首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Remote photo-monitoring of Banksia spinulosa inflorescences indicated that birds, mammals and insects were regular visitors. These included the sugar glider, brown antechinus, eastern pygmy possum, eastern spinebill, honeybee and several moth species. Eastern spine-bills were recorded at all inflorescences monitored while visitation by other animals was more sporadic. Inflorescences were visited at least once every 24 h, and visitation frequency was approximately evenly distributed during the day and night. Examination of pollen tube growth from experimental treatments indicated that pollination success was similar from both nocturnal and diurnal visitors. However, nocturnal visitors were more effective at removing pollen from newly opened flowers. The behaviour of mammals at inflorescences was such that they would transfer much more pollen to flowers than other visitors, and probably contact receptive stigmas more often. Overall, mammals were considered to be slightly more effective pollinators than the more obvious daytime visitors, eastern spinebills. Although insects visited regularly, they were thought to be less effective at pollinating flowers than vertebrate visitors. Moths carried very little pollen, and the foraging behaviour of other insects was unlikely to promote much pollination.  相似文献   

2.
1. Sympatric flower visitor species often partition nectar and pollen and thus affect each other's foraging pattern. Consequently, their pollination service may also be influenced by the presence of other flower visiting species. Ants are solely interested in nectar and frequent flower visitors of some plant species but usually provide no pollination service. Obligate flower visitors such as bees depend on both nectar and pollen and are often more effective pollinators. 2. In Hawaii, we studied the complex interactions between flowers of the endemic tree Metrosideros polymorpha (Myrtaceae) and both, endemic and introduced flower‐visiting insects. The former main‐pollinators of M. polymorpha were birds, which, however, became rare. We evaluated the pollinator effectiveness of endemic and invasive bees and whether it is affected by the type of resource collected and the presence of ants on flowers. 3. Ants were dominant nectar‐consumers that mostly depleted the nectar of visited inflorescences. Accordingly, the visitation frequency, duration, and consequently the pollinator effectiveness of nectar‐foraging honeybees (Apis mellifera) strongly decreased on ant‐visited flowers, whereas pollen‐collecting bees remained largely unaffected by ants. Overall, endemic bees (Hylaeus spp.) were ineffective pollinators. 4. The average net effect of ants on pollination of M. polymorpha was neutral, corresponding to a similar fruit set of ant‐visited and ant‐free inflorescences. 5. Our results suggest that invasive social hymenopterans that often have negative impacts on the Hawaiian flora and fauna may occasionally provide neutral (ants) or even beneficial net effects (honeybees), especially in the absence of native birds.  相似文献   

3.
The pollination biology of Norantea brasiliensis (Marcgraviaceae) was studied in the rain forest of southeastern Brazil. This plant presents bizarre, brush-type racemous inflorescences bearing numerous flowers and extrafloral cup-shaped nectaries. Flower anthesis is diurnal, nectar production is continuous and copious, and the sticky pollen is readily removed by visitors during the first morning hours. The ruby-coloured inflorescences were visited by eight species of hummingbirds (Trochilidae), and 10 species of passerine birds (three Coerebidae and seven Thraupidae). Hummingbirds hovered while probing for nectar and touched flowers occasionally, whereas passerine birds perched and made contact with flowers habitually. Due to differences in flower-visiting and general foraging behaviour, perching birds act as better pollen vectors than hovering birds. The inflorescence of Norantea brasiliensis seems well fitted for pollination by passerine birds, and the hexose-dominated nectar supports this idea. Pollination syndrome trends within Marcgraviaceae may stem from insect-pollinated, condensed and spike-like inflorescences which would give rise to bird-pollinated, brush-type inflorescences. From the same basic condensed inflorescence, bat-pollinated umbelliform inflorescence may be derived from bird-pollinated, pendulous and corymb-like inflorescences. These postulated inflorescence types are found among the extant species of Marcgraviaceae.  相似文献   

