首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vulnerability and adaptation of major agricultural crops to various soils in north‐eastern Austria under a changing climate were investigated. The CERES crop model for winter wheat and the CROPGRO model for soybean were validated for the agrometeorological conditions in the selected region. The simulated winter wheat and soybean yields in most cases agreed with the measured data. Several incremental and transient global circulation model (GCM) climate change scenarios were created and used in the study. In these scenarios, annual temperatures in the selected region are expected to rise between 0.9 and 4.8 °C from the 2020s to the 2080s. The results show that warming will decrease the crop‐growing duration of the selected crops. For winter wheat, a gradual increase in air temperature resulted in a yield decrease. Incremental warming, especially in combination with an increase in precipitation, leads to higher soybean yield. A drier climate will reduce soybean yield, especially on soils with low water storage capacity. All transient GCM climate change scenarios for the 21st century, including the adjustment for only air temperature, precipitation and solar radiation, projected reductions of winter wheat yield. However, when the direct effect of increased levels of CO2 concentration was assumed, all GCM climate change scenarios projected an increase in winter wheat yield in the region. The increase in simulated soybean yield for the 21st century was primarily because of the positive impact of warming and especially of the beneficial influence of the direct CO2 effect. Changes in climate variability were found to affect winter wheat and soybean yield in various ways. Results from the adaptation assessments suggest that changes in sowing date, winter wheat and soybean cultivar selection could significantly affect crop production in the 21st century.  相似文献   

2.
Crop responses to climatic variation   总被引:6,自引:0,他引:6  
The yield and quality of food crops is central to the well being of humans and is directly affected by climate and weather. Initial studies of climate change on crops focussed on effects of increased carbon dioxide (CO2) level and/or global mean temperature and/or rainfall and nutrition on crop production. However, crops can respond nonlinearly to changes in their growing conditions, exhibit threshold responses and are subject to combinations of stress factors that affect their growth, development and yield. Thus, climate variability and changes in the frequency of extreme events are important for yield, its stability and quality. In this context, threshold temperatures for crop processes are found not to differ greatly for different crops and are important to define for the major food crops, to assist climate modellers predict the occurrence of crop critical temperatures and their temporal resolution. This paper demonstrates the impacts of climate variability for crop production in a number of crops. Increasing temperature and precipitation variability increases the risks to yield, as shown via computer simulation and experimental studies. The issue of food quality has not been given sufficient importance when assessing the impact of climate change for food and this is addressed. Using simulation models of wheat, the concentration of grain protein is shown to respond to changes in the mean and variability of temperature and precipitation events. The paper concludes with discussion of adaptation possibilities for crops in response to drought and argues that characters that enable better exploration of the soil and slower leaf canopy expansion could lead to crop higher transpiration efficiency.  相似文献   

3.
Broadening the genetic base of crops is crucial for developing varieties to respond to global agricultural challenges such as climate change. Here, we analysed a diverse panel of 371 domesticated lines of the model crop barley to explore the genetics of crop adaptation. We first collected exome sequence data and phenotypes of key life history traits from contrasting multi‐environment common garden trials. Then we applied refined statistical methods, including some based on exomic haplotype states, for genotype‐by‐environment (G×E) modelling. Sub‐populations defined from exomic profiles were coincident with barley's biology, geography and history, and explained a high proportion of trial phenotypic variance. Clear G×E interactions indicated adaptation profiles that varied for landraces and cultivars. Exploration of circadian clock‐related genes, associated with the environmentally adaptive days to heading trait (crucial for the crop's spread from the Fertile Crescent), illustrated complexities in G×E effect directions, and the importance of latitudinally based genic context in the expression of large‐effect alleles. Our analysis supports a gene‐level scientific understanding of crop adaption and leads to practical opportunities for crop improvement, allowing the prioritisation of genomic regions and particular sets of lines for breeding efforts seeking to cope with climate change and other stresses.  相似文献   

