首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Global warming threatens the viability of tropical coral reefs and associated marine calcifiers, including symbiont-bearing larger benthic foraminifera (LBF). The impacts of current climate change on LBF are debated because they were particularly diverse and abundant during past warm periods. Studies on the responses of selected LBF species to changing environmental conditions reveal varying results. Based on a comprehensive review of the scientific literature on LBF species occurrences, we applied species distribution modeling using Maxent to estimate present-day and future species richness patterns on a global scale for the time periods 2040–2050 and 2090–2100. For our future projections, we focus on Representative Concentration Pathway 6.0 from the Intergovernmental Panel on Climate Change, which projects mean surface temperature changes of +2.2°C by the year 2100. Our results suggest that species richness in the Central Indo-Pacific is two to three times higher than in the Bahamian ecoregion, which we have identified as the present-day center of LBF diversity in the Atlantic. Our future predictions project a dramatic temperature-driven decline in low-latitude species richness and an increasing widening bimodal latitudinal pattern of species diversity. While the central Indo-Pacific, now the stronghold of LBF diversity, is expected to be most pushed outside of the currently realized niches of most species, refugia may be largely preserved in the Atlantic. LBF species will face large-scale non-analogous climatic conditions compared to currently realized climate space in the near future, as reflected in the extensive areas of extrapolation, particularly in the Indo-Pacific. Our study supports hypotheses that species richness and biogeographic patterns of LBF will fundamentally change under future climate conditions, possibly initiating a faunal turnover by the late 21st century.  相似文献   

2.
Tropical forests are threatened by many human disturbances – two of the most important of which are deforestation and climate change. To mitigate the impacts of these disturbances, it is important to understand their potential effects on the distributions of species. In the tropics, such understanding has been hindered by poor knowledge of the current distributions and range limits of most species. Here, we use herbarium collection records to model the current and future distributions of ca. 3000 Amazonian plant species. We project these distributions into the future under a range of different scenarios related to the magnitude of climate change and extent of deforestation as well as the response of species to changes in temperature, precipitation, and atmospheric concentrations of CO2 . We find that the future of Amazonian diversity will be dependant primarily on the ability of species to tolerate or adapt to rising temperatures. If the thermal niches of tropical plant species are fixed and incapable of expanding under rapid warming, then the negative effects of climate change will overshadow the effects of deforestation, greatly reducing the area of suitable habitat available to most species and potentially leading to massive losses of biodiversity throughout the Amazon. If tropical species are generally capable of tolerating warmer temperatures, rates of habitat loss will be greatly reduced but many parts of Amazonia may still experience rapid losses of diversity, with the effects of enhanced seasonal water stress being similar in magnitude to the effects of deforestation.  相似文献   

3.
4.
With many species predicted to respond to a changing climate by shifting their distribution to climatically suitable areas, the effectiveness of static protected areas (PAs) is in question. The Madagascan PA network area has quadrupled over the past 15 years, and, although conservation planning techniques were employed to prioritise suitable areas for protection during this process, climate change impacts were not considered. We make use of species distribution models for 750 Madagascan vertebrate species to assess the potential impacts of climate change on (1) species richness across Madagascar, (2) species gain, loss and turnover in Madagascar's PAs and (3) PA network representativeness. Results indicate that Madagascar is predicted to experience substantial shifts in species richness, with most PAs predicted to experience high rates of species turnover. Provided there are no barriers to species movements, the representativeness of the current PA network will remain high for the species that are predicted to survive changes in climate by 2070, suggesting that little benefit will be gained from establishing new PAs. However, this rests on the assumption of mobility through areas currently characterised by fragmentation and anthropogenic activity, something that will require considerable expansion in conservation efforts in order to achieve.  相似文献   