4.
The floral visitors of silky oak, Grevillea robusta A. Cunn. ex R.Br., their foraging behaviour and their effects on fruit‐set were studied at Malava, western Kenya. Grevillea robusta is a popular tree for farm plantings in the eastern and central African highlands. Yield of seed has been disappointingly low in some areas and a lack of appropriate pollinators has been suggested as a possible cause. Investigations involved the monitoring of visitors on active inflorescences, assessment of the rewards available to potential pollinators, and exclusion experiments to establish the effects of various visitors on fruit‐set. The flowers are visited mainly by birds and insects. The likely pollinators of G. robusta are sunbirds (Nectarinia amethystina, N. cyanolaema, N. olivacea, N. superba and N. venusta) and white‐eyes (Zosterops kikuyuensis and Z. senegalensis). Very little aggressive behaviour between birds was recorded. No nocturnal pollinators were observed. Nectar was the major floral reward for pollinators, but is likely depleted by ants and honey bees, the foraging behaviour of which confirmed them to be nectar‐robbers. These insects hardly ever touched stigmas during their visits. Eighty‐nine per cent of bird visits were in the morning (07.00–10.00 hours) when nectar volume was highest. Inflorescences bagged to exclude birds set no fruits, and unmanipulated flowers and flowers bagged with self‐pollen set no fruits, indicating a self‐incompatibility mechanism. Control cross‐pollinated flowers displayed greatly increased fruit‐set (25.1%) compared with natural open‐pollination (0.9%). All these findings confirm the importance of cross‐pollen transfer to flowers and the necessity of pollinators for fruit‐set. Effective seed production requires activity of pollinators for self‐pollen removal and cross‐pollen deposition. Seed production stands for G. robusta should be established where flowering is prolific and bird pollinators are abundant.  相似文献   

5.
Generalized pollination systems may be favored in early spring flowering plants, as during this period pollinator activity is unpredictable. Many previous studies have concentrated on the importance of diurnal visitors in pollination, and consequently, information on the contribution of nocturnal visitors to pollination in early spring is limited. This study was conducted to evaluate the relative importance of diurnal and nocturnal pollinators in the early spring flowering dioecious shrub Stachyurus praecox (Stachyuraceae), in two temperate forests in central Japan. Visitors to the female and male flowers were observed during day and night, and their relative contributions to seed set were compared. The pollinator observations revealed that the diurnal and nocturnal insects visited both male and female flowers, and that the main flower visitors were diurnal small bees and flies as well as nocturnal settling moths. The diurnal and nocturnal flower visitors also acted as pollinators, as the pollen grains of S. praecox were attached to the insects collected from the female flowers. Pollination experiments demonstrated that the contributions of diurnal pollinators to the seed set were higher than those of the nocturnal pollinators. The results of this study indicate that S. praecox has a generalized pollination system, comprising both diurnal insects and nocturnal settling moths. Although the roles of diurnal insects are more important in the pollination of S. praecox, nocturnal settling moths may have a complementary role in early spring.  相似文献   

6.
  • Unrelated plants adapted to particular pollinator types tend to exhibit convergent evolution in floral traits. However, inferences about likely pollinators from ‘pollination syndromes’ can be problematic due to trait overlap among some syndromes and unusual floral architecture in some lineages. An example is the rare South African parasitic plant Mystropetalon thomii (Mystropetalaceae), which has highly unusual brush‐like inflorescences that exhibit features of both bird and rodent pollination syndromes.
  • We used camera traps to record flower visitors, quantified floral spectral reflectance and nectar and scent production, experimentally determined self‐compatibility and breeding system, and studied pollen dispersal using fluorescent dyes.
  • The dark‐red inflorescences are usually monoecious, with female flowers maturing before male flowers, but some inflorescences are purely female (gynoecious). Inflorescences were visited intensively by several rodent species that carried large pollen loads, while visits by birds were extremely rare. Rodents prefer male‐ over female‐phase inflorescences, likely because of the male flowers’ higher nectar and scent production. The floral scent contains several compounds known to attract rodents. Despite the obvious pollen transfer by rodents, we found that flowers on both monoecious and gynoecious inflorescences readily set seed in the absence of rodents and even when all flower visitors are excluded.
  • Our findings suggest that seed production occurs at least partially through apomixis and that M. thomii is not ecologically dependent on its rodent pollinators. Our study adds another species and family to the growing list of rodent‐pollinated plants, thus contributing to our understanding of the floral traits associated with pollination by non‐flying mammals.
  相似文献   