4.
Potential for adaptation to climate change in a coral reef fish   总被引:1,自引:0,他引:1       下载免费PDF全文
Predicting the impacts of climate change requires knowledge of the potential to adapt to rising temperatures, which is unknown for most species. Adaptive potential may be especially important in tropical species that have narrow thermal ranges and live close to their thermal optimum. We used the animal model to estimate heritability, genotype by environment interactions and nongenetic maternal components of phenotypic variation in fitness‐related traits in the coral reef damselfish, Acanthochromis polyacanthus. Offspring of wild‐caught breeding pairs were reared for two generations at current‐day and two elevated temperature treatments (+1.5 and +3.0 °C) consistent with climate change projections. Length, weight, body condition and metabolic traits (resting and maximum metabolic rate and net aerobic scope) were measured at four stages of juvenile development. Additive genetic variation was low for length and weight at 0 and 15 days posthatching (dph), but increased significantly at 30 dph. By contrast, nongenetic maternal effects on length, weight and body condition were high at 0 and 15 dph and became weaker at 30 dph. Metabolic traits, including net aerobic scope, exhibited high heritability at 90 dph. Furthermore, significant genotype x environment interactions indicated potential for adaptation of maximum metabolic rate and net aerobic scope at higher temperatures. Net aerobic scope was negatively correlated with weight, indicating that any adaptation of metabolic traits at higher temperatures could be accompanied by a reduction in body size. Finally, estimated breeding values for metabolic traits in F2 offspring were significantly affected by the parental rearing environment. Breeding values at higher temperatures were highest for transgenerationally acclimated fish, suggesting a possible role for epigenetic mechanisms in adaptive responses of metabolic traits. These results indicate a high potential for adaptation of aerobic scope to higher temperatures, which could enable reef fish populations to maintain their performance as ocean temperatures rise.  相似文献   

5.
Climate change will have direct impacts on fusarium ear blight (FEB) in wheat crops, since weather factors greatly affect epidemics, the relative proportions of species of ear blight pathogens responsible and the production of deoxynivalenol (DON) toxin by two Fusarium species, F. graminearum and F. culmorum. Many established weather-based prediction models do not accurately predict FEB severity in the UK. One weather-based model developed with UK data suggests a slight increase in FEB severity as a direct effect of climate change. However, severity of the disease is likely to increase further due to indirect effects of climate change, such as increased cropping of grain maize, since maize debris is a potent source of inoculum of F. graminearum. To guide strategies for adaptation to climate change, further research on forecasting, management options to reduce mycotoxin production, and breeding for resistant varieties is a high priority for the UK. Adaptation strategies must also consider factors such as tillage regime, wheat cultivar (flowering time and disease resistance) and fungicide use, which also influence the severity of FEB and related toxin production.  相似文献   

6.
Climate change threatens global wheat production and food security, including the wheat industry in Australia. Many studies have examined the impacts of changes in local climate on wheat yield per hectare, but there has been no assessment of changes in land area available for production due to changing climate. It is also unclear how total wheat production would change under future climate when autonomous adaptation options are adopted. We applied species distribution models to investigate future changes in areas climatically suitable for growing wheat in Australia. A crop model was used to assess wheat yield per hectare in these areas. Our results show that there is an overall tendency for a decrease in the areas suitable for growing wheat and a decline in the yield of the northeast Australian wheat belt. This results in reduced national wheat production although future climate change may benefit South Australia and Victoria. These projected outcomes infer that similar wheat‐growing regions of the globe might also experience decreases in wheat production. Some cropping adaptation measures increase wheat yield per hectare and provide significant mitigation of the negative effects of climate change on national wheat production by 2041–2060. However, any positive effects will be insufficient to prevent a likely decline in production under a high CO2 emission scenario by 2081–2100 due to increasing losses in suitable wheat‐growing areas. Therefore, additional adaptation strategies along with investment in wheat production are needed to maintain Australian agricultural production and enhance global food security. This scenario analysis provides a foundation towards understanding changes in Australia's wheat cropping systems, which will assist in developing adaptation strategies to mitigate climate change impacts on global wheat production.  相似文献   