5.
Genetic diversity provides the basic substrate for evolution, yet few studies assess the impacts of global climate change (GCC) on intraspecific genetic variation. In this review, we highlight the importance of incorporating neutral and non‐neutral genetic diversity when assessing the impacts of GCC, for example, in studies that aim to predict the future distribution and fate of a species or ecological community. Specifically, we address the following questions: Why study the effects of GCC on intraspecific genetic diversity? How does GCC affect genetic diversity? How is the effect of GCC on genetic diversity currently studied? Where is potential for future research? For each of these questions, we provide a general background and highlight case studies across the animal, plant and microbial kingdoms. We further discuss how cryptic diversity can affect GCC assessments, how genetic diversity can be integrated into studies that aim to predict species' responses on GCC and how conservation efforts related to GCC can incorporate and profit from inclusion of genetic diversity assessments. We argue that studying the fate of intraspecifc genetic diversity is an indispensable and logical venture if we are to fully understand the consequences of GCC on biodiversity on all levels.  相似文献   

6.
7.
孙军  薛冰 《生物多样性》2016,24(7):739-222
理解全球气候变化对地球生态系统的影响是全世界广泛关注的问题, 而相比于陆地生态系统, 海洋生态系统对全球气候变化更为敏感。全球气候变化对海洋的影响主要表现在海洋暖化、海洋酸化、大洋环流系统的改变、海平面上升、紫外线辐射增强等方面。浮游植物是海洋生态系统最重要的初级生产者, 同时对海洋碳循环起到举足轻重的作用, 其对全球气候变化的响应主要体现在物种分布、初级生产力、群落演替、生物气候学等方面。具体表现在以下方面: 暖水种的分布范围在扩大, 冷水种分布范围在缩小; 浮游植物全球初级生产力降低; 浮游植物群落会向细胞体积更小的物种占优势的方向转变; 浮游植物水华发生的时间提前、强度增强; 一些有害物种水华的发生频率也会增加; 海洋表层海水的酸化会影响浮游植物特别是钙化类群的生长和群落多样性; 紫外辐射增强对浮游植物的生长起到抑制作用; 厄尔尼诺、拉尼娜、降水量的增加通常抑制浮游植物生长。浮游植物生长和分布的变化会体现在多样性的各个层面上。对于浮游植物在全球变化各种驱动因子下的生理生态学和长周期变动观测等是今后研究的重要方向, 也将为理解全球变化下的浮游植物-多样性-生态系统响应与反馈机制提供基本信息。  相似文献   

8.
Climate change represents a major challenge to the maintenance of global biodiversity. To date, the direction and magnitude of net changes in the global distribution of plant diversity remain elusive. We use the empirical multi-variate relationships between contemporary water-energy dynamics and other non-climatic predictor variables to model the regional capacity for plant species richness (CSR) and its projected future changes. We find that across all analysed Intergovernmental Panel on Climate Change emission scenarios, relative changes in CSR increase with increased projected temperature rise. Between now and 2100, global average CSR is projected to remain similar to today (+0.3%) under the optimistic B1/+1.8°C scenario, but to decrease significantly (−9.4%) under the ‘business as usual’ A1FI/+4.0°C scenario. Across all modelled scenarios, the magnitude and direction of CSR change are geographically highly non-uniform. While in most temperate and arctic regions, a CSR increase is expected, the projections indicate a strong decline in most tropical and subtropical regions. Countries least responsible for past and present greenhouse gas emissions are likely to incur disproportionately large future losses in CSR, whereas industrialized countries have projected moderate increases. Independent of direction, we infer that all changes in regional CSR will probably induce on-site species turnover and thereby be a threat to native floras.  相似文献   

9.
蝴蝶对全球气候变化响应的研究综述   总被引:2,自引:0,他引:2  
全球气候变化以及生物对其响应已引起人们的广泛关注。在众多生物中,蝴蝶被公认为是对全球气候变化最敏感的指示物种之一。已有大量的研究结果表明,蝴蝶类群已经在地理分布范围、生活史特性以及生物多样性变化等方面对全球气候变化作出了响应。根据全球范围内蝴蝶类群对气候变化响应的研究资料,尤其是欧美一些长期监测的研究成果,综述了蝴蝶类群在物种分布格局、物候、繁殖、形态特征变化、种群动态以及物种多样性变化等方面对气候变化的响应特征,认为温度升高和极端天气是导致蝴蝶物种分布格局和种群动态变化的主要因素。在此基础上,展望了我国开展蝴蝶类群对气候变化响应方面研究的未来发展趋势。  相似文献   

