首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
How do species coexist? A framework known as modern coexistence theory can ‘measure coexistence' by partitioning invasion growth rates into coexistence mechanisms, terms which correspond to classes of explanations for coexistence. There are several reasonable ways to define coexistence mechanisms, each depending on exactly how a species perturbed to low density (the invader) is compared to other species that remain at their typical densities (the residents). Using conceptual arguments and two case studies, we compare five methods for calculating coexistence mechanisms: 1) scaling factors, the traditional approach which attempts to eliminate the linear effects of regulating factors; 2) the simple comparison, which gives equal weight to all resident species; 3) generation time scaling, a novel method which corrects for intrinsic differences in population-dynamical speed; 4) β scaling, where resident growth rates are scaled by a measure of relative sensitivity to competition; and 5) the invader–invader comparison, a previously obscure method in which a focal species is compared to itself at high versus low density. We find that the conventional scaling factors can lead to nonsensical results when species have strong and asymmetric niche differences; though scaling factors can be useful in certain theoretical studies, they are not recommended for explaining coexistence in real communities. Invader–invader comparisons are also problematic, as they do not effectively measure specialization or niche differentiation. The universally-applicable simple comparison often works well, but can give counterintuitive results when species have disparate generation times. The β scaling method often works well in simple models, but faces implementation problems in complex models. We tentatively recommend generation time scaling as the all-purpose method for calculating coexistence mechanisms.  相似文献   

2.
    
In modern coexistence theory, species coexistence can either arise via strong niche differences or weak fitness differences. Having a common currency for interpreting these mechanisms is essential for synthesizing knowledge across different studies and systems. However, several methods for quantifying niche and fitness differences exist, with little guidance on how and why these methods differ. Here, we first organize the available methods into three groups and review their differences from a conceptual point of view. Next, we apply four methods to quantify niche and fitness differences to one simulated and one empirical data set. We show that these methods do not only differ quantitatively, but affect how we interpret coexistence. Specifically, the different methods disagree on how resource supply rates (simulated data) or plant traits (empirical data) affect niche and fitness differences. We argue for a better theoretical understanding of what connects and sets apart different methods and more precise empirical measurements to foster appropriate method selection in coexistence theory.  相似文献   

3.
    
The coexistence of competing species depends on the balance between their fitness differences, which determine their competitive inequalities, and their niche differences, which stabilise their competitive interactions. Darwin proposed that evolution causes species' niches to diverge, but the influence of evolution on relative fitness differences, and the importance of both niche and fitness differences in determining coexistence have not yet been studied together. We tested whether the phylogenetic distances between species of green freshwater algae determined their abilities to coexist in a microcosm experiment. We found that niche differences were more important in explaining coexistence than relative fitness differences, and that phylogenetic distance had no effect on either coexistence or on the sizes of niche and fitness differences. These results were corroborated by an analysis of the frequency of the co‐occurrence of 325 pairwise combinations of algal taxa in > 1100 lakes across North America. Phylogenetic distance may not explain the coexistence of freshwater green algae.  相似文献   

4.
    
Competition is among the most important factors regulating plant population and community dynamics, but we know little about how different vital rates respond to competition and jointly determine population growth and species coexistence. We conducted a field experiment and parameterised integral projection models to model the population growth of 14 herbaceous plant species in the absence and presence of neighbours across an elevation gradient (284 interspecific pairs). We found that suppressed individual growth and seedling establishment contributed the most to competition-induced declines in population growth, although vital rate contributions varied greatly between species and with elevation. In contrast, size-specific survival and flowering probability and seed production were frequently enhanced under competition. These compensatory vital rate responses were nearly ubiquitous (occurred in 92% of species pairs) and significantly reduced niche overlap and stabilised coexistence. Our study highlights the importance of demographic processes for regulating population and community dynamics, which has often been neglected by classic coexistence theories.  相似文献   

5.
    