7.
Evolutionary adaptation affects demographic resilience to climate change but few studies have attempted to project changes in selective pressures or quantify impacts of trait responses on population dynamics and extinction risk. We used a novel individual-based model to explore potential evolutionary changes in migration timing and the consequences for population persistence in sockeye salmon Oncorhynchus nerka in the Fraser River, Canada, under scenarios of future climate warming. Adult sockeye salmon are highly sensitive to increases in water temperature during their arduous upriver migration, raising concerns about the fate of these ecologically, culturally, and commercially important fish in a warmer future. Our results suggest that evolution of upriver migration timing could allow these salmon to avoid increasingly frequent stressful temperatures, with the odds of population persistence increasing in proportion to the trait heritability and phenotypic variance. With a simulated 2°C increase in average summer river temperatures by 2100, adult migration timing from the ocean to the river advanced by ~10 days when the heritability was 0.5, while the risk of quasi-extinction was only 17% of that faced by populations with zero evolutionary potential (i.e., heritability fixed at zero). The rates of evolution required to maintain persistence under simulated scenarios of moderate to rapid warming are plausible based on estimated heritabilities and rates of microevolution of timing traits in salmon and related species, although further empirical work is required to assess potential genetic and ecophysiological constraints on phenological adaptation. These results highlight the benefits to salmon management of maintaining evolutionary potential within populations, in addition to conserving key habitats and minimizing additional stressors where possible, as a means to build resilience to ongoing climate change. More generally, they demonstrate the importance and feasibility of considering evolutionary processes, in addition to ecology and demography, when projecting population responses to environmental change.  相似文献   

8.
Remote sensing‐derived wheat crop yield‐climate models were developed to highlight the impact of temperature variation during thermo‐sensitive periods (anthesis and grain‐filling; TSP) of wheat crop development. Specific questions addressed are: can the impact of temperature variation occurring during the TSP on wheat crop yield be detected using remote sensing data and what is the impact? Do crop critical temperature thresholds during TSP exist in real world cropping landscapes? These questions are tested in one of the world's major wheat breadbaskets of Punjab and Haryana, north‐west India. Warming average minimum temperatures during the TSP had a greater negative impact on wheat crop yield than warming maximum temperatures. Warming minimum and maximum temperatures during the TSP explain a greater amount of variation in wheat crop yield than average growing season temperature. In complex real world cereal croplands there was a variable yield response to critical temperature threshold exceedance, specifically a more pronounced negative impact on wheat yield with increased warming events above 35 °C. The negative impact of warming increases with a later start‐of‐season suggesting earlier sowing can reduce wheat crop exposure harmful temperatures. However, even earlier sown wheat experienced temperature‐induced yield losses, which, when viewed in the context of projected warming up to 2100 indicates adaptive responses should focus on increasing wheat tolerance to heat. This study shows it is possible to capture the impacts of temperature variation during the TSP on wheat crop yield in real world cropping landscapes using remote sensing data; this has important implications for monitoring the impact of climate change, variation and heat extremes on wheat croplands.  相似文献   

9.
This paper examines the impacts of climate change on cassava production in Africa, and questions whether cassava can play an important role in climate change adaptation. First, we examine the impacts that climate change will likely have on cassava itself, and on other important staple food crops for Africa including maize, millets, sorghum, banana, and beans based on projections to 2030. Results indicate that cassava is actually positively impacted in many areas of Africa, with ?3.7% to +17.5% changes in climate suitability across the continent. Conversely, for other major food staples, we found that they are all projected to experience negative impacts, with the greatest impacts for beans (?16%?±?8.8), potato (?14.7?±?8.2), banana (?2.5%?±?4.9), and sorghum (?2.66%?±?6.45). We then examined the likely challenges that cassava will face from pests and diseases through the use of ecological niche modeling for cassava mosaic disease, whitefly, brown streak disease and cassava mealybug. The findings show that the geographic distribution of these pests and diseases are projected to change, with both new areas opening up and areas where the pests and diseases are likely to leave or reduce in pressure. We finish the paper by looking at the abiotic traits of priority for crop adaptation for a 2030 world, showing that greater drought tolerance could bring some benefits in all areas of Africa, and that cold tolerance in Southern Africa will continue to be a constraint for cassava despite a warmer 2030 world, hence breeding needs to keep a focus on this trait. Importantly, heat tolerance was not found to be a major priority for crop improvement in cassava in the whole of Africa, but only in localized pockets of West Africa and the Sahel. The paper concludes that cassava is potentially highly resilient to future climatic changes and could provide Africa with options for adaptation whilst other major food staples face challenges.  相似文献   