7.
Pollination by rodents, originally discovered in Cape Proteaceae, is known from a handful of plant lineages and may be more widespread than current data suggest. Here, we demonstrate the occurrence of this mode of pollination in Erica, the largest plant genus in the Cape flora of South Africa. The localized endemic Erica hanekomii appears to be adapted for pollination by rodents, on account of its low, mat‐forming habit with many dull‐coloured, pendulous flower heads, large volumes (up to c. 30 µL per inflorescence) of sucrose‐dominated nectar, hook‐shaped styles and late winter flowering phenology. Rodents trapped in the vicinity of E. hanekomii plants had many thousands of Erica tetrads in their droppings. Nocturnal laboratory observation showed that Acomys subspinosus (Cape spiny mouse) is adept at manipulating E. hanekomii inflorescences and lapping nectar without destroying gynoecia. During terrarium experiments, pollen was deposited mainly on the rostrum, but also on the chest area and forelegs of A. subspinosus. No birds or insects were seen to visit E. hanekomii in the field. Whereas natural fruit set was 73%, inflorescences from which rodents, but not insects, were excluded using mesh cages, had fruit set of just 3.3%. Exclusion of all visitors resulted in zero seed production. Broken anther rings (a sign of flower visitation in Erica) were observed in 90.1% of flowers in the field and 92% of flowers exposed to rodents in the laboratory, but in virtually none of the flowers from which rodents were selectively excluded. This first record of a non‐flying mammal pollination syndrome in Ericaceae raises interesting new questions about the origins of the rodent pollination system and the selective factors that lead to its evolution. © 2011 The Linnean Society of London, Botanical Journal of the Linnean Society, 2011, 166 , 163–170.  相似文献   

8.
The pollination biology of a population of 250 Yucca elata (Liliaceae) plants was studied in southern New Mexico. Yucca elata and the prodoxid yucca moth Tegeticula yuccasella have a mutualistic association that is essential for the successful sexual reproduction of both species. However, a wide range of other invertebrate species visit flowers during the day and at night. Our aim was to quantify the role of yucca moths and other invertebrate visitors in pollination and fruit set, using manipulative field experiments. Inflorescences were bagged during the day or night (N=12 inflorescences) to restrict flower visitors to either nocturnal or diurnal groups. Yucca moths were active exclusively nocturnally during the flowering period and thus did not visit inflorescences that were unbagged during the day. None of the 4022 flowers exposed only to diurnal visitors set fruit, whereas 4.6% of the 4974 flowers exposed only to nocturnal visitors (including yucca moths) produced mature fruit. The proportion of flowers producing fruit in the latter treatment was not significantly different from unbagged control inflorescences. In a series of experimental manipulations we also determined that: (1) flowers opened at dusk and were open for two days on average, but were only receptive to pollen on the first night of opening; (2) pollen must be pushed down the stigmatic tube to affect pollination; and (3) most plants require out-cross pollination to produce fruit. The combination of these results strongly suggests that yucca moths are the only species affecting pollination in Y. elata, and that if another species was to affect pollination, it would be a rare event.  相似文献   

9.
Abstract Banksia brownii is an endangered species, now limited to ~ 15 disjunct populations in southwestern Western Australia. Data on flowering phenology, plant size, fruit set, pollination and the mating system were gathered for two of these populations between March and October 1993. Flowering for both populations followed a similar pattern, with open flowers first evident in April, and the number of inflorescences with open flowers peaking in June. At both locations, trees differed considerably with respect to their size, the total number of inflorescences produced and the length of their flowering season. Fruiting success was typically low, with approximately half of all inflorescences failing to develop into infructescences. Only 1. 8% of the flowers originally present on inflorescences developed into follicles. The distribution of follicles along each infructescence was non-random, with most forming in the middle third of the infructescence for reasons relating to nutrient supply and pollinator behaviour. More flowers opened during the day than at night, although pollen was lost from individual flowers during both periods. Honeyeaters such as Phylidonyris novaehollandiae were common at the two study sites, and often carried large loads of B. brownii pollen. Though less frequently caught, the nocturnal mammals Rattus fuscipes and Tarsipes rostratus also bore substantial amounts of pollen. Most inflorescences from which these mammals and birds were excluded remained barren. Fruiting success was further reduced when invertebrates such as Apis mellifera were also prevented from visiting inflorescences. The ability of B. brownii to set at least some fruit in the absence of biotic poli-nators indicates that the species is partially self-compatible. Honeyeaters foraged preferentially at inflorescences with one to two thirds of their flowers open, probing mainly along the ‘advancing front’ of open flowers. These animals moved more frequently between inflorescences on the same plant than between those on different plants, and were often recaptured in the same locations. Mammals also appeared to be sedentary. Both B. brownii populations had mixed mating systems, with genetically determined outcrossing rates of ~0.7. The unusually high level of selfing in each population is presumably a reflection of the species’ self-compatibility and the foraging behaviour of its pollinators.  相似文献   