Species can adjust their traits in response to selection which may strongly influence species coexistence. Nevertheless, current theory mainly assumes distinct and time‐invariant trait values. We examined the combined effects of the range and the speed of trait adaptation on species coexistence using an innovative multispecies predator–prey model. It allows for temporal trait changes of all predator and prey species and thus simultaneous coadaptation within and among trophic levels. We show that very small or slow trait adaptation did not facilitate coexistence because the stabilizing niche differences were not sufficient to offset the fitness differences. In contrast, sufficiently large and fast trait adaptation jointly promoted stable or neutrally stable species coexistence. Continuous trait adjustments in response to selection enabled a temporally variable convergence and divergence of species traits; that is, species became temporally more similar (neutral theory) or dissimilar (niche theory) depending on the selection pressure, resulting over time in a balance between niche differences stabilizing coexistence and fitness differences promoting competitive exclusion. Furthermore, coadaptation allowed prey and predator species to cluster into different functional groups. This equalized the fitness of similar species while maintaining sufficient niche differences among functionally different species delaying or preventing competitive exclusion. In contrast to previous studies, the emergent feedback between biomass and trait dynamics enabled supersaturated coexistence for a broad range of potential trait adaptation and parameters. We conclude that accounting for trait adaptation may explain stable and supersaturated species coexistence for a broad range of environmental conditions in natural systems when the absence of such adaptive changes would preclude it. Small trait changes, coincident with those that may occur within many natural populations, greatly enlarged the number of coexisting species.  相似文献   

6.
    
  1. A better understanding of species coexistence and community dynamics may benefit from more insights on trait variability at the individual and species levels.
  2. Tadpole assemblages offer an excellent system to understand the relative influence of intraspecific and interspecific variability on community assembly, due to their high phenotypic plasticity, and the strong influence that environmental variables have on their spatial distribution and individual performance.
  3. Here, we quantified the intraspecific and interspecific components of tadpoles’ trait variability in order to investigate their relative role in shaping tadpole communities.
  4. We selected eight functional traits related to microhabitat use, foraging strategies, and swimming ability. We measured these traits on 678 individuals from 22 species captured in 43 ponds in the Atlantic Forest. We used single‐ and multitrait analyses to decompose trait variability. To explore the action of external and internal filtering on community assembly, we used a variance decomposition approach that compares phenotypic variability at the individual, population, community and regional levels.
  5. On average, 33% of trait variability was due to within‐species variation. This decomposition varied widely among traits. We found only a reduced effect of external filtering (low variation in the height of the ventral fin within ponds in comparison to the total variation), whereas the internal filtering was stronger than expected. Traits related to the use of different microhabitats through the water column were generally less variable than traits related to swimming ability to escape of predators, with tail traits being highly variable within species.
  6. Our study highlights the importance of incorporating both intraspecific and interspecific, trait differences and of focusing on a diversity of traits related to both stabilizing niche and fitness differences in order to better understand how trait variation relates to species coexistence.
  相似文献   

7.
8.
We present a model for symbionts in plant host metapopulation. Symbionts are assumed not only to form a systemic infection throughout the host and pass into the host seeds, but also to reproduce and infect new plants by spores. Thus, we study a metapopulation of qualitatively identical patches coupled through seeds and spores dispersal. Symbionts that are only vertically inherited cannot persist in such a uniform environment if they lower the host's fitness. They have to be beneficial in order to coexist with the host if they are not perfectly transmitted to the seeds; but evolution selects for 100% fidelity of infection inheritance. In this model we want to see how mixed strategies (both vertical and horizontal infection) affect the coexistence of uninfected and infected plants at equilibrium; also, what would evolution do for the host, for the symbionts and for their association. We present a detailed classification of the possible equilibria with examples. The stability of the steady states is rigorously proved for the first time in a metapopulation set-up.  相似文献   

9.
    