10.
The potential effects of global climate changeon marine protected areas do not appear to havebeen addressed in the literature. This paperexamines the literature on protected areas,conservation biology, marine ecology,oceanography, and climate change, and reviewssome of the relevant differences between marineand terrestrial environments. Frameworks andclassifications systems used in protected areadesign are discussed. Finally, a frameworkthat summarizes some of the importantoceanographic processes and their links to thefood chain are reviewed. Species abundance anddistribution are expected to change as a resultof global climate change, potentiallycompromising the efficacy of marine protectedareas as biodiversity conservation tools. Thisreview suggests the need for: furtherinterdisciplinary research and the use oflinked models; an increase in marine protectedareas for biodiversity conservation and asresearch sites for teasing apart fishingeffects from climate effects; a temporallyresponsive approach to siting new marineprotected areas, shifting their locations ifnecessary; and large-scale ecosystem/integratedmanagement approaches to address the competinguses of the oceans and boundary-less threatssuch as global climate change and pollution.  相似文献   

11.
Current predictions about the responses of species to climate change strongly rely on projecting altered environmental conditions on their distributions. In this study, we investigated the effects of future climate change scenarios on the potential distribution of 10 species of scorpions in north‐eastern Brazil in the context of their degree of specialisation to closed (Atlantic and Amazon Forests) and open (Caatinga and Cerrado) habitats. Scorpion species were classified as habitat specialists or generalists according to the IndVal index, and present and future species distribution models were prepared using minimum volume ellipsoids. According to IndVal, four species were classified as closed‐forest specialists (Ananteris mauryi, Tityus brazilae, Tityus pusillus and Tityus neglectus), four as open‐forest specialists (Jaguajir agamemnon, Jaguajir rochae, Physoctonus debilis and Bothriurus rochai), and two as generalists (Tityus stigmurus and Bothriurus asper). All species presented a drastic reduction in potential distribution, ranging from 44% to 72%, when compared with their current distribution. In addition, we found a reduction in scorpion species richness under future climate change scenarios. This finding has implications for scorpion conservation. Further, the results show that climate change may impact the composition of scorpion assemblages in north‐eastern Brazil, revealing important implications for human–scorpion interactions.  相似文献   

12.
AimsClimate change in the near future may become a major threat to high-altitude endemics by greatly altering their distribution. Our aims are to (i) assess the potential impacts of future climate change on the diversity and distribution of seed plants endemic to the Tibetan Plateau and (ii) evaluate the conservation effectiveness of the current National Nature Reserves (NNRs) in protecting the endemic plants in the face of climate change.  相似文献   

13.
Aim To use a fine‐grained global model of ant diversity to identify the limits of our knowledge of diversity in the context of climate change. Location Global. Methods We applied generalized linear modelling to a global database of local ant assemblages to predict the species density of ants globally. Predictors evaluated included simple climate variables, combined temperature × precipitation variables, biogeographic region, elevation, and interactions between select variables. Areas of the planet identified as beyond the reliable prediction ability of the model were those having climatic conditions more extreme than what was represented in the ant database. Results Temperature was the most important single predictor of ant species density, and a mix of climatic variables, biogeographic region and interactions between climate and region yielded the best overall model. Broadly, geographic patterns of ant diversity match those of other taxa, with high species density in the wet tropics and in some, but not all, parts of the dry tropics. Uncertainty in model predictions appears to derive from the low amount of standardized sampling of ants in Asia, in Africa and in the most extreme (e.g. hottest) climates. Model residuals increase as a function of temperature. This suggests that our understanding of the drivers of ant diversity at high temperatures is incomplete, especially in hot and arid climates. In other words, our ignorance of how ant diversity relates to environment is greatest in those regions where most species occur – hot climates, both wet and dry. Main conclusions Our results have two important implications. First, temperature is necessary, but not sufficient, to explain fully the patterns of ant diversity. Second, our ability to predict ant diversity is weakest exactly where we need to know the most, the warmest regions of a warming world. This includes significant parts of the tropics and some of the most biologically diverse areas in the world.  相似文献   