10.
Most lineages in the African genus Protea consist of species with large unscented flowers pollinated principally by birds, and several of these lineages also show evidence of shifts to rodent pollination, associated with concealed yeasty-scented flowerheads. In this study we investigated the hypothesis that brightly coloured and fruity-scented flowerheads of four Protea species (P. caffra, P. simplex, P. dracomontana and P. welwitschii) represent a novel shift from bird to insect pollination in a grassland lineage in the genus. These species are visited by a wide range of insects, but cetoniine beetles were found to be the most important pollinators because of their abundance, size and relatively pure pollen loads. Three of the four putatively insect-pollinated Protea species have flowers presented at ground level, and experiments showed that cetoniine beetles preferred inflorescences at ground level to those artificially elevated to the height of shrubs and small trees. Relative to insects, birds were infrequent visitors to all of the study species. The nectar of all the study species contained xylose, as documented previously in bird- and rodent-pollinated Protea species, suggesting that this is a phylogenetically conserved trait. However, the very low concentration of nectar (ca. 8%), short nectar-stigma distance and the fruity scent of florets appear to be traits that are associated with specialisation for pollination by cetoniine beetles.  相似文献   

11.

Background and Aims

In the UK, the flowers of fruit-bearing hedgerow plants provide a succession of pollen and nectar for flower-visiting insects for much of the year. The fruits of hedgerow plants are a source of winter food for frugivorous birds on farmland. It is unclear whether recent declines in pollinator populations are likely to threaten fruit-set and hence food supply for birds. The present study investigates the pollination biology of five common hedgerow plants: blackthorn (Prunus spinosa), hawthorn (Crataegus monogyna), dog rose (Rosa canina), bramble (Rubus fruticosus) and ivy (Hedera helix).

Methods

The requirement for insect pollination was investigated initially by excluding insects from flowers by using mesh bags and comparing immature and mature fruit-set with those of open-pollinated flowers. Those plants that showed a requirement for insect pollination were then tested to compare fruit-set under two additional pollination service scenarios: (1) reduced pollination, with insects excluded from flowers bagged for part of the flowering period, and (2) supplemental pollination, with flowers hand cross-pollinated to test for pollen limitation.

Key Results

The proportions of flowers setting fruit in blackthorn, hawthorn and ivy were significantly reduced when insects were excluded from flowers by using mesh bags, whereas fruit-set in bramble and dog rose were unaffected. Restricting the exposure of flowers to pollinators had no significant effect on fruit-set. However, blackthorn and hawthorn were found to be pollen-limited, suggesting that the pollination service was inadequate in the study area.

Conclusions

Ensuring strong populations of insect pollinators may be essential to guarantee a winter fruit supply for birds in UK hedgerows.Key words: Blackthorn, bramble, Crataegus monogyna, frugivorous birds, hawthorn, Hedera helix, hedgerows, ivy, insect pollination, Prunus spinosa, Rubus fruticosus, Rosa canina  相似文献   

12.
Nepenthes gracilis, a dioecious carnivorous plant, has inconspicuous flowers lacking petals. Nectaries distributed on the upper surface of four sepals secrete dilute nectar (3%–12% sugar concentration) at night, but the nectar immediately disappears during the day by evaporation in the sunny environment of Sumatra. Male flowers have a higher nectar production rate but lower sugar concentration of nectar than female flowers. Flowers of both sexes were visited by pyralid moths at night and by calliphorid flies in the evening. Pollen was found attached on these insects visiting Nepenthes flowers. The pattern of nectar production of sepals is regarded as attracting nocturnal flying insects and avoiding ants, while the pitchers attract ants by nectar secreted on the pitcher rim.  相似文献   