Competition in plant communities is often a contentious issue because the mechanisms of competitive interactions are not obvious. We sought evidence that Proteaceae communities are competing along two leaf niche axes as observed in a previous study. Two functional characters, leaf size and leaf shape were measured on numerous individuals per species per plot of six communities from two different regions. Patterns of overdispersion along these leaf trait axes between species were observed, similar to the earlier study. The observed results were compared with the patterns expected under a null model using standard and novel indices to test the significance of trait dispersion between species within a plot. Competition and niche differentiation in the observed plots were not supported as the observed trait overlaps were not significantly different from the null expectation. Our results do not support the theory that Proteaceae communities compete along the two proposed functional leaf traits.  相似文献   

10.
    
Explaining nature’s biodiversity is a key challenge for science. To persist, populations must be able to grow faster when rare, a feature called negative frequency dependence and quantified as ‘niche differences’ () in modern coexistence theory. Here, we first show that available definitions of differ in how link to species interactions, are difficult to interpret and often apply to specific community types only. We then present a new definition of that is intuitive and applicable to a broader set of (modelled and empirical) communities than is currently the case, filling a main gap in the literature. Given , we also redefine fitness differences () and illustrate how and determine coexistence. Finally, we demonstrate how to apply our definitions to theoretical models and experimental data, and provide ideas on how they can facilitate comparison and synthesis in community ecology.  相似文献   

11.
    
Darwin's naturalization conundrum states that successful invaders must be closely related to native species to possess the traits to tolerate that environment, but distantly related enough to possess traits allowing exploitation of underutilized niches, thereby minimizing competition. Although influential, this hypothesis is based on several simplistic assumptions. In particular, the relationship among phylogenetic relatedness, similarity, and competition is more complex than assumed and changes with spatial and phylogenetic scale. Competitive interactions are determined by limiting similarity and trait hierarchies associated with separate traits. Successful invaders thus need to be similar to native species in some respects, but different in others. This combination of similarities and differences is unlikely to be conserved. Further, many invasive species are represented in their novel range by genotypes with extreme trait values or plasticity relative to the species mean. Selection for these genotypes may alter the similarity between invasive and native species, thus obscuring the relationship between competition and phylogenetic relatedness. As environmental filtering and competition often act on different spatial scales, approaches assessing how individual traits relate to invasion at these scales (species pools vs local community) may improve our understanding of the relationship between similarity and invasion.  相似文献   

12.
13.
For the competition system of phytoplankton and bacteria through inorganic phosphorus, our mathematical model showed that mutualistic relationships between them could occur due to production and consumption of extracellular organic carbon by phytoplankton and bacteria. In our model, phytoplankton are limited in their growth by light and phosphorus, and bacteria are limited in their growth by phosphorus and carbon released from phytoplankton. We adopted permanence as a criterion of the coexistence in mathematical analysis, and led necessary conditions of permanence in the model. Under these coexistence conditions, we estimated the strength of total effects of interactions between phytoplankton and bacteria at the steady state by press perturbation method. The results of this estimation indicated the mutualistic interactions between phytoplankton and bacteria. This suggests that mutualistic situation could occur due to the introduction of carbon flow from phytoplankton to bacteria, even if phytoplankton and bacteria compete with each other through common resource, inorganic phosphorus.  相似文献   

14.
    
Nanoparticle pollution has been shown to affect various organisms. However, the effects of nanoparticles on species interactions, and the role of species traits, such as body size, in modulating these effects, are not well-understood. We addressed this issue using competing freshwater phytoplankton species exposed to copper oxide nanoparticles. Increasing nanoparticle concentration resulted in decreased phytoplankton species growth rates and community productivity (both abundance and biomass). Importantly, we consistently found that nanoparticles had greater negative effects on species with smaller cell sizes, such that nanoparticle pollution weakened the competitive dominance of smaller species and promoted species diversity. Moreover, nanoparticles reduced the growth rate differences and competitive ability differences of competing species, while having little effect on species niche differences. Consequently, nanoparticle pollution reduced the selection effect on phytoplankton community abundance, but increased the selection effect on community biomass. Our results suggest cell size as a key functional trait to consider when predicting phytoplankton community structure and ecosystem functioning in the face of increasing nanopollution.  相似文献   

15.
    