14.
The Intergovernmental Panel on Climate Change (IPCC) predicts an increase in global temperatures of between 1.4°C and 5.8°C during the 21st century, as a result of elevated CO2 levels. Using bioclimatic envelope models, we evaluate the potential impact of climate change on the distributions and species richness of 120 native terrestrial non-volant European mammals under two of IPCC’s future climatic scenarios. Assuming unlimited and no migration, respectively, our model predicts that 1% or 5–9% of European mammals risk extinction, while 32–46% or 70–78% may be severely threatened (lose > 30% of their current distribution) under the two scenarios. Under the no migration assumption endemic species were predicted to be strongly negatively affected by future climatic changes, while widely distributed species would be more mildly affected. Finally, potential mammalian species richness is predicted to become dramatically reduced in the Mediterranean region but increase towards the northeast and for higher elevations. Bioclimatic envelope models do not account for non-climatic factors such as land-use, biotic interactions, human interference, dispersal or history, and our results should therefore be seen as first approximations of the potential magnitude of future climatic changes.  相似文献   

15.
Forest undergrowth plants are tightly connected with the shady and humid conditions that occur under the canopy of tropical forests. However, projected climatic changes, such as decreasing precipitation and increasing temperature, negatively affect understory environments by promoting light‐demanding and drought‐tolerant species. Therefore, we aimed to quantify the influence of climate change on the spatial distribution of three selected forest undergrowth plants, Dracaena Vand. ex L. species, D. afromontana Mildbr., D. camerooniana Baker, and D. surculosa Lindl., simultaneously creating the most comprehensive location database for these species to date. A total of 1,223 herbarium records originating from tropical Africa and derived from 93 herbarium collections worldwide have been gathered, validated, and entered into a database. Species‐specific Maxent species distribution models (SDMs) based on 11 bioclimatic variables from the WorldClim database were developed for the species. HadGEM2‐ES projections of bioclimatic variables in two contrasting representative concentration pathways (RCPs), RCP2.6 and RCP8.5, were used to quantify the changes in future potential species distribution. D. afromontana is mostly sensitive to temperature in the wettest month, and its potential geographical range is predicted to decrease (up to ?63.7% at RCP8.5). Optimum conditions for D. camerooniana are low diurnal temperature range (6–8°C) and precipitation in the wettest season exceeding 750 mm. The extent of this species will also decrease, but not as drastically as that of D. afromontana. D. surculosa prefers high precipitation in the coldest months. Its potential habitat area is predicted to increase in the future and to expand toward the east. This study developed SDMs and estimated current and future (year 2050) potential distributions of the forest undergrowth Dracaena species. D. afromontana, naturally associated with mountainous plant communities, was the most sensitive to predicted climate warming. In contrast, D. surculosa was predicted to extend its geographical range, regardless of the climate change scenario.  相似文献   

16.
The Vulnerable (IUCN) whale shark spans warm and temperate waters around the globe. However, their present‐day and possible future global distribution has never been predicted. Using 30 years (1980–2010) of whale shark observations recorded by tuna purse‐seiners fishing in the Atlantic, Indian and Pacific Oceans, we applied generalized linear mixed‐effects models to test the hypothesis that similar environmental covariates predict whale shark occurrence in all major ocean basins. We derived global predictors from satellite images for chlorophyll a and sea surface temperature, and bathymetric charts for depth, bottom slope and distance to shore. We randomly generated pseudo‐absences within the area covered by the fisheries, and included fishing effort as an offset to account for potential sampling bias. We predicted sea surface temperatures for 2070 using an ensemble of five global circulation models under a no climate‐policy reference scenario, and used these to predict changes in distribution. The full model (excluding standard deviation of sea surface temperature) had the highest relative statistical support (wAICc = 0.99) and explained ca. 60% of the deviance. Habitat suitability was mainly driven by spatial variation in bathymetry and sea surface temperature among oceans, although these effects differed slightly among oceans. Predicted changes in sea surface temperature resulted in a slight shift of suitable habitat towards the poles in both the Atlantic and Indian Oceans (ca. 5°N and 3–8°S, respectively) accompanied by an overall range contraction (2.5–7.4% and 1.1–6.3%, respectively). Predicted changes in the Pacific Ocean were small. Assuming that whale shark environmental requirements and human disturbances (i.e. no stabilization of greenhouse gas emissions) remain similar, we show that warming sea surface temperatures might promote a net retreat from current aggregation areas and an overall redistribution of the species.  相似文献   