10.
Aim:  Ecosystems face numerous well‐documented threats from climate change. The well‐being of people also is threatened by climate change, most prominently by reduced food security. Human adaptation to food scarcity, including shifting agricultural zones, will create new threats for natural ecosystems. We investigated how shifts in crop suitability because of climate change may overlap currently protected areas (PAs) and priority sites for PA expansion in South Africa. Predicting the locations of suitable climate conditions for crop growth will assist conservationists and decision‐makers in planning for climate change. Location:  South Africa. Methods:  We modelled climatic suitability in 2055 for maize and wheat cultivation, two extensively planted, staple crops, and overlaid projected changes with PAs and PA expansion priorities. Results:  Changes in winter climate could make an additional 2 million ha of land suitable for wheat cultivation, while changes in summer climate could expand maize suitability by up to 3.5 million ha. Conversely, 3 million ha of lands currently suitable for wheat production are predicted to become climatically unsuitable, along with 13 million ha for maize. At least 328 of 834 (39%) PAs are projected to be affected by altered wheat or maize suitability in their buffer zones. Main conclusions:  Reduced crop suitability and food scarcity in subsistence areas may lead to the exploitation of PAs for food and fuel. However, if reduced crop suitability leads to agricultural abandonment, this may afford opportunities for ecological restoration. Expanded crop suitability in PA buffer zones could lead to additional isolation of PAs if portions of newly suitable land are converted to agriculture. These results suggest that altered crop suitability will be widespread throughout South Africa, including within and around lands identified as conservation priorities. Assessing how climate change will affect crop suitability near PAs is a first step towards proactively identifying potential conflicts between human adaptation and conservation planning.  相似文献   

11.
Semi‐natural mountain grasslands are increasingly exposed to environmental stress under climate change. However, which are the environmental factors that limit plants in these grasslands? Also, is the present management effective against these changes? Fitness‐related functional traits may offer a way to detect changes in performance and provide new insights into their vulnerability to climate change. We investigated changes in performance and variability of functional traits of the mountain grassland target species Arnica montana along a climate gradient in Central German low mountain ranges. This gradient represents at its lower end climate conditions that are expected at its upper end under future climate change. We measured vegetative, generative, and physiological traits to account for multiple ways of plant responses to the environment. Using mixed effects and multivariate models, we evaluated changes in trait values among individuals as well as the variability of their populations in order to assess performance under changing summer aridity and different management regimes. Fitness‐related performance of most traits showed strongly positive associations with reduced summer aridity at higher elevations, while only specific leaf area and leaf dry matter content showed no association. This suggests a higher performance level at less arid montane sites and that the physiological traits are less sensitive to this climate change factor. The coefficient of variation of almost all traits declined steadily with decreasing site aridity. We suggest that this reduced variability indicates a lower environmental stress level for A. montana toward its environmental optimum at montane elevations, especially because the trait performance increased simultaneously. Surprisingly, management factors and habitat characteristics had only low influence on both trait performance and variability. In summary, summer aridity had a stronger effect to shape the trait performance and variability of A. montana under increased environmental stress than management and other habitat characteristics.  相似文献   

12.
This study is the first of its kind to quantify possible effects of climate change on rice production in Africa. We simulated impacts on rice in irrigated systems (dry season and wet season) and rainfed systems (upland and lowland). We simulated the use of rice varieties with a higher temperature sum as adaptation option. We simulated rice yields for 4 RCP climate change scenarios and identified causes of yield declines. Without adaptation, shortening of the growing period due to higher temperatures had a negative impact on yields (?24% in RCP 8.5 in 2070 compared with the baseline year 2000). With varieties that have a high temperature sum, the length of the growing period would remain the same as under the baseline conditions. With this adaptation option rainfed rice yields would increase slightly (+8%) but they remain subject to water availability constraints. Irrigated rice yields in East Africa would increase (+25%) due to more favourable temperatures and due to CO2 fertilization. Wet season irrigated rice yields in West Africa were projected to change by ?21% or +7% (without/with adaptation). Without adaptation irrigated rice yields in West Africa in the dry season would decrease by ?45% with adaptation they would decrease significantly less (?15%). The main cause of this decline was reduced photosynthesis at extremely high temperatures. Simulated heat sterility hardly increased and was not found a major cause for yield decline. The implications for these findings are as follows. For East Africa to benefit from climate change, improved water and nutrient management will be needed to benefit fully from the more favourable temperatures and increased CO2 concentrations. For West Africa, more research is needed on photosynthesis processes at extreme temperatures and on adaptation options such as shifting sowing dates.  相似文献   

13.
Molecular ecology of global change   总被引:5,自引:2,他引:3  
Reusch TB  Wood TE 《Molecular ecology》2007,16(19):3973-3992
  相似文献   