Hurricane Joan struck the Caribbean Coast of Nicaragua in October 1988 causing extensive damage to the lowland rain forest of the zone. Six permanent plots were established in 1990 and the growth rates of all individuals in a total area of 6000 m2 monitored for six years. Eighteen of the species were abundant enough to measure species-specific growth rates. The post hurricane successional process included a great deal of resprouting of pre-existing individuals and the current state of the forest includes a low but very dense canopy, suggesting that competition is entering an intensive phase. Specific growth rates between the time of the hurricane and the present thus represent establishment or regenerative growth rates and provide an indication of whether or not distinct regeneration niches exist. Three distinct patterns of growth rate seem apparent, fast-growing heliophyles (eight species), slow-growing resprouters (nine species), and vochysia ferruginea, which seems to have a special pattern.  相似文献   

16.
    
  相似文献   

17.
    
Demographic theory and data have emphasized that nonheritable variation in individual frailty enables selection within cohorts, affecting the dynamics of a population while being invisible to its evolution. Here, we include the component of individual variation in longevity or viability which is nonheritable in simple bacterial growth models and explore its ecological and evolutionary impacts. First, we find that this variation produces consistent trends in longevity differences between bacterial genotypes when measured across stress gradients. Given that direct measurements of longevity are inevitably biased due to the presence of this variation and ongoing selection, we propose the use of the trend itself for obtaining more exact inferences of genotypic fitness. Second, we show how species or strain coexistence can be enabled by nonheritable variation in longevity or viability. These general conclusions are likely to extend beyond bacterial systems.  相似文献   

18.
陆生食肉动物(食肉目哺乳动物, 以下简称食肉动物)作为食物链与营养级的高位物种对维持生态系统结构与功能稳定性起到重要作用。过度人类干扰已在全球范围内造成食肉动物种群数量剧烈下降和栖息地质量显著退化, 探究食肉动物的区域共存机制对理解生物群落构建、濒危物种保护与管理具有重要意义。本文通过梳理100余篇有关食肉动物在空间、时间和营养3个生态位维度上相互作用的研究, 分析了体型大小、猎物组成、种群结构、环境差异、人类干扰和气候变化等因素对食肉动物种间关系和区域共存的影响, 并对今后食肉动物区域共存研究中亟需解决的问题进行了展望。食肉动物通过生态位分离达到共存并没有单一的理论解释, 猎物、栖息地和人类干扰等因素可以调节食肉动物相互作用关系并直接或间接地影响共存, 共同适应在食肉动物区域共存中具重要作用。食肉动物区域共存是经过长期演化形成的相对稳定状态, 需要以动态的眼光去审视。要明晰生态位重叠与区域共存机制的区别与联系, 在理解生态位分离的基础上, 结合生活史、家域和行为等对食肉动物共存进行综合分析。  相似文献   

19.
20.
    
Pollination is thought to be under positive density‐dependence, destabilising plant coexistence by conferring fitness disadvantages to rare species. Such disadvantage is exacerbated by interspecific competition but can be mitigated by facilitation and intraspecific competition. However, pollinator scarcity should enhance intraspecific plant competition and impose disadvantage on common over rare species (negative density‐dependence, NDD). We assessed pollination proxies (visitation rate, pollen receipt, pollen tubes) in a generalised plant community and related them to conspecific and heterospecific density, expecting NDD and interspecific facilitation due to the natural pollinator scarcity. Contrary to usual expectations, all proxies indicated strong intraspecific competition for common plants. Moreover interspecific facilitation prevailed and was stronger for rare than for common plants. Both NDD and interspecific facilitation were modulated by specialisation, floral display and pollinator group. The combination of intraspecific competition and interspecific facilitation fosters plant coexistence, suggesting that pollination can be a niche axis maintaining plant diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号