17.
18.
Global change is expected to have complex effects on the distribution and transmission patterns of zoonotic parasites. Modelling habitat suitability for parasites with complex life cycles is essential to further our understanding of how disease systems respond to environmental changes, and to make spatial predictions of their future distributions. However, the limited availability of high quality occurrence data with high spatial resolution often constrains these investigations. Using 449 reliable occurrence records for Echinococcus multilocularis from across Europe published over the last 35 years, we modelled habitat suitability for this parasite, the aetiological agent of alveolar echinococcosis, in order to describe its environmental niche, predict its current and future distribution under three global change scenarios, and quantify the probability of occurrence for each European country. Using a machine learning approach, we developed large-scale (25 × 25 km) species distribution models based on seven sets of predictors, each set representing a distinct biological hypothesis supported by current knowledge of the autecology of the parasite. The best-supported hypothesis included climatic, orographic and land-use/land-cover variables such as the temperature of the coldest quarter, forest cover, urban cover and the precipitation seasonality. Future projections suggested the appearance of highly suitable areas for E. multilocularis towards northern latitudes and in the whole Alpine region under all scenarios, while decreases in habitat suitability were predicted for central Europe. Our spatially explicit predictions of habitat suitability shed light on the complex responses of parasites to ongoing global changes.  相似文献   

19.

Aim

Land use is a main driver of biodiversity loss worldwide. However, quantifying its effects on global plant diversity remains a challenge due to the limited availability of data on the distributions of vascular plant species and their responses to land use. Here, we estimated the global extinction threat of land use to vascular plant species based on a novel integration of an ecoregion-level species-area model and the relative endemism richness of the ecoregions.

Location

Global.

Methods

First, we assessed ecoregion-level extinction threats using a countryside species–area relationship model based on responses of local plant richness to land use types and intensities and a high-resolution global land use map. Next, we estimated global species extinction threat by multiplying the relative endemism richness of each ecoregion with the ecoregion-level extinction threats.

Results

Our results indicate that 11% of vascular plant species are threatened with global extinction. We found the largest extinction threats in the Neotropic and Palearctic realms, mainly due to cropland of minimal and high intensity, respectively.

Main Conclusions

Our novel integration of the countryside species–area relationship and the relative endemism richness allows for the identification of hotspots of global extinction threat, as well as the contribution of specific land use types and intensities to this threat. Our findings inform where the development of measures to protect or restore plant diversity globally are most needed.  相似文献   

20.
Throughout the last century, climate change has altered the geographic distributions of many species. Insects, in particular, vary in their ability to track changing climates, and it is likely that phenology is an important determinant of how well insects can either expand or shift their geographic distributions in response to climate change. Grasshoppers are an ideal group to test the hypothesis that phenology correlates with range expansion, given that co‐occurring confamilial, and even congeneric, species can differ in phenology. Here, I tested the hypothesis that early‐ and late‐season species should possess different range expansion potentials, as estimated by habitat suitability from ecological niche models. I used nine different modeling techniques to estimate habitat suitability of six grasshopper species of varying phenology under two climate scenarios for the year 2050. My results suggest that, of the six species examined here, early‐season species were more sensitive to climate change than late‐season species. The three early‐season species examined here might shift northward during the spring, while the modeled geographic distributions of the three late‐season species were generally constant under climate change, likely because they were pre‐adapted to hot and dry conditions. Phenology might therefore be a good predictor of how insect distributions might change in the future, but this hypothesis remains to be tested at a broader scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号