through a shift in microbial species and/or a change in plant–microbe interactions. The objective of this study was to determine the extent to which couplings among plant, fungal, and bacterial responses to N fertilization alter the activity of enzymes that are the primary agents of soil decomposition. We measured fungal and bacterial community composition, root–microbial interactions, and extracellular enzyme activity in the rhizosphere, bulk, and organic horizon of soils sampled from a long‐term (>25 years), whole‐watershed, N fertilization experiment at the Fernow Experimental Forest in West Virginia, USA. We observed significant declines in plant C investment to fine root biomass (24.7%), root morphology, and arbuscular mycorrhizal (AM) colonization (55.9%). Moreover, we found that declines in extracellular enzyme activity were significantly correlated with a shift in bacterial community composition, but not fungal community composition. This bacterial community shift was also correlated with reduced AM fungal colonization indicating that declines in plant investment belowground drive the response of bacterial community structure and function to N fertilization. Collectively, we find that enzyme activity responses to N fertilization are not solely driven by fungi, but instead reflect a whole ecosystem response, whereby declines in the strength of belowground C investment to gain N cascade through the soil environment.  相似文献   

19.
The exudation of carbon (C) by tree roots stimulates microbial activity and the production of extracellular enzymes in the rhizosphere. Here, we investigated whether the strength of rhizosphere processes differed between temperate forest trees that vary in soil organic matter (SOM) chemistry and associate with either ectomycorrhizal (ECM) or arbuscular mycorrhizal (AM) fungi. We measured rates of root exudation, microbial and extracellular enzyme activity, and nitrogen (N) availability in samples of rhizosphere and bulk soil influenced by four temperate forest tree species (i.e., to estimate a rhizosphere effect). Although not significantly different between species, root exudation ranged from 0.36 to 1.10 g C m?2 day?1, representing a small but important transfer of C to rhizosphere microbes. The magnitude of the rhizosphere effects could not be easily characterized by mycorrhizal associations or SOM chemistry. Ash had the lowest rhizosphere effects and beech had the highest rhizosphere effects, representing one AM and one ECM species, respectively. Hemlock and sugar maple had equivalent rhizosphere effects on enzyme activity. However, the form of N produced in the rhizosphere varied with mycorrhizal association. Enhanced enzyme activity primarily increased amino acid availability in ECM rhizospheres and increased inorganic N availability in AM rhizospheres. These results show that the exudation of C by roots can enhance extracellular enzyme activity and soil-N cycling. This work suggests that global changes that alter belowground C allocation have the potential to impact the form and amount of N to support primary production in ECM and AM stands.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号