14.
Few regions have been more severely impacted by climate change in the USA than the Desert Southwest. Here, we use ecological genomics to assess the potential for adaptation to rising global temperatures in a widespread songbird, the willow flycatcher (Empidonax traillii), and find the endangered desert southwestern subspecies (E. t. extimus) most vulnerable to future climate change. Highly significant correlations between present abundance and estimates of genomic vulnerability – the mismatch between current and predicted future genotype–environment relationships – indicate small, fragmented populations of the southwestern willow flycatcher will have to adapt most to keep pace with climate change. Links between climate‐associated genotypes and genes important to thermal tolerance in birds provide a potential mechanism for adaptation to temperature extremes. Our results demonstrate that the incorporation of genotype–environment relationships into landscape‐scale models of climate vulnerability can facilitate more precise predictions of climate impacts and help guide conservation in threatened and endangered groups.  相似文献   

15.
Variation in plant functional traits has been related to variation in environmental conditions. In particular, the relationship between leaf traits and climate has received much attention. This paper presents a functional‐trait‐centred approach to identify potential impacts of climate and land use change on plant species assemblages. Using species atlas data, we modelled the relative frequencies of species with different leaf anatomies (LARF) as a function of observed climate and land use data on a regular spatial grid across Germany. Subsequently, we projected the geographical distribution of LARF with simulated climate and land use data for the late 21st century under two future scenarios. We used a conditional autoregressive regression model to account for spatially structured variation in LARF that remained unexplained by the environmental factors considered. We found a clear relationship between the climatic gradient of water availability and shifts in LARF: increasing water deficit was associated with a decreasing proportion of species with hygromorphic leaves in the composition and increasing proportions of species with scleromorphic and mesomorphic leaves. The variation in LARF due to land use was only small. Under future environmental scenarios the proportion of species with hygromorphic leaves was projected to decrease in all parts of Germany, whereas the proportions of species with sclero‐ and mesomorphic leaves were projected to increase on average. In particular, Germany's south‐western and north‐eastern areas were projected to experience functional change in LARF. Our study highlights the relationship between functional traits and plant species vulnerability to climate change. Our results suggest that the functional‐trait‐centred approach can provide a powerful additional modelling tool to estimate potential impacts of climate change on plant species assemblages.  相似文献   

16.
Southern South America is expected to play an increasingly important role in global food production, but climate change could seriously threaten it. Here we have analysed long‐term historical data for major crops (rice, oats, barley, sunflower, soybean, sorghum, wheat, maize) at subnational scale to (a) look for common features among crop yield dynamics, evaluating their structure and implications for the persistence of that crop; (b) address complex crop responses to changes in environmental growing conditions; and (c) identify climate impact hotspots that are crucial for adaptation and mitigation. We have proposed a novel methodological approach based on dynamics systems in order to understand the processes behind annual crop yield fluctuations. We report the results of general patterns in the internal process (biophysical adjustments by rapid negative feedbacks) regulating crop production and analyse how it influences crop persistence and yield ceilings. The structure of a crop yield dynamic system defines its behaviour, but climate variations could displace it from yield equilibrium and affect its stability. Our findings suggest that weather conditions have a stronger impact on yield growth at high rather than at low yield levels (non‐additive impacts). This allows agriculture management to be refined and applied more efficiently, weakening the relationship between crop productivity and climate change and predicting the response of crop production to yield‐improvement strategies. We have identified those crops and regions which are most vulnerable to the current climate change trends in southern South American agroecosystems. Our results allow us to point to new ways to enhance self‐regulatory success, maximising the efficiency of crop production and reducing climate impacts. We have discussed important implications for crop management and climate change mitigation in an area where agriculture plays a key role in its socioeconomic and ecologic dimensions.  相似文献   

17.
Studies at the root level and how the root–shoot interactions may influence the whole crop performance of giant reed (Arundo donax L.) under limited water conditions are largely missing. In the present study, we illustrate the effects of water stress on some phenotypic traits at the root–shoot levels of two giant reed genotypes (from Morocco and Northern Italy) that were reported to have different adaptive hydraulic stem conductivities despite the limited genetic variability of the species. The trial was carried out in 1 m3 rhizotrons (1 × 1 × 1 m) for two consecutive growing seasons. As expected, both genotypes showed an effective behavior to contrast water shortage; however, the Moroccan genotype showed a higher leaf water potential, a lower root length density (RLD) and thinner roots in the upper soil layer (0–20 cm), and similar to control RLD values at deep soil layers (40–60 cm). On the other hand the Italian genotype showed the opposite pattern; that is no drought (DR) effects in RLD and root diameter at upper soil layers and reduced RLD in deep layers, thus revealing different DR adaptation characteristics between two genotypes. This DR adaptation variability might bring new insights on DR tolerance of giant reed identifying potential traits aimed to improve the integral plant functioning, to a more efficient use of water resources, and to a more effective crop allocation to targeted stressful conditions under a climate change scenario that foresees the increase of DR periods.  相似文献   