13.
Pollination of Neotropical dioecious trees is commonly related to generalist insects. Similar data for non‐tree species with separated genders are inconclusive. Recent studies on pollination of dioecious Chamaedorea palms (Arecaceae) suggest that species are either insect‐ or wind‐pollinated. However, the wide variety of inflorescence and floral attributes within the genus suggests mixed pollination mode involving entomophily and anemophily. To evaluate this hypothesis, we studied the pollination of Chamaedorea costaricana, C. macrospadix, C. pinnatifrons and C. tepejilote in two montane forests in Costa Rica. A complementary morphological analysis of floral traits was carried out to distinguish species groups within the genus according to their most probable pollination mechanism. We conducted pollinator exclusion experiments, field observations on visitors to pistillate and staminate inflorescences, and trapped airborne pollen. A cluster analysis using 18 floral traits selected for their association with wind and insect pollination syndromes was carried out using 52 Chamaedorea species. Exclusion experiments showed that both wind and insects, mostly thrips (Thysanoptera), pollinated the studied species. Thrips used staminate inflorescences as brood sites and pollinated pistillate flowers by deception. Insects caught on pistillate inflorescences transported pollen, while traps proved that pollen is wind‐borne. Our empirical findings clearly suggest that pollination of dioecious Chamaedorea palms is likely to involve both insects and wind. A cluster analysis showed that the majority of studied species have a combination of floral traits that allow for both pollination modes. Our pollination experiments and morphological analysis both suggest that while some species may be completely entomophilous or anemophilous, ambophily might be a common condition within Chamaedorea. Our results propose a higher diversity of pollination mechanisms of Neotropical dioecious species than previously suggested.  相似文献   

14.
Coconut trees are mostly anemophilous; however, because bees and ants forage on coconut tree inflorescences for floral food, entomophilous pollination can also occur. The aim of this study was to determine the food resource preference of bees and ants while they collect pollen, nectar and, for ants, occasionally prey on coconut tree inflorescences, as well as to evaluate their impact on self-pollination. The number of ant visits to first female and then male flowers is significantly higher than that of bees. For Apis mellifera (L.) and Pseudomyrmex gracilis (Fabricius) 14% of the sequences were favorable to direct self-pollination. The probability of visits for all of the sequences was similar for both bees and ants and there was no difference in resource choice. For these reasons, neither can be considered a more effective pollinator of the coconut tree.  相似文献   

15.
The critically endangered Synaphea stenoloba (Proteaceae) has numerous scentless flowers clustered in dense inflorescences and deploys a ballistic pollen ejection mechanism to release pollen. We examined the hypothesis that active pollen ejection and flowering patterns within an inflorescence influence the reproductive success (i.e. fruit formation) of individual flowers within or among inflorescences of S. stenoloba in a pollinator‐excluded environment. Our results showed that: (1) no pollen grains were observed deposited on the stigma of their own flower after the pollen ejection system was manually activated, indicating self‐pollination within an individual flower is improbable in S. stenoloba; (2) fruit set in the indoor open pollination treatment and the inflorescence‐closed pollination treatment indicated that S. stenoloba is self‐compatible and pollen ejection can potentially result in inter‐floral pollination success; (3) fruit set in the inflorescence‐closed pollination treatment was significantly lower than that of indoor open pollination, indicating within‐ and between‐flower pollination events in an inflorescence are most likely limited, with pollination between inflorescences providing the highest reproductive opportunity; and (4) analysis of the spatial distribution of cumulative fruit set on inflorescences showed that pollen could reach any flower within an inflorescence and there was no functional limitation on seed set among flowers located at various positions within the inflorescence. These data suggest that the pollen ejection mechanism in S. stenoloba can enhance inter‐plant pollination in pollinator‐excluded environments and may suggest adaptation to pollinator scarcity attributable to habitat disturbance or competition for pollinators in a diverse flora. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 59–68.  相似文献   

16.
The Balanophoraceae is a unique angiosperm family that fully parasitizes the roots of trees. Although the pollination systems of several genera in this family have been reported, little is known of their diversity. In the present study, we investigated the pollination biology of Thonningia sanguinea (Balanophoraceae) in the tropical rainforests of Guinea, West Africa. Female flies of the families Muscidae and Calliphoridae as well as Technomyrmex ants frequently visited flowers to consume nectar secreted from inflorescences. While feeding, their bodies attached to anthers or pollen grains. The most abundant flower‐visiting fly, Morellia sp. (Muscidae), was observed laying eggs on T. sanguinea, and the larvae fed only on the vegetative tissue of decaying male inflorescences. Our findings provide a new candidate of pollination mutualism involving plants that provide brood sites for their pollinators.  相似文献   