18.
The advanced backcross QTL (AB-QTL) strategy was utilised to locate quantitative trait loci (QTLs) for baking quality traits in two BC2F3 populations of winter wheat. The backcrosses are derived from two German winter wheat cultivars, Batis and Zentos, and two synthetic, hexaploid wheat accessions, Syn022 and Syn086. The synthetics originate from hybridisations of wild emmer (T. turgidum spp. dicoccoides) and T. tauschii, rather than from durum wheat and T. tauschii and thus allowed for the first time to test for exotic QTL effects on wheat genomes A and B in addition to genome D. The investigated quality traits comprised hectolitre weight, grain hardness, flour yield Type 550, falling number, grain protein content, sedimentation volume and baking volume. One hundred and forty-nine SSR markers were applied to genotype a total of 400 BC2F3 lines. For QTL detection, a mixed-model ANOVA was conducted, including the effects DNA marker, BC2F3 line, environment and marker × environment interaction. Overall 38 QTLs significant for a marker main effect were detected. The exotic allele improved trait performance at 14 QTLs (36.8%), while the elite genotype contributed the favourable effect at 24 QTLs (63.2%). The favourable exotic alleles were mainly associated with grain protein content, though the greatest improvement of trait performance due to the exotic alleles was achieved for the traits falling number and sedimentation volume. At the QTL on chromosome 4B the exotic allele increased the falling number by 19.6% and at the QTL on chromosome 6D the exotic allele led to an increase of the sedimentation volume by 21.7%. The results indicate that synthetic wheat derived from wild emmer × T. tauschii carries favourable QTL alleles for baking quality traits, which might be useful for breeding improved wheat varieties by marker-assisted selection.  相似文献   

19.
Different thermal environments impose strong, differential selection on populations, leading to local adaptation, but the genetic basis of thermal adaptation is poorly understood. We used quantitative trait locus (QTL) mapping in the fungal wheat pathogen Zymoseptoria tritici to study the genetic architecture of thermal adaptation and identify candidate genes. Four wild-type strains originating from the same thermal environment were crossed to generate two mapping populations with 263 (cross 1) and 261 (cross 2) progeny. Restriction site-associated DNA sequencing was used to genotype 9745 (cross 1) and 7333 (cross 2) single-nucleotide polymorphism markers segregating within the mapping population. Temperature sensitivity was assessed using digital image analysis of colonies growing at two different temperatures. We identified four QTLs for temperature sensitivity, with unique QTLs found in each cross. One QTL had a logarithm of odds score >11 and contained only six candidate genes, including PBS2, encoding a mitogen-activated protein kinase kinase associated with low temperature tolerance in Saccharomyces cerevisiae. This and other QTLs showed evidence for pleiotropy among growth rate, melanization and growth morphology, suggesting that many traits can be correlated with thermal adaptation in fungi. Higher temperatures were highly correlated with a shift to filamentous growth among the progeny in both crosses. We show that thermal adaptation has a complex genetic architecture, with natural populations of Z. tritici harboring significant genetic variation for this trait. We conclude that Z. tritici populations have the potential to adapt rapidly to climate change and expand into new climatic zones.  相似文献   

20.
Global temperatures are rising, and higher rates of temperature increase are projected over land areas that encompass the globe's major agricultural regions. In addition to increased growing season temperatures, heat waves are predicted to become more common and severe. High temperatures can inhibit photosynthetic carbon gain of crop plants and thus threaten productivity, the effects of which may interact with other aspects of climate change. Here, we review the current literature assessing temperature effects on photosynthesis in key crops with special attention to field studies using crop canopy heating technology and in combination with other climate variables. We also discuss the biochemical reactions related to carbon fixation that may limit crop photosynthesis under warming temperatures and the current strategies for adaptation. Important progress has been made on several adaptation strategies demonstrating proof‐of‐concept for translating improved photosynthesis into higher yields. These are now poised to test in important food crops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号