17.
Abstract The effectiveness of nectarivorous birds and honeybees (Apis mellifera) as pollinators of Banksia spinulosa (Proteaceae) was investigated. Birds visited inflorescences in the early, mid and late flowering seasons. In contrast, honeybees visited only on days in the late flowering period when maximum temperatures exceeded 15°C. Self pollen remained on pollen presenters of flowers for up to 5 days in the early and mid periods. In the late period, when honeybees visited inflorescences, self pollen was removed within 2 days. Pollen removal was similar for caged (birds excluded) and open inflorescences in the late period, indicating that most pollen was removed by honeybees. In the early and mid periods, honeyeaters pollinated 22% and 27% of flowers on open inflorescences, respectively. In the late period, when both birds and bees visited inflorescences, 64–73% of flowers on open inflorescences were pollinated. Foraging by honeybees resulted in pollen deposition as 38% of flowers on caged inflorescences were pollinated. Throughout the flowering season a similar number of pollen grains was deposited per stigma. There were 3.0–3.7 pollen grains per stigma on open inflorescences in the late period, although only 2.0 grains per stigma on caged inflorescences. In the early and mid periods, fewer caged than open inflorescences produced fruits, indicating the importance of honeyeaters to reproductive success at these times. In contrast, in the late period when honeybees visited inflorescences, fruit-set was similar on caged and open inflorescences. Overall, these results indicate that honeybees were effective pollinators of B. spinulosa.  相似文献   

18.
Abstract The flowers of two species of threatened New Zealand mistletoes (Peraxilla tetrapetala and Peraxilla colensoi, Loranthaceae) have explosive buds that do not open unless force is applied by birds or two species of native short‐tongued bees. Opened flowers are visited by a variety of birds and insects. Although both species of Peraxilla conform to a pollination syndrome of ornithophily, bees may be effective alternative pollinators. We investigated the effectiveness of bees and birds as pollinators of P. colensoi at one site and P. tetrapetala at two sites in the South Island. Bees and other insects outnumbered birds as flower visitors at all three sites. By excluding birds with wire cages, we showed that two bee species regularly open flowers of P. tetrapetala, but only rarely open flowers of P. colensoi. Few pollen grains were deposited when either birds or bees opened buds, so opening buds was not by itself sufficient for adequate pollination. Instead, pollen continued to accumulate over the next 6 or 7 days, even inside cages that excluded birds. Both populations of P. tetrapetala were regularly pollen‐limited, but in different ways. At Ohau, opened flowers gained enough pollen to produce seeds, but many buds were not opened and hence failed to set seed. In contrast, at Craigieburn, nearly all buds were opened, but many of these did not receive enough pollen. These results demonstrate that native bees can partially replace birds as pollinators of mistletoes, despite their apparent ornithophilous syndrome. Ongoing reductions in New Zealand forest bird numbers means that the service bees provide may be important for the long‐term future of these plants.  相似文献   

19.
M. W. Ramsey 《Oecologia》1988,76(1):119-124
Summary The effectiveness of nectarivorous birds, introduced honey bees and staphylined beetles as pollinators of Banksia menziesii was assessed. Staphylinids removed substantial amounts of pollen but did not deposit any onto stigmata. Abundance of beetles on inflorescences was related to the mean number of florets opening per day. Honey bees collecting pollen were more likely to effect pollination than those collecting nectar which only contacted stigmata when arriving or leaving an inflorescence. Nectar-foraging birds probed between florets 10.2±0.8 (±SE) times, contacting 8–16 stigmata during each probe. Bees visited inflorescences ten times more frequently than birds although they deposited only 25% of the pollen that birds did on stigmata. Fruit set was ten times greater on inflorescences visited by birds than on inflorescences visited by bees. Bees were capable of removing as much pollen as birds but, because of direct pollen transfer to birds when florets opened during foraging, actual removal was probably much less. Selection for floret opening during nectar foraging by birds may have resulted from pollen removal by non-pollinating animals, such as staphylinids.  相似文献   

20.
European honeybees (Apis mellifera) were less efficient pollinators ofGrevillea barklyana than nectar-feeding birds. Nectar-collecting honeybees did not contact reproductive parts of flowers. Pollen-collecting honeybees preferentially visited malestage flowers but rarely visited female-stage flowers. Fruit set on caged inflorescences that allowed access to honeybees but excluded birds was reduced by more than 50% compared to inflorescences that were visited by both types of visitors. Further, fruit set on caged inflorescences was less than on bagged inflorescences that excluded both birds and honeybees, indicating that pollen removal by bees decreased opportunities for delayed autonomous selfing in the absence of birds. Although fruit set was not pollen-limited at the study site, pollen removal by honeybees would decrease fruit set in small populations where birds are scarce. In addition, pollen removal by honeybees would reduce opportunities for outcrossing and reproductive success through male function. Although honeybees have been in Australia for insufficient time to have exerted selection on floral traits, evolutionary shifts in response to these animals are likely to occur